\ XILINX
DEVELOPER
FORUM

Future of FPGA Compilation and

Acceleration
Presented By

COMPUTING

Dr. Yuxin Wang
Senior R&D Engineer
Oct 16 2018

XILINX.

'Simplifying acceleration on Xilinx FPGAs since 2014

Founded in 2014 by Dr. Jason Cong, Director of the Center for Domain Specific Computing (CDSC) in UCLA

Products & Services

Merlin Compiler Industry Solutions Expert Services

C/C++ to FPGA for address industry specific - advisors to leverage
any application challenges Falcon platform

=== S Q)

' —— . webservices”
ON-PREM Alibaba Cloud HUAWEI

ML optimized §§ End-to-end solutions to E Trusted partners and

@D e clEAR WL //SIERRA NSV TECH

Capital HUAWEI

PADF & £ XILINX

Falcon Acceleration Platform
Seamless Acceleration Solutions

GENOMICS FINANCE MACHINE LEARNING DATA ANALYTICS Vertical SpECifiC SO'UtionS, C/C++
‘ FPGA Acceleration & Run-Time
Environment

Accelerated Genomics pipeline

Fast C/C++ to FPGA accelerator development
Accelerator management for

Falcon Acceleration Platform heterogeneous compute clusters.

Merlin Compiler v" Heterogeneous Platform Support across CPUs

Vertical Genomics Finance (in
accelerator accelerator development)

A NERANERN

Acceleration and FPGAs today and GPUs in the future

Runtime
scheduler

Kestrel

Available on public & private clouds or

1010 :

- on-premise

- _ -5 > \
L ¢ AliCloud "z*amazon " §'é

HUAWEI

PADF & £ XILINX

' Acceleration Challenges

Software application developers Hardware developers
» New-gen applications need acceleration hardware » Teams that do have HW expertise, often lack the
» App Developers need a familiar programming qguantity needed to meet the scale & agility of new
paradigm for these accelerators application development

> Need greater productivity to meet business needs

GENOMICS

e, :

| . -—

wii011110) %
11101000142
““n

FINANCE DATA ANALYTICS

PADF & £ XILINX

Designing Accelerators is Difficult

attribute((reqd_work group_size(BLOCK SIZE,BLOCK SIZE,1))

OpenCL C—[
(num simd work items(SIMD WORK ITEMS))

a
void matrixMuTE(77

> C/C++ code first needs to be converted -,

to OpenCL or HDL (Verilog/VHDL) o 1L
Local T T
> Accelerators need to be optimized for buffers

rf rm n int block x - get group id(8);
int block y = get group id(1);

Local ID index (offset within a
int local x = get local id(e@);

I Illng \ int local y = get local id(1);
Compute_Loo

A_width © BLOCK_SIZE - b

a start + A width - 1;
BLOCK SIZE block x;

float running_sum = 0.8f;

I b | for (int a = a_start, b = b_start; a <= a_end; a += BLOCK SIZE, b += (BLOCK SIZE * B width))
{
G O a. —Tocal[local_y][local_x] = Ala + A width * local_y + localadg
L local[local x][local y] = B[b + B width local y + local 4
/
l I Iel I Iory wait for the entire block to be loaded.

barrier(CLK_LOCAL_MEM_FENCE);

access ’%‘E:a?ﬁt”ﬂrflé; k < BLOCK_SIZE; ++k)
{

running_sum += A local[local_y][k] B_local[local x][k];

wait for the block

barrier(CLK_LOCAL_MEM FENCE);

to be fully consumed before loading the next

Store result in matrix C
Clget_global_id(1) - get_global_size(®) + get_global id(®)] = running_sum;

Matrix multiplication
4 lines of C grows to >50+ lines!!

PADF & £ XILINX

Merlin Compiler Overview

Traditional
Software Flow

C/C++

K

A\

- K @

2008

Falcon’s Software Flow for
FPGA Acceleration

Merlin Compiler

{3}{3} ML-based
optimization

GCC

C++ Kernel to accelerate

C/C++ FPGA Acceleration

Pure C/C++ flow

> No FPGA expertise required

» OpenMP programming model with
auto-generated ‘ACCEL’ pragmas

» Automatically performs source to
source optimization for accelerated
performance

& XILINX

Merlin Compiler C++ FPGA Accelerator Flow -1 2 3

1. Initial Steps

ldentify Code to
Accelerate (Kernel)

Run C Test Bench
for Kernel

2. Generate Accelerated Kernel

Manually add ACCEL
pragmas to kernel

Run Merlin Compiler to
Auto-optimize and
Transform code

Simulate on CPU

Generate FPGA exe and
test

3. Integration

Modify application code
to use new accelerated
Kernel function

Link Merlin generated
Kernel library when
building application

Deploy application

& XILINX

K)ftware Application Developers can
leverage FPGA acceleration with “As-is”
code using Merlin

» 5-15X Performance Acceleration over CPUs

» Minimal code changes for acceleration benefits

» Single Acceleration platform across multiple vendor
FPGAs & diverse apps such as Computer Vision, ML,
Genomics

Out-of-the-box Performance

Hardware Developers can increase their
productivity with Merlin

» 6-10X gain in productivity with equivalent performance

» Machine-learning based auto-generated or manually inserted
pragmas

» Quality of results comparable to manually optimized OpenCL
implementation

Optimized Performance

Merlin

Example Designs FPGA SI[\)neeerclii:p
(ms)
Black Scholes Asian 477370 34430 13.9X
Black Scholes European 116310 8590 13.5X
Heston European 341650 34430 10X
Heston European Barrier 38630 17220 2.2X

\ XILINX
DEVELOPER
FORUM

Example Designs

CPU
(ms)

Merlin

(ms)

WV ELITEL
FPGA OpenCL

(ms)

Merlin
eedup

Productivity

Black Scholes Asian 477370 920 830 519X 7.8X
Black Scholes European|116310| 230 230 506X 6.8X
Heston European 341650| 1470 1530 232X 7.1X
Heston European
Barrier 38630 | 690 750 56X 6.4X

* Productivity measured in time saving over manual rewrite of C++ to hand optimized OpenCL Kernel and Host CPU Code

Platform: AWS F1 Xilinx vu9p

&2 XILINX.

Merlin Compiler C++ FPGA Accelerator Flow -1 2 3

1. Initial Steps 2. Generate Accelerated Kernel 3. Integration

|Identify Code to Modify application code

Accelerate (Kernel) Manually add ACCEL to use new accelerated
pragmas to kernel Kernel function

Run C Test Bench : : _ :
for Kernel Run Merlin Compiler to Link Merlin generated

Auto-optimize and Kernel library when
Transform code building application

Simulate on CPU Deploy application

Generate FPGA exe and
test

PADF & £ XILINX

Merlin Compiler Automated Design Space Exploration

1. Initial Steps 2. Generate Accelerated Kernel 3. Integration

|Identify Code to Modify application code

Accelerate (Kernel) Rup Marlin AUtoDSE te to use new accelerated
auto-generate pragmas Kernel function

Run C Test Bench : : _ :
for Kernel Run Merlin Compiler to Link Merlin generated

Auto-optimize and Kernel library when
Transform code building application

Simulate on CPU Deploy application

Generate FPGA exe and
test

PADF & £ XILINX

 Merlin Compiler Automated Design Space Exploration

#pragma ACCEL kernel

void aes256_encrypt_ecb_kernel(
uint8_t key[32],
uint8_t data[16*BATCH]) {

for (int i = @; i < BATCH; i++) {

aes256_encrypt_ecb(key, data + i*16);

Machine learning algorithms
Gradient-based algorithms

—

AES kernel (CPU runtime 90.9s)
UltraScale on Amazon F1:
8.4s (10.8x over CPU)

https://www.falconcomputing.com/

\ XILINX
DEVELOPER
FORUM

Starting design space exploration ...
6 145 [INFO] Maximum DSE time is set to 240 mins
145 [INFO] HLS time for each design point is limited to 15 mins
146 [INFO] Insert 18 design space pragmas
6 [INFO] Create 16 pace factors
3:46 [INFO] Design space includes 6.42E+18 points
3:46 [INFO] Profiling the space using HLS
:58 [INFO] Partition des e to 3 partitions
[INFO] Exploring 3 d rtitions using 8 threads
r-2pr:4.9
3:50 [INFO] Starting partition @ DSE for maximum 248 mins
58 [INFO] st g partition 1 DSE for maximum 239 mins
[InFO] St g partition 2 DSE for maximum 239 mins
Fi d partition 2 DSE in @ mins
Finished 1/3 partitions, best: inf
Finished 1/3
Finishe rtitions, best: 6
Finished 1 rtitions, best
[INFO] Finished 1/3 ~titions, best:
1 [INFO] Finished partition @ DSE in 50 m:

:5@ [INFO] Target platform: xilinx:aws-wvu9p-fl:

96-085 14:42 [INFO] Finished 2/3 partitions, best: 4261828 cycles from partition 1

“S2FA: An Accelerator Automation Framework for Heterogeneous Computing in

#pragma ACCEL kernel
void aes256_encrypt_ecb_kernel(
uint8_t key[32],
uint8_t data[16*BATCH]) {
#pragma ACCEL interface variable=data bus_bitwidth=512

#pragma ACCEL tiling factor=4096 parallel factor=4
for (int i = @; i < BATCH; i++) {

#pragma ACCEL pipeline flatten
aes256_encrypt_ecb(key, data + i*16);

AES kernel with auto-generated pragmas
UltraScale on Amazon F1.:
0.07s (5347x over CPU)

rtitions, best: 151171139 cycles from partition 1
7 from partition 1
from partition 1
s from partition 1

Datacenters ”, DAC’'18

& XILINX

'Acceleration simplified across multiple applications
regardless of hardware experience

c0| ax: M | G
PA'AY Developer
. Up to 35x Up to 10x
[.MM Data Scientist Zero FPGA experience required
@ Bioinformatician
§ — -.

Whole genome
analysis in < 6hrs

Merlin Compiler Expert Services
PADF i £ XILINX.

Adaptable.
Intelligent.

Y~ alcon

COMPUTING

