
© Copyright 2018 Xilinx

Presented By

Peter Frey

October 2, 2018

Using SDAccel for Host and Accelerator Code

Optimizations

© Copyright 2018 Xilinx

SDAccel Performance Optimization Agenda

˃ SDAccel Overview

˃ Host Code Optimization

˃ Kernel Code Optimization

˃ Topological Optimization

˃ Implementation Optimization

˃ Performance Profiling with SDAccel

˃ Summary

© Copyright 2018 Xilinx

Architecture of an FPGA Accelerated Application

PCIe

x86 CPU

Host Application

Drivers

Runtime Library

Acceleration API

FPGA

Accelerated Functions

DMA Engine

Global Memory

AXI Interfaces

User

Application

Code

Acceleration

Platform

© Copyright 2018 Xilinx

Hardware Acceleration

˃ When to USE

Algorithm allows for parallelization

Many similar tasks

When May Not be beneficial

– Small problem size

– Cost of Host to Device transfers outweighs benefit

When NOT beneficial

– Little to no parallelism

• Algorithm is highly sequential over multiple data

• Tasks are highly dependent

Amdahl’s Law:

If the hardware is 50% of the time,

you can accelerate the hardware to

zero and you only get 2X

© Copyright 2018 Xilinx

Overview of
SDAccel

© Copyright 2018 Xilinx

RTL, C/C++ or
OpenCL C

Link

C/C++ with
OpenCL API

Link

Host Application
Executable

(.exe)

FPGA
Binary

(.xclbin)

CompileCompile
x86

Build Steps

Build Target
Selection

Host
Application

FPGA
Kernels

Source Code

FPGA
Build Steps

x86 FPGA

Flow Overview

© Copyright 2018 Xilinx

The FPGA Kernel Compilation Flow

.xo

RTL

package_xo

.xo

C/C++

xocc -c

.xo

OpenCL

xocc -c

xocc -link DSA

.xclbin

© Copyright 2018 Xilinx

SDAccel Execution Modes

Software Emulation Hardware Emulation Hardware Execution

Host application runs with a C/C++
or OpenCL model of the Kernels

Host application runs with a
simulated RTL model of the Kernels

Host application runs with actual
FPGA implementation of the
Kernels

Confirm functional correctness of
the system

Test the host / kernel integration,
get performance estimates

Confirm system runs correctly and
with desired performance

Fastest turnaround time Best debug capabilities Accurate performance results

© Copyright 2018 Xilinx

SDAccel Development, Debug & Analysis

˃ Designed to develop and integrate FPGA based

acceleration technology into general software

solutions

˃ Fully integrated Eclipse based development

environment

˃ Automatic hardware execution flows support

˃ Provides software and acceleration debugging

capabilities

˃ Enables detailed system performance analysis

Develop / Debug

Profile Report

Application Timeline

© Copyright 2018 Xilinx

Areas for Performance Optimization

˃ Host program optimizations

Asynchronous programming, SW pipelining

Optimizing transfer sizes

˃ Kernel Code optimizations

Interface Specification (512-bit, bursting interfaces)

Dataflow

Pipelining

Memory Optimization

˃ Topological optimizations

Multiple CUs

DDR mapping

˃ Implementation optimizations

SLR

Other Vivado P&R controls

host program

coding

kernel program

coding

xocc link

options

Vivado options

provided to xocc

© Copyright 2018 Xilinx

Host Code Optimization

© Copyright 2018 Xilinx

Overview Host Code Optimization

func1 func3 func4CPU

func2FPGA

RDPCIe WR

A
P

I

A
P

I

Aim to reduce CPU

idle time

Aim to maximize

kernel utilization

Optimize data transfer

sizes

© Copyright 2018 Xilinx

OpenCL Command Queue Optimization

commands = clCreateCommandQueue(context, device_id, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err);

Command Queue Creation
• CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE

Time

W E R W E R

W E R

W E R

Ordered

Out of Order

R

E

W

R

E

W

CommandQueue

© Copyright 2018 Xilinx

OpenCL Buffer Allocation and Transfers

˃ Buffers are used to exchange data between the host and the device

˃ Aim to reuse available buffers instead of constantly allocating and
deallocating new ones

Reduce the overhead of DDR memory management

˃ Aim for 1 or 2MBytes transfers
Host Device effective bandwidth varies with transfer size
Allocate optimally sized buffers
Group several small buffers in a single transaction

˃ READ_WRITE buffer types can create additional dependencies
impacting parallel compute unit execution

Only use them when necessary

cl_mem d_p_A = clCreateBuffer(context, CL_MEM_READ_WRITE,

sizeof(int) * number_of_words, NULL, NULL);

Block Size

T
h
ro

u
g
h
p
u
t

~ 1 MByte

© Copyright 2018 Xilinx

Task Synchronization
for(int i=0; i < 2; i++) {

d_p_A[i] = clCreateBuffer(…, CL_MEM_READ_ONLY |…,…);

d_p_B[i] = clCreateBuffer(…, CL_MEM_WRITE_ONLY |…,…);

clEnqueueMigrateMemObjects(commands, 1, &d_p_A[i], …, 0, NULL, &writeevent[i]);

clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_p_A[i]);

clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_p_B[i]);

clEnqueueTask(commands, kernel, 1, &writeevent[num], 0);

}

clFinish(commands);

clEnqueueMigrateMemObjects(commands, 1, &d_p_B[0], …, 0 , NULL, &readevent[0]);

clEnqueueMigrateMemObjects(commands, 1, &d_p_B[1], …, 0 , NULL, &readevent[1]);

clWaitForEvents(1, &readevent[0]);

clWaitForEvents(1, &readevent[1]);

Wait for all events/tasks

in Command Queue to

finish

Wait for read events to

complete

Time

W E R

W E R

Example:

• One compute unit

• Single Out of Order Command

Queue

• Two parallel tasks
clFinish clWaitForEvents

© Copyright 2018 Xilinx

Software Pipelining

for(int i=0; i < MAX; i++) {

d_p_A[i] = clCreateBuffer(…, CL_MEM_READ_ONLY |…,…);

d_p_B[i] = clCreateBuffer(…, CL_MEM_WRITE_ONLY |…,…);

clEnqueueMigrateMemObjects(commands, 1, &d_p_A[i], …, 0, NULL, &writeevent[i]);

clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_p_A[i]);

clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_p_B[i]);

clEnqueueTask(commands, kernel, 1, &writeevent[num], &runevent[i]);

clEnqueueMigrateMemObjects(commands, 1, &d_p_B[i], …, 1, &runevent[i], 0);

}

clFinish(commands); Wait for all tasks to

complete

Use events to

synchronize

Time

W E R

W E R

W E R

W E R
Example:

• One compute unit

• Single Out of Order

Command Queue

• MAX = 4

clFinish

Schedule all tasks for

execute

© Copyright 2018 Xilinx

Kernel Code Optimization

© Copyright 2018 Xilinx

FPGA

Key Techniques to Develop High Performance C Kernel

1. Improving Computation efficiency : Parallelize

Customized data type adjusted to requirement

Pipeline and Dataflow

Unroll (Not always required)

2. Memory Configuration

Memory customization by array partition

Reduce memory access by using local caches, shift registers

3. Interface and Datatype Optimization

Interface bandwidth consideration

Memory Burst Read and Write

© Copyright 2018 Xilinx

Datawidth Optimization: Bit Accurate Datatypes

˃ Leverage Arbitrary precision datatypes from HLS library

AP_INT, AP_UINT

AP_FIXED, AP_UFIXED

˃ Using exact bit width helps to reduce the resource and achieve better performance

Practical example: Floating point to Fixed point conversation improve performance

A whitepaper: Deep Learning with INT8 Optimization

Example code shows using bit-accurate integer datatype instead of native short, int etc

https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf

© Copyright 2018 Xilinx

Improve Compute Efficiency: Dataflow

˃ Dataflow = Task level parallelism

#pragma HLS dataflow

void top(a,b,c,d) {

…

func_A(a,b,i1);

func_B(c,i1,i2);

func_C(i2,d);

return d;

}

func_A

func_B

func_C

func_A

func_B

func_C

5 cycles

latency

initiation interval

3 cycles

© Copyright 2018 Xilinx

Improve Compute Efficiency: Pipeline

˃ Pipeline = Instruction level parallelism

#pragma HLS pipeline

void func(m,n,o) {

for (int i=2; i>=0; i--) {

op_read;

op_compute;

op_write;

}

}

op_read;

op_compute;

op_write;

3 cycles

latency

initiation interval

1 cycle

RD CMP WR

RD CMP WR

RD CMP WR

© Copyright 2018 Xilinx

Improve Compute Efficiency: Unrolling Loops

˃ For smaller body loops with limited number of iterations, unrolling improve

performance

˃ If complete unrolling is not feasible, exploit partial unrolling

˃ Unrolling loops with large number of iterations and large body significantly

increases resource usage and slows down compilation

4 cycles
…

add: for (int i=0; i<=3; i++) {

b = a[i] + b;

}

…

Unroll: 1 cycle

+

+

+

+

clk

+ + + +

clk

© Copyright 2018 Xilinx

Key Techniques to Develop High Performance C Kernel

1. Improving Computation efficiency : Parallelize

Customized data type adjusted to requirement

Pipeline and Dataflow

Unroll (Not always required)

2. Memory Configuration

Memory customization by array partition

Reduce memory access by using local caches, shift registers

3. Interface and Datatype Optimization

Interface bandwidth consideration

Memory Burst Read and Write

© Copyright 2018 Xilinx

Large Arrays get placed in Memory

˃ Mapping the array ‘a’ to a single

memory will force a sequential

implementation of the algorithm

for (int i=0; i<512; i++) {

b = a[i] + b;

}

0

511

1
2

510

Programmers View

Array

Physical View

Memory

Port A Port B

At most 2 Ports

each permitting

one read per cycleRead

Read

Read

Read

clk

© Copyright 2018 Xilinx

Memory Access crucial for Performance

˃ Understand the Array access pattern

˃ Use several BRAMS or Registers to implement arrays (parallel access)

Array Partitioning

© Copyright 2018 Xilinx

FPGA

Key Techniques to Develop High Performance C Kernel

1. Improving Computation efficiency : Parallelize

Customized data type adjusted to requirement

Pipeline and Dataflow

Unroll (Not always required)

2. Memory Configuration

Memory customization by array partition

Reduce memory access by using local caches, shift registers

3. Interface and Datatype Optimization

Interface bandwidth consideration

Memory Burst Read and Write

© Copyright 2018 Xilinx

Interface Bandwidth Optimization – 512 bits

˃ Kernels use AXI4 MM Master ports to connect with DDR banks over an AXI interconnect

˃ AXI Interconnect supports up to 512 bit wide transfers

˃ For maximum throughput, the kernel should use the full 512 bits of the AXI interface

Interfaces are 512bit wide

Use ap_uint<512> types to create 512-bit wide
AXI_M ports

void vadd(

const ap_uint<512> *in1,

const ap_uint<512> *in2,

ap_uint<512> *out,

int size)

{

}

© Copyright 2018 Xilinx

Interface Bandwidth Optimization – Number of Ports

˃ Number of AXI_M ports impacts kernel performance

Maximum theoretical bandwidth per AXI_M port is 512bits @ 300MHz (based on platform clock)

˃ By default, SDAccel creates a single AXI_M port per kernel

Different I/O processes will have to access the AXI_M port sequentially

By default, SDAccel maps all pointer arguments to the same AXI_M interface

void K_VADD(dType *A, dType *B, dType*R) {

#pragma HLS INTERFACE m_axi port=A offset=slave

#pragma HLS INTERFACE m_axi port=B offset=slave

#pragma HLS INTERFACE m_axi port=R offset=slave

Single AXI_M port

K_ADD

AXI
gmem

© Copyright 2018 Xilinx

Interface Bandwidth Optimization – Number of Ports

˃ Number of AXI_M ports impacts kernel performance

Maximum theoretical bandwidth per AXI_M port is 512bits @ 300MHz (based on platform clock)

˃ By default, SDAccel creates a single AXI_M port per kernel

Different I/O processes will have to access the AXI_M port sequentially

˃ Adding extra AXI_M ports increases kernel bandwidth

With at least two ports, a kernel can read inputs and write outputs simultaneously

Use the “bundle” property on the INTERFACE pragma to create and name AXI_M ports

void K_VADD(dType *A, dType *B, dType*R) {

#pragma HLS INTERFACE m_axi port=A offset=slave bundle=p0

#pragma HLS INTERFACE m_axi port=B offset=slave bundle=p1

#pragma HLS INTERFACE m_axi port=R offset=slave bundle=p2

Multiple AXI_Master ports

K_ADDAXI

p1

p2

p0

© Copyright 2018 Xilinx

Interface Bandwidth Optimization – Bursting

˃ Read/Write accesses to DDR cause have a long latency overhead

˃ Random sequences of individual accesses are bad for performance

˃ Bursting is the most efficient way to access DDR as it hides latency

˃ To ensure bursting behavior, create a dedicated dataflow function in which a

pipelined loop reads or writes from an AXI_M port

Enable burst transfers

from global memory

Sequential data access

enables streaming data

between blocks

© Copyright 2018 Xilinx

Sustaining Interface Throughput in the Kernel

Concurrent execution

of

read, execute, write

#pragma HLS

dataflow read

exec

write

read

exec

write

5 cycles

latency

initiation interval

3 cycles
˃ Top function with Read, Compute, Write Dataflow blocks

© Copyright 2018 Xilinx

Topological Optimizations

© Copyright 2018 Xilinx

Multiple Compute Units (Kernel Instances)

˃ By default, SDAccel generates 1 instance of each kernel

˃ Use multiple instances when the same function is performed on independent

blocks of data (data-level parallelism)

˃ Example: 2D Image Filter

Use 1 CU to process Y, U and V color planes sequentially

Use 3 CUs to process Y, U and V color planes parallel

Use 6 CUs to process two images in parallel
PCIe

AXI Interconnect

Memory

Controller

User Programmable Region

FPGA

foo_1

foo_1

AXI

foo_3Use the xocc --nk option during the link phase to specify
number of CUs for each kernel

Create 3 CUs for kernel “foo”

xocc –l –-nk foo:3 <other options>

© Copyright 2018 Xilinx

Kernel Port Connections to DDR Banks

˃ SDAccel platforms typically contain 4 DDR banks

˃ By default all kernel AXI_M ports are mapped to the same DDR bank

DDR bandwidth is shared, multiple AXI requests are arbitrated

˃ Careful mapping of kernel ports to specific DDR banks improves performance

Take advantage of full DDR bandwidth

Simultaneous transfers to each DDR

Physical proximity of kernel and DDR improves Fmax

p0

p1

p2
xocc –l –-sp kernel_top_1.m_axi_p0.bank0 \

--sp kernel_top_1.m_axi_p1.bank1 \

--sp kernel_top_1.m_axi_p2.bank2 \

<other options>

Use the xocc --sp option during the link phase to specify desired mapping
Update OpenCL Buffers properties in the host program

© Copyright 2018 Xilinx

Implementation Optimization

© Copyright 2018 Xilinx

FPGA Physical View

˃ Today’s largest FPGA are stacked silicon
devices with several SLRs (super logic regions)

˃ Connections between SLRs incurs a greater
delay than standard intra-SLR routing

˃ By default, kernels are placed in the same SLR
as the Shell

˃ Careful placement of kernels in SLRs will
improve Fmax

Aim to place kernels in the same SLR as the DDR
they interface with

Aim to minimize SLR congestion and cross-SLR
connections

VU9P

CUSTOM LOGIC (CL)

Reconfigurable region

and user kernels

DDR

Interface

DDR

Interface

DDR

Interface

PCIe

DDR

Interface

SHELL

Intra-SLR

Route

Cross-

SLR

Route

© Copyright 2018 Xilinx

Understand the target DSA

˃ Review Documentation

SDAccel Release Notes (UG 1238)

‒ DSA Released 2017.4

DSA Specifications

˃ Shell

Consumes Resources to implement

Removes available resources from the dynamic Region

Understand which SLRs are impacted

> <

SLR resources and

DDR assignment can

impact performance

© Copyright 2018 Xilinx

Kernel Placement Control

˃ Specify Kernel Locations

Provided by XOCC command line arguments

‒ Auto-executes a Vivado Tcl file

Kernel locations specified by Vivado Tcl script

˃ Command line option provided in 2018.3

Requires a new DSA revision (5.2)

Also ensures local SLR reset is used

VU9P

CUSTOM LOGIC (CL)

Reconfigurable region

and user kernels

DDR

Interface

DDR

Interface

DDR

Interface

DDR

Interface

krnl_1

krnl_0

xocc <arguments> --xp param:compiler.userPostSysLinkTcl=<path>/place_krnl.tcl

set_property CONFIG.SLR_ASSIGNMENTS SLR0 [get_bd_cells /krnl_0]

set_property CONFIG.SLR_ASSIGNMENTS SLR2 [get_bd_cells /krnl_1]

xocc <arguments> --slr krnl_0:SLR0 --slr krnl_1:SLR2

place_krnl.tcl

PCIe

DDR

Interface

SHELL

© Copyright 2018 Xilinx

Performance Profiling with
SDAccel

© Copyright 2018 Xilinx

Main Report Files

˃ SDAccel generates important report files that help to improve performance

˃ Reports from Hardware Emulation are most useful for performance improvement

˃ Guidance Report

˃ Reports to analyze overall system performance (combining Host and Kernel)

Profile Summary Report

Timeline Trace

Waveform

˃ Reports to understand/improve Kernel performance

HLS report

Schedule Viewer

© Copyright 2018 Xilinx

Design Guidance

˃ Expert system built-in the tool

Analysis of build results and emulation runs

˃ Guidance window with feedback by

category

Host code

Kernels

Data transfers (host to DDR, DDR to kernels)

˃ Explicit and actionable hints

How to improve the design

Links to detailed explanation and solutions

HTML report (available for makefile runs as

well)

© Copyright 2018 Xilinx

Profile Summary

˃ Top Operations

Activity summary

˃ Kernel & Compute

Units

Detailed execution
statistics

˃ Data Transfer

Global Memory access
statistics from host and
from kernels

˃ Host Code OpenCL API

statistics

© Copyright 2018 Xilinx

Annotated Waveform Viewer

˃ Shows task-level parallelism

in action

˃ Show how many tasks

overlap and for how long

© Copyright 2018 Xilinx

HLS Report

˃ Static Performance Estimates:

Timing

Latency

Hierarchical contribution

˃ Utilization Estimates:

Summary

Detail analysis

© Copyright 2018 Xilinx

HLS Schedule Viewer

˃ Shows in which cycle

operations are

scheduled

˃ Shows operator timing

and clock margin

˃ Shows data

dependencies

˃ Cross-probing from

operations to source

code

˃ Supports specific

focus on:

II Violation

Timing Violation

© Copyright 2018 Xilinx

Summary

˃ First address Guidance Suggestions provided by SDAccel

˃ Use performance analysis viewers to identify further optimization opportunities

˃ Consider all areas for Performance Optimization

Host program optimizations

Kernel Code optimizations

Topological optimizations

Implementation optimizations

© Copyright 2018 Xilinx

More Details

˃ UG1207: SDAccel Environment Optimization Guide

˃ SDAccel Examples:

https://github.com/Xilinx/SDAccel_Examples

https://github.com/Xilinx/SDAccel_Examples

© Copyright 2018 Xilinx

