\ XILINX
DEVELOPER
FORUM

Using SDAccel for Host and Accelerator Code

Optimizations
Presented By

Peter Frey
October 2, 2018

XILINX.

SDAccel Overview

Host Code Optimization
Kernel Code Optimization
Topological Optimization

Implementation Optimization
Performance Profiling with SDAccel

Summary

XILINX.

' Architecture of an FPGA Accelerated Application

x86 CPU FPGA

User
Host Application Accelerated Functions Application
Code
\

Acceleration API AXI Interfaces

Acceleration
Platform

Runtime Library Global Memory

Drivers DMA Engine

PCle

© Copyright 2018 Xilinx 8 XI I_INX

' Hardware Acceleration

> When to USE

>> Algorithm allows for parallelization
>> Many similar tasks

» When May Not be beneficial
— Small problem size
— Cost of Host to Device transfers outweighs benefit

» When NOT beneficial

— Little to no parallelism
Amdahl’'s Law:

If the hardware is 50% of the time, Algorithm is highly sequential over multiple data

you can accelerate the hardware to « Tasks are highly dependent
zero and you only get 2X

))(D F E’gl&%%’PE” © Copyright 2018 Xilinx & XILINX.

Overview of
SDAccel

PKDF e © Copyright 2018 Xilinx £ XILINX.

' Flow Overview

Source Code

C/C++ with Host FPGA RTL, C/C++ or
OpenCL API Application Kernels OpenCL C
O Build Target
. . Selection
Compile Compile
x86 . . FPGA
Build Steps & & Build Steps
Link Link
Host Application FPGA
Executable Binary
(.exe) (.xclbin)

))(D F E’gl&%%"’“ © Copyright 2018 Xilinx & XILINX.

' The FPGA Kernel Compilation Flow

‘OpenCL\ ‘ C/C++ \ RTL

X0cC -C X0CcC -C package_xo

' D
xocc -link W

v

@

PKDF e © Copyright 2018 Xilinx £ XILINX.

' SDAccel Execution Modes

Software Emulation Hardware Emulation Hardware Execution

Host application runs with actual
FPGA implementation of the
Kernels

Host application runs with a C/C++ Host application runs with a
or OpenCL model of the Kernels simulated RTL model of the Kernels

Confirm functional correctness of Test the host / kernel integration, Confirm system runs correctly and
the system get performance estimates with desired performance

Fastest turnaround time Best debug capabilities Accurate performance results

)><D F oeveLopes © Copyright 2018 Xilinx 8 XI LlNX

FORUM

'SDAcceI Development, Debug & Analysis

Develop / Debug

> Designed to develop and integrate FPGA based
acceleration technology into general software
solutions

> Fully integrated Eclipse based development
environment

> Automatic hardware execution flows support

> Provides software and acceleration debugging
capabilities

> Enables detailed system performance analysis

))(D F E’gl&%%"’“ © Copyright 2018 Xilinx & XILINX.

'Areas for Performance Optimization

host program
o coding
> Host program optimizations

>> Asynchronous programming, SW pipelining

>> Optimizing transfer sizes
> Kernel Code optimizations e grogram
>> |nterface Specification (512-bit, bursting interfaces) coding

>> Dataflow
>> Pipelining
>> Memory Optimization

> Topological optimizations
>> Multiple CUs options

>> DDR mapping

> Implementation optimizations , :
>> SLR Vivado Op“OnS
>> Other Vivado P&R controls brovided to xocc

))(D F E’gl&%%’PE” © Copyright 2018 Xilinx & XILINX.

Host Code Optimization %

PKDF e © Copyright 2018 Xilinx £ XILINX.

'Overview Host Code Optimization

XXXXXX
EEEEEEEEE
FFFFF

Aim to reduce CPU
idle time

Aim to maximize
kernel utilization

© Copyright 2018 Xilinx

Optimize data transfer
sizes

& XILINX

'OpenCL Command Queue Optimization

commands = clCreateCommandQueue (context, device id, CL QUEUE OUT OF ORDER EXEC MODE ENABLE, é&err);

\

Command Queue Creation
CommandQueue - CL QUEUE_OUT OF ORDER _EXEC_MODE_ENABLE

‘W] E |RIW[E [R
Ordered

[

Time

R
E
W
R
E
W

$ W | E | R_

_E | R
Out of Order

PKDF e © Copyright 2018 Xilinx £ XILINX.

'OpenCL Buffer Allocation and Transfers

cl mem d p A = clCreateBuffer (context, CL MEM READ WRITE,
sizeof (int) * number of words, NULL, NULL);

> Buffers are used to exchange data between the host and the device

> Aim to reuse available buffers instead of constantly allocating and
deallocating new ones
>> Reduce the overhead of DDR memory management

~ 1 MByte

/
> READ_WRITE buffer types can create additional dependencies

impacting parallel compute unit execution Block Size
>> Only use them when necessary

»

A

> Aim for 1 or 2MBytes transfers
>> Host <> Device effective bandwidth varies with transfer size
>> Allocate optimally sized buffers
>> Group several small buffers in a single transaction

Throughput

v

PKDF e © Copyright 2018 Xilinx £ XILINX.

'Task Synchronization

for(int 1i=0; 1 < 2; i++) {
d p A[i] = clCreateBuffer(.., CL MEM READ ONLY |..,..);
d p B[i] = clCreateBuffer(..,, CL MEM WRITE ONLY |[..,..);

clEnqueueMigrateMemObjects (commands, 1, &d p A[i], .., 0, NULL,

clSetKernelArg (kernel, 0, sizeof(cl mem), &d p A[i]);

Swriteevent[i]);

clSetKernelArg (kernel, 1, sizeof(cl mem), &d p B[i]);
clEnqueueTask (commands, kernel, 1, &writeevent[num], O0);

}

clFinish (commands); =—

Wait for all events/tasks
In Command Queue to
finish

clEnqueueMigrateMemObjects (commands, 1, &d p B[0], .., O , NULL, &readevent[0]);

clEnqueueMigrateMemObjects (commands, 1, &d p B[1l], .., O , NULL, &readevent[l]):;

clWaitForEvents (1, &readevent[0]):;

Wait for read events to
complete

clWaitForEvents (1, &readevent[l]):;

Example:
* One compute unit
* Single Out of Order Command

»

Queue
« Two parallel tasks

t |

© Copyright 2018 Xilinx

\ XILINX
DEVELOPER
FORUM

Time]
clFinish clWaitForEvents

& XILINX

'Software Pipelining

for (int 1i=0; 1 < MAX; i++) {

Schedule all tasks for

d p A[i] = clCreateBuffer(..,, CL MEM READ ONLY |..,..);
d p B[1] = clCreateBuffer(..,, CL MEM WRITE ONLY |..,..);
clEnqueueMigrateMemObjects (commands, 1, &d p A[i], .., 0, NULL,
clSetKernelArg (kernel, 0, sizeof(cl mem), &d p A[i]);
clSetKernelArg (kernel, 1, sizeof(cl mem), &d p B[i]);

execute

Swriteevent[i]) ;

\

Use events to
synchronize

clEnqueueTask (commands, kernel, 1, &writeeventTnum], &runevent[i]) ;

clEnqueueMigrateMemObjects (commands, 1,

}

clFinish (commands) ;

sd_p B[il, .., 1,

&runevent[1], 0);

Wait for all tasks to

R

_E | R .

v Time °
clFinish

\ XILINX
DEVELOPER
FORUM

© Copyright 2018 Xilinx

complete

Example:
W | E | R_ _E | R . One compute unit

Single Out of Order
Command Queue
MAX = 4

& XILINX

Kernel Code Optimization E

PKDF e © Copyright 2018 Xilinx £ XILINX.

' Key Techniques to Develop High Performance C Kernel

1. Improving Computation efficiency : Parallelize
>> Customized data type adjusted to requirement

>> Pipeline and Dataflow

>> Unroll (Not always required)

2. Memory Configuration
>> Memory customization by array partition

>> Reduce memory access by using local caches, shift registers

3. Interface and Datatype Optimization
>> |nterface bandwidth consideration

>> Memory Burst Read and Write

))(D F oeveLopes © Copyright 2018 Xilinx 8 XI LlNX

FFFFF

Datawidth Optimization: Bit Accurate Datatypes

> Leverage Arbitrary precision datatypes from HLS library
>> AP_INT, AP_UINT
>> AP_FIXED, AP_UFIXED

> Using exact bit width helps to reduce the resource and achieve better performance
>> Practical example: Floating point to Fixed point conversation improve performance
>> A whitepaper: Deep Learning with INT8 Optimization

ap uint<5> last i; // 5 bits unsigned
ap_uint<2 > tu_ size ; // 2 bits uns igne d White Paper: UltraScale and UltraScale+ FPGAs
v
switch (tu size) { (A XII_INX
Case |:| - ALL PROGRAMMABLE.
last 1 = 0; WP486 (v1.0.1) April 24, 2017
break:; .
case 1: Deep Learning
last i = 7; with INT8 Optimization
break; on Xilinx Devices
case 2:
las t_i = 15; By: Yao Fu, Ephrem Wu, Ashish Sirasao, Sedny Attia, Kamran Khan, and Ralph Wittig
break;
case 3:
last i = 31; Xilinx INT8 optimization provides the best performance and most
L power efficient computational techniques for deep learning
break; inference. Xilinx's integrated DSP architecture can achieve 1.75X
} solution-level performance at INT8 deep learning operations than
other FPGA DSP architectures.

Example code shows using bit-accurate integer datatype instead of native short, int etc

PKDF e © Copyright 2018 Xilinx £ XILINX.

https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf

'Improve Compute Efficiency: Dataflow

> Dataflow = Task level parallelism

void top(a,b,c,d) {
func A(a,b,11);
(c,11,12);
(lzrd);

return d;

top_function(datatype_t * m_in, // Memory d
datatype_t * m_out, // Memory data Output
int inpl, !/ Other Input }
int inp2) { // Other Input

#pragma HLS DATAFLOW

hls::stream<datatype_t> in_wvarl; // Internal stream to transfer
hls::stream<datatype_t> out_wvarl; // data through the dataflow region

read_function({m_in, inpl); // Read function contains pipelined for loop
// to infer burst

execute function(in varl, out varl, inpl, inp2); // Core compute functiocn

write function{out_warl, m _out); // Write function contains pipelined for loop
// to infer burst

#pragma HLS dataflow

\ XILINX . .
)/<D F DEveLores © Copyright 2018 Xilinx

initiation interval
~3cycles

nJuuuuuuo

func A func_A\

»

a

5 cycles
latency

& XILINX

'Improve Compute Efficiency: Pipeline

> Pipeline = Instruction level parallelism

void func(m,n, o)
for (int i=2;

op write;
}
}

{

i>=0;

i--)

{

\ XILINX
DEVELOPER
FORUM

initiation interval

1 cycle
)

#pragma HLS pipeline

© Copyright 2018 Xilinx

A

3 cycles ”
latency

& XILINX

'Improve Compute Efficiency: Unrolling Loops

> For smaller body loops with limited number of iterations, unrolling improve

performance
ck [

add: for (int 1=0; 1<=3; i++) {

b = alil|ilo;

}

clk |
N I

> If complete unrolling is not feasible, exploit partial unrolling

> Unrolling loops with large number of iterations and large body significantly
Increases resource usage and slows down compilation

PKDF e © Copyright 2018 Xilinx £ XILINX.

' Key Techniques to Develop High Performance C Kernel

1. Improving Computation efficiency : Parallelize
>> Customized data type adjusted to requirement
>> Pipeline and Dataflow

>> Unroll (Not always required)

2. Memory Configuration
>> Memory customization by array partition

>> Reduce memory access by using local caches, shift registers

3. Interface and Datatype Optimization
>> |nterface bandwidth consideration

>> Memory Burst Read and Write

))(D F oeveLopes © Copyright 2018 Xilinx 8 XI LlNX

FFFFF

'Large Arrays get placed in Memory

Programmers View for (int i=0; i<512; i++) { Physical View
Array b = a[i] + b; Memory

511 }

510

: > Mapping the array ‘a’ to a single
memory will force a sequential

iImplementation of the algorithm

Port A Port B

clk TTTT
: : : At most 2 Ports

- each permitting
5 - one read per cycle

PKDF e © Copyright 2018 Xilinx £ XILINX.

' Memory Access crucial for Performance

> Understand the Array access pattern

> Use several BRAMS or Registers to implement arrays (parallel access)

Array Partitioning

[+ [. ey
block
| NJ2 N-2 N-1 |
| w2 |
cydic o | 1| 2 | .. [na[nz]|ng]- }
| N3 | N1 |
complete }III [na]
_ e ST
[]

\ XXXXXX . .
)/<D F DEveLoper © Copyright 2018 Xilinx

& XILINX

' Key Techniques to Develop High Performance C Kernel

1. Improving Computation efficiency : Parallelize
>> Customized data type adjusted to requirement
>> Pipeline and Dataflow

>> Unroll (Not always required)

2. Memory Configuration
>> Memory customization by array partition

>> Reduce memory access by using local caches, shift registers

3. Interface and Datatype Optimization
>> |nterface bandwidth consideration

>> Memory Burst Read and Write

))(D F oeveLopes © Copyright 2018 Xilinx 8 XI LlNX

FFFFF

'Interface Bandwidth Optimization — 512 bits

> Kernels use AX14 MM Master ports to connect with DDR banks over an AXIl interconnect
> AXI Interconnect supports up to 512 bit wide transfers

> For maximum throughput, the kernel should use the full 512 bits of the AXI interface

- Interfaces are 512bit wide

void wvadd (
const ap uint<512> *inl,
const ap uint<512> *in2,
ap uint<512> *out,
int size)

Use ap_uint<512> types to create 512-bit wide
AXI_M ports

PKDF e © Copyright 2018 Xilinx £ XILINX.

'Interface Bandwidth Optimization — Number of Ports

> Number of AXlI_M ports impacts kernel performance

>> Maximum theoretical bandwidth per AXI_M port is 512bits @ 300MHz (based on platform clock)

> By default, SDAccel creates a single AXlI_M port per kernel
>> Different I/O processes will have to access the AXl_M port sequentially

void K VADD(dType *A, dType *B, dType*R) {

#pragma HLS INTERFACE m axi port=A offset=slave
#pragma HLS INTERFACE m axi port=B offset=slave
#pragma HLS INTERFACE m axi port=R offset=slave

By default, SDAccel maps all pointer arguments to the same AXI_M interface

\ XILINX . .
)/<D F DEveLoper © Copyright 2018 Xilinx

AXI

K_ADD

gmem

Single AXI_M port

& XILINX

'Interface Bandwidth Optimization — Number of Ports

> Number of AXlI_M ports impacts kernel performance
>> Maximum theoretical bandwidth per AXI_M port is 512bits @ 300MHz (based on platform clock)

> By default, SDAccel creates a single AXlI_M port per kernel
>> Different I/O processes will have to access the AXl_M port sequentially

> Adding extra AXl_M ports increases kernel bandwidth
>> With at least two ports, a kernel can read inputs and write outputs simultaneously

AXI K_ADD
<+«——| p0
«—| pl

Use the “bundle” property on the INTERFACE pragma to create and name AXI_M ports Multiple AXI_Master ports

void K VADD(dType *A, dType *B, dType*R) {

#pragma HLS INTERFACE m axi port=A offset=slave bundle=pl
#pragma HLS INTERFACE m axi port=B offset=slave bundle=[il
#pragma HLS INTERFACE m axi port=R offset=slave bundle=p2

))(D F oeveLopes © Copyright 2018 Xilinx 8 XI LlNX

FORUM

'Interface Bandwidth Optimization — Bursting

> Read/Write accesses to DDR cause have a long latency overhead
> Random sequences of individual accesses are bad for performance
> Bursting is the most efficient way to access DDR as it hides latency

> To ensure bursting behavior, create a dedicated dataflow function in which a
pipelined loop reads or writes from an AXI_M port

template<typename out t>
void read blocks{const out_t *in, hls::stream<out_t> &out, unsigned int blocks) {
for{unsigned int i = @; i < blocks*2; i++) {
#pragma HLS loop tripcount min=2848 max=20848 Enable burst transfers
#pragma HLS PIPELINE from global memory
out.write(in[i]);

} Sequential data access
1 enables streaming data
between blocks
)\/<D F E,E'g%%)pgp © Copyright 2018 Xilinx & XILINX.

'Sustaining Interface Throughput in the Kernel

> Top function with Read, Compute, Write Dataflow blocks initiation interval
~3cycles
JEgEpEpEpEpEpEy =
top function(datatype t * m_in, // Memory data Input #pl;jaagtraT}iio\ll-leS read read

datatype_t * m_out, // Memory data Output
int inpl, // Other Input
int inp2) { // Other Input

#pragma HLS DATAFLOW

»

A

5 cycles
latency

hls::stream<datatype t> in varl; // Internal stream to transfer
hls::stream<datatype_t> out_wvarl; // data through the dataftlow region

read function(m in, inpl); // Read function contains pipelined for loop

// to infer burst Concurrent execution
of
read, execute, write

execute function(in warl, out varl, inpl, inp2); // Core compute function

write function{out warl, m out); // Write function contains pipelined for loop
!/ to infer burst

))(D F E’gl&%%“" © Copyright 2018 Xilinx & XILINX.

Topological Optimizations E

PKDF e © Copyright 2018 Xilinx £ XILINX.

' Multiple Compute Units (Kernel Instances)

> By default, SDAccel generates 1 instance of each kernel

> Use multiple instances when the same function is performed on independent

blocks of data (data-level parallelism)

> Example: 2D Image Filter
>> Use 1 CU to process Y, U and V color planes sequentially
>> Use 3 CUs to process Y, U and V color planes parallel
>> Use 6 CUs to process two images in parallel

Create 3 CUs for kernel “foo”
xocc -1 —--nk foo:3 <other options>

Use the xocc --nk option during the link phase to specify
number of CUs for each kernel

XILINX
))(D F Porom © Copyright 2018 Xilinx

FPGA

AXI Interconnect

A
\ 4

/[

Memory
Controller

User Programmable Region

foo 1

foo 1

N

!

foo 3

& XILINX

'Kernel Port Connections to DDR Banks

> SDAccel platforms typically contain 4 DDR banks

> By default all kernel AXI_M ports are mapped to the same DDR bank
>> DDR bandwidth is shared, multiple AXI requests are arbitrated

> Careful mapping of kernel ports to specific DDR banks improves performance
>> Take advantage of full DDR bandwidth
>> Simultaneous transfers to each DDR
>> Physical proximity of kernel and DDR improves Fmax

User Programmable Region
RR— AXI »{ p0 K_VADD
xocc —1 —-sp kernel top 1.m axi p0.bank0 \ | i “mpreen g ‘% " Pl
--sp kernel top 1. N bankl \ . "L P2
--sp kernel top l.m axi p2.bank2 \ ‘ L4
<other options> i E i
i |
Use the xocc --sp option during the link phase to specify desired mapping El

Update OpenCL Buffers properties in the host program

Implementation Optimization E

PKDF e © Copyright 2018 Xilinx £ XILINX.

'FPGA Physical View VU9P

> Today’s largest FPGA are stacked silicon
devices with several SLRs (super logic regions)

> Connections between SLRs incurs a greater
delay than standard intra-SLR routing

> By default, kernels are placed in the same SLR
as the Shell

> Careful placement of kernels in SLRs will
Improve Fmax

>> Aim to place kernels in the same SLR as the DDR
they interface with

>> Aim to minimize SLR congestion and cross-SLR
connections

PKDF e © Copyright 2018 Xilinx £ XILINX.

Understand the target DSA

> Review Documentation

>> SDAccel Release Notes (UG 1238)
— DSA Released 2017.4
>> DSA Specifications

> Shell
>> Consumes Resources to implement
>> Removes available resources from the dyna
>> Understand which SLRs are impacted

SLR resources and

DDR assignment can
impact performance

XILINX
DEVELOPER
FORUM

2XDF

Table 1: xilinx_vcu1525_dynamic_5_0

Area

SLRO

SLR1

SLR 2

General information

SLR description

Bottom of device; dedicated
to dynamic region.

Middle of device; shared by
dynamic and static region
resources.

Top of device; dedicated to
dynamic region.

Dynamic region pblock name

pfm_top_i_dynamic_r
egion_

pblock_dynamic_SLRO

edion_

pjm_tup_i_dynamic_r

pHlock _dynamic_SLR1

pfm_top_i_dynamic_r
egion_

pblock_dynamic_SLR2

Compute unit placement
syntax'

set_property
CONFIG.SLR_ASSIGNMENTS
SLRO [get _bd_cells

<cu_name>|

sefl property
CONFIG.SLR_ASSIGNMENTS
SLR1 [get _bd_ecells

<du_name>]

set_property
CONFIG.S5LR_ASSIGNMENTS
SLR2 [get _bd_cells

<cu_name>]

Global memory resources available in dynamic region®

Memory channels; system bank0 (16GE DDR4) bahk1 (16GB DDR4, in static | bank3 (16GB DDR4)
port name reqion)
bahk2 (16GB DDR4, in
dyhamic region)
Approximate available fabric resources in dynamic region Py e,
CLB LUT 388K [— = < >)= = J19%K |- — { <)= — 388K
CLB Register TTOR ~ EEELY ~ TTBR
Block RAM Tile 720 420 720
URAM 320 160 320
DSP 2280 1320 2280

© Copyright 2018 Xilinx

& XILINX

' Kernel Placement Control VU9P

> Specify Kernel Locations

>> Provided by XOCC command line arguments
X0cc <arguments> --xp param:compiler.userPostSysLinkTcl=<path>/place_krnl.tcl

— Auto-executes a Vivado Tcl file

>> Kernel locations specified by Vivado Tcl script

place_krnl.tcl

set_property CONFIG.SLR_ASSIGNMENTS SLRO [get_bd_cells /krnl_0]
set_property CONFIG.SLR_ASSIGNMENTS SLR2 [get_bd_cells /krnl_1]

> Command line option provided in 2018.3
>> Requires a new DSA revision (5.2)
>> Also ensures local SLR reset is used

xocc <arguments> --sir krnl_0:SLRO --slr krnl_1:SLR2

PKDF e © Copyright 2018 Xilinx £ XILINX.

Performance Profiling with
SDAccel

PKDF e © Copyright 2018 Xilinx £ XILINX.

' Main Report Files

> SDAccel generates important report files that help to improve performance

> Reports from Hardware Emulation are most useful for performance improvement

> Guidance Report

> Reports to analyze overall system performance (combining Host and Kernel)
>> Profile Summary Report
>> Timeline Trace
>> Waveform

> Reports to understand/improve Kernel performance
>> HLS report
>> Schedule Viewer

PKDF e © Copyright 2018 Xilinx £ XILINX.

'Design Guidance

> Expert system built-in the tool

= |E| 15Warnings] o 12 Met

I*] Problems B& Console | 2] Guidance 52 [0 Properties [E] SDx Log E SDx Terminal

| Hide All || example

-~
-

>> Analysis of build results and emulation runs Name Threshold Actual Details
= . Emulation-HW (27)
. . . ~ . example-Default (23]
> Guidance window with feedback by < [+ Host Data Transfer (3
= HOST_WRITE_TRANSFER_SIZE (1) > 4,096
C ateg (@) ry +f HOST WRITE_TRAMSFER_SIZE #1 > 4,096 32.768 Host write average size was 32.768 KB ;
- HOST_MIGRATE_MEM (1) =0
+ HOST MIGRATE_MEM #1 =0 8 Migrate Mermory OpenCL APls were use
7z HOSt COde = HOST_READ_TRAMSFER_SIZE (1) > 4,096
+ HOST_READ TRAMSFER_SIZE #1 = 4,096 32.768 Host read average size was 32.768 KB a
>> Keme|S < _ Resource Usage (6)
- KERMEL_UTIL (1) = 100.000
>> Data transfers (hOSt to DDR, DDR to kernels) + KERNEL_UTIL #1 -100.000 | 100.000 | Kernel run - global size: 1, local size: 1.
= KERMNEL_COUNT (1) =1
L. . . KERMEL_COUNT #1 =1 1 Kernel run was executed 4 time(s) with
> Explicit and actionable hints < 22 OVERUSED_CUS (1 <16
+ OVERUSED_CUS #1 <14 1 Kernel run required 1 compute unit call(
> How to improve the design o DRVCETTR L - . |
+ DEVICE_UTIL #1 >0 0.339 Device xilinx_kcul500_dynamic_5_0-0
= LIRILIEER &~ (40 L 1

>> Links to detailed explanation and solutions a

> HTML report (available for makefile runs as
well)

\ XILINX . .
)/<D F DEveLoper © Copyright 2018 Xilinx

& XILINX

Profile Summary

> Top Operations
>> Activity summary

> Kernel & Compute
Units

>> Detailed execution
statistics

> Data Transfer

>> Global Memory access
statistics from host and
from kernels

> Host Code OpenCL API
statistics

XILINX
DEVELOPER
FORUM

2XDF

=| Profile Summary 32

Report name: Profile Summary (sdaccel profile_sumi Build configuration: Unknown

Project name: hostexe
Created: 21 Jun 2018 14:32

Top Operations Kernels & Compute Units Data Transfers @ OpenCL APIs

“ Data Transfer: Host and Global Memory

Context:Mumber Transfer FMumber OF Transfer Average Bandwidth Avarage
of Devices Type Transfers Fate (MB/s) Utilization (%) Size (KE)
contextd: 1 READ 128 [A [A 8.192*
contaxt0:l WRITE 252 [/ A [/ A 8,132
“ Data Transfer: Kernels and Global Memory

. Compute Unit/ kearnel Transfer
2 2uE Part Name Arguments BBk IE0 Type
wilinx _keul500_dynamic 5_0-0 pass_1l/m_axi_gmem in_r 0 REEAD
xilinx _kewl500_dynamic_5_0-0 pass_l/m_axi_gmeml out_r 1 WRITE

© Copyright 2018 Xilinx

Total

Time (ms)
[y A
[y A

Average

Time (ms)
I+
I+

Fumber OF Transf:
Transfers Fate (M
16384 5
16384 5

& XILINX

> Shows task-level parallelism

In action

> Show how many tasks
overlap and for how long

\ XILINX
DEVELOPER
FORUM

Annotated Waveform Viewer

~ % User Functions

~ W Function: dataflow_in_loop_U0

- M Dataflow/Pipeline Activity
» Active lterations
> B Row 0
» B Row 1
» B Row 2

Wl StallMoContinue

% Intra-Kernel Dataflow
> % Function IfO

« M Dataflow/Pipeline Activity
~ Active Iterations
» B Row 0
il Stalll ntinue
> W RTL Signals
ion Stalls
> W Function |0

~ W Function: dataflow...op_U0/ processH

< B Dataflow/Pipeline Activity
v Active lterations
» B Row 0
i StallNoContinue
» T RTL Signals

» Function Stalls

© Copyright 2018 Xilinx

-Runn'ing Eunhing FRunning FRunning Runh

1 1 1 1 1

& XILINX

HLS Report

> Static Performance Estimates:

>> Timing
>> Latency
>> Hierarchical contribution

> Utilization Estimates:
>> Summary
>> Detail analysis

\ XILINX
DEVELOPER
FORUM

Performance Estimates

= Timing (ns)
= Summary

Clock| Target Estimated

Uncertainty

ap_clkl 5.00

3.123

0.62

= Latency (clock cycles)

= Summary

Latency | Interval

min max min max Type

257 257| 257

257|nong

= Detail

Instance
Loop

Utilization Estimates

= Summary

MName BRAM_18K DSP48E FF LuUT

DSP -

Expression 0 53
FIFO -
Instance 0 1362
Memory -
Multiplexer 1173
Register 47 -
Total 0 0 47 2588
Available 4320 53520/1326720 663360
Available SLR 2160 2760 663360331680
Utilization (%) 0 0 ~0 ~0
Utilization SLR (%) 0 0 =0 ~0

© Copyright 2018 Xilinx

& XILINX

'HLS Schedule Viewer

> Shows in which cycle
operations are
scheduled

> Shows operator timing
and clock margin

> Shows data
dependencies

> Cross-probing from
operations to source
code

> Supports specific
focus on:
>> |l Violation
>> Timing Violation

\ XILINX
DEVELOPER
FORUM

=l Synthesis(solution) = Schedule Viewer(solution) £3
Current Module : run

Operation\Control Step

i{phi_mux)
exitcond(icmp)
i_1(+)
node_ 782(switch)
in_0 V read(read)
in_ V load 2 phi{mux)
in_V _load 1 phi(phi_mux)
tmp_3(+)
node_1297(write)

node 1302(write)

[

[Properties 53 & Warnings

Property
Function Latency
Initiation Interval
Iteration Latency
Pipelined
Trip count

© Copyright 2018 Xilinx

- Loop

o e e e [

Value
255

yes
255

& XILINX

'Summary

> First address Guidance Suggestions provided by SDAccel
> Use performance analysis viewers to identify further optimization opportunities

> Consider all areas for Performance Optimization
>> Host program optimizations
>> Kernel Code optimizations
>> Topological optimizations
>> |mplementation optimizations

PKDF e © Copyright 2018 Xilinx £ XILINX.

'I\/Iore Detalls

> UG1207: SDAccel Environment Optimization Guide

> SDAccel Examples:
>> https://github.com/Xilinx/SDAccel Examples

PKDF e © Copyright 2018 Xilinx £ XILINX.

https://github.com/Xilinx/SDAccel_Examples

