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' Architecture of an FPGA Accelerated Application

x86 CPU FPGA

User
Host Application Accelerated Functions Application
Code
\

Acceleration API AXI Interfaces

Acceleration
Platform

Runtime Library Global Memory

Drivers DMA Engine

PCle
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' Hardware Acceleration

> When to USE

>> Algorithm allows for parallelization
>> Many similar tasks

» When May Not be beneficial
— Small problem size
— Cost of Host to Device transfers outweighs benefit

» When NOT beneficial

— Little to no parallelism
Amdahl’'s Law:

If the hardware is 50% of the time,  Algorithm is highly sequential over multiple data

you can accelerate the hardware to « Tasks are highly dependent
zero and you only get 2X
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Overview of
SDAccel
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' Flow Overview

Source Code

C/C++ with Host FPGA RTL, C/C++ or
OpenCL API Application Kernels OpenCL C
O Build Target
. . Selection
Compile Compile
x86 . . FPGA
Build Steps & & Build Steps
Link Link
Host Application FPGA
Executable Binary
(.exe) (.xclbin)
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' The FPGA Kernel Compilation Flow

‘OpenCL\ ‘ C/C++ \ RTL

X0cC -C X0CcC -C package_xo

' D
xocc -link W

v

@
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' SDAccel Execution Modes

Software Emulation Hardware Emulation Hardware Execution

Host application runs with actual
FPGA implementation of the
Kernels

Host application runs with a C/C++ Host application runs with a
or OpenCL model of the Kernels simulated RTL model of the Kernels

Confirm functional correctness of Test the host / kernel integration, Confirm system runs correctly and
the system get performance estimates with desired performance

Fastest turnaround time Best debug capabilities Accurate performance results
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'SDAcceI Development, Debug & Analysis

Develop / Debug

> Designed to develop and integrate FPGA based
acceleration technology into general software
solutions

> Fully integrated Eclipse based development
environment

> Automatic hardware execution flows support

> Provides software and acceleration debugging
capabilities

> Enables detailed system performance analysis
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'Areas for Performance Optimization

host program
o coding
> Host program optimizations

>> Asynchronous programming, SW pipelining

>> Optimizing transfer sizes
> Kernel Code optimizations e grogram
>> |nterface Specification (512-bit, bursting interfaces) coding

>> Dataflow
>> Pipelining
>> Memory Optimization

> Topological optimizations
>> Multiple CUs options

>> DDR mapping

> Implementation optimizations , :
>> SLR Vivado Op“OnS
>> Other Vivado P&R controls brovided to xocc
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Host Code Optimization %
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'Overview Host Code Optimization

XXXXXX
EEEEEEEEE
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Aim to reduce CPU
idle time

Aim to maximize
kernel utilization

© Copyright 2018 Xilinx

Optimize data transfer
sizes
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'OpenCL Command Queue Optimization

commands = clCreateCommandQueue (context, device id, CL QUEUE OUT OF ORDER EXEC MODE ENABLE, é&err);

\

Command Queue Creation
CommandQueue - CL QUEUE_OUT OF ORDER _EXEC_MODE_ENABLE

‘W] E |RIW[ E [R
Ordered

[

Time

R
E
W
R
E
W

$ W | E | R_

_E | R
Out of Order
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'OpenCL Buffer Allocation and Transfers

cl mem d p A = clCreateBuffer (context, CL MEM READ WRITE,
sizeof (int) * number of words, NULL, NULL);

> Buffers are used to exchange data between the host and the device

> Aim to reuse available buffers instead of constantly allocating and
deallocating new ones
>> Reduce the overhead of DDR memory management

~ 1 MByte

/
> READ_WRITE buffer types can create additional dependencies

impacting parallel compute unit execution Block Size
>> Only use them when necessary

»

A

> Aim for 1 or 2MBytes transfers
>> Host <> Device effective bandwidth varies with transfer size
>> Allocate optimally sized buffers
>> Group several small buffers in a single transaction

Throughput

v
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'Task Synchronization

for(int 1i=0; 1 < 2; i++) {
d p A[i] = clCreateBuffer(.., CL MEM READ ONLY |..,..);
d p B[i] = clCreateBuffer(..,, CL MEM WRITE ONLY |[..,..);

clEnqueueMigrateMemObjects (commands, 1, &d p A[i], .., 0, NULL,

clSetKernelArg (kernel, 0, sizeof(cl mem), &d p A[i]);

Swriteevent[i]);

clSetKernelArg (kernel, 1, sizeof(cl mem), &d p B[i]);
clEnqueueTask (commands, kernel, 1, &writeevent[num], O0);

}

clFinish (commands); =—

Wait for all events/tasks
In Command Queue to
finish

clEnqueueMigrateMemObjects (commands, 1, &d p B[0], .., O , NULL, &readevent[0]);

clEnqueueMigrateMemObjects (commands, 1, &d p B[1l], .., O , NULL, &readevent[l]):;

clWaitForEvents (1, &readevent[0]):;

Wait for read events to
complete

clWaitForEvents (1, &readevent[l]):;

Example:
* One compute unit
* Single Out of Order Command

»

Queue
« Two parallel tasks

t |

© Copyright 2018 Xilinx
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Time ]
clFinish clWaitForEvents
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'Software Pipelining

for (int 1i=0; 1 < MAX; i++) {

Schedule all tasks for

d p A[i] = clCreateBuffer(..,, CL MEM READ ONLY |..,..);
d p B[1] = clCreateBuffer(..,, CL MEM WRITE ONLY |..,..);
clEnqueueMigrateMemObjects (commands, 1, &d p A[i], .., 0, NULL,
clSetKernelArg (kernel, 0, sizeof(cl mem), &d p A[i]);
clSetKernelArg (kernel, 1, sizeof(cl mem), &d p B[i]);

execute

Swriteevent[i]) ;

\

Use events to
synchronize

clEnqueueTask (commands, kernel, 1, &writeeventTnum], &runevent[i]) ;

clEnqueueMigrateMemObjects (commands, 1,

}

clFinish (commands) ;

sd_p B[il, .., 1,

&runevent[1], 0 );

Wait for all tasks to

_R_

_E | R .

v Time °
clFinish
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complete

Example:
W | E | R_ _E | R . One compute unit

Single Out of Order
Command Queue
MAX = 4
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Kernel Code Optimization E
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' Key Techniques to Develop High Performance C Kernel

1. Improving Computation efficiency : Parallelize
>> Customized data type adjusted to requirement

>> Pipeline and Dataflow

>> Unroll (Not always required)

2. Memory Configuration
>> Memory customization by array partition

>> Reduce memory access by using local caches, shift registers

3. Interface and Datatype Optimization
>> |nterface bandwidth consideration

>> Memory Burst Read and Write

))(D F oeveLopes © Copyright 2018 Xilinx 8 XI LlNX
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Datawidth Optimization: Bit Accurate Datatypes

> Leverage Arbitrary precision datatypes from HLS library
>> AP_INT, AP_UINT
>> AP_FIXED, AP_UFIXED

> Using exact bit width helps to reduce the resource and achieve better performance
>> Practical example: Floating point to Fixed point conversation improve performance
>> A whitepaper: Deep Learning with INT8 Optimization

ap uint<5> last i; // 5 bits unsigned
ap_uint<2 > tu_ size ; // 2 bits uns igne d White Paper: UltraScale and UltraScale+ FPGAs
v
switch (tu size) { (A XII_INX
Case |:| - ALL PROGRAMMABLE.
last 1 = 0; WP486 (v1.0.1) April 24, 2017
break:; .
case 1: Deep Learning
last i = 7; with INT8 Optimization
break; on Xilinx Devices
case 2:
las t_i = 15; By: Yao Fu, Ephrem Wu, Ashish Sirasao, Sedny Attia, Kamran Khan, and Ralph Wittig
break;
case 3:
last i = 31; Xilinx INT8 optimization provides the best performance and most
L power efficient computational techniques for deep learning
break; inference. Xilinx's integrated DSP architecture can achieve 1.75X
} solution-level performance at INT8 deep learning operations than
other FPGA DSP architectures.

Example code shows using bit-accurate integer datatype instead of native short, int etc

PKDF e © Copyright 2018 Xilinx £ XILINX.
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'Improve Compute Efficiency: Dataflow

> Dataflow = Task level parallelism

void top(a,b,c,d) {
func A(a,b,11);
(c,11,12);
(lzrd);

return d;

top_function(datatype_t * m_in, // Memory d
datatype_t * m_out, // Memory data Output
int inpl, !/ Other Input }
int inp2) { // Other Input

#pragma HLS DATAFLOW

hls::stream<datatype_t> in_wvarl; // Internal stream to transfer
hls::stream<datatype_t> out_wvarl; // data through the dataflow region

read_function({m_in, inpl); // Read function contains pipelined for loop
// to infer burst

execute function(in varl, out varl, inpl, inp2); // Core compute functiocn

write function{out_warl, m _out); // Write function contains pipelined for loop
// to infer burst

#pragma HLS dataflow

\ XILINX . .
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initiation interval
~3cycles

nJuuuuuuo

func A func_A\

»

a

5 cycles
latency
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'Improve Compute Efficiency: Pipeline

> Pipeline = Instruction level parallelism

void func(m,n, o)
for (int i=2;

op write;
}
}

{

i>=0;

i--)

{

\ XILINX
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initiation interval

1 cycle
)

#pragma HLS pipeline

© Copyright 2018 Xilinx
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3 cycles ”
latency
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'Improve Compute Efficiency: Unrolling Loops

> For smaller body loops with limited number of iterations, unrolling improve

performance
ck [

add: for (int 1=0; 1<=3; i++) {

b = alil|ilo;

}

clk |
N I

> If complete unrolling is not feasible, exploit partial unrolling

> Unrolling loops with large number of iterations and large body significantly
Increases resource usage and slows down compilation

PKDF e © Copyright 2018 Xilinx £ XILINX.



' Key Techniques to Develop High Performance C Kernel

1. Improving Computation efficiency : Parallelize
>> Customized data type adjusted to requirement
>> Pipeline and Dataflow

>> Unroll (Not always required)

2. Memory Configuration
>> Memory customization by array partition

>> Reduce memory access by using local caches, shift registers

3. Interface and Datatype Optimization
>> |nterface bandwidth consideration

>> Memory Burst Read and Write
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'Large Arrays get placed in Memory

Programmers View for ( int i=0; i<512; i++) { Physical View
Array b = a[i] + b; Memory

511 }

510

: > Mapping the array ‘a’ to a single
memory will force a sequential

iImplementation of the algorithm

Port A Port B

clk TTTT
: : : At most 2 Ports

- each permitting
5 - one read per cycle
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' Memory Access crucial for Performance

> Understand the Array access pattern

> Use several BRAMS or Registers to implement arrays (parallel access)

Array Partitioning

[+ [ . ey
block
| NJ2 N-2 N-1 |
| w2 |
cydic o | 1| 2 | .. [na[nz]|ng]- }
| N3 | N1 |
complete }III [ na ]
_ e ST
[ ]

\ XXXXXX . .
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' Key Techniques to Develop High Performance C Kernel

1. Improving Computation efficiency : Parallelize
>> Customized data type adjusted to requirement
>> Pipeline and Dataflow

>> Unroll (Not always required)

2. Memory Configuration
>> Memory customization by array partition

>> Reduce memory access by using local caches, shift registers

3. Interface and Datatype Optimization
>> |nterface bandwidth consideration

>> Memory Burst Read and Write
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'Interface Bandwidth Optimization — 512 bits

> Kernels use AX14 MM Master ports to connect with DDR banks over an AXIl interconnect
> AXI Interconnect supports up to 512 bit wide transfers

> For maximum throughput, the kernel should use the full 512 bits of the AXI interface

- Interfaces are 512bit wide

void wvadd (
const ap uint<512> *inl,
const ap uint<512> *in2,
ap uint<512> *out,
int size )

Use ap_uint<512> types to create 512-bit wide
AXI_M ports

PKDF e © Copyright 2018 Xilinx £ XILINX.



'Interface Bandwidth Optimization — Number of Ports

> Number of AXlI_M ports impacts kernel performance

>> Maximum theoretical bandwidth per AXI_M port is 512bits @ 300MHz (based on platform clock)

> By default, SDAccel creates a single AXlI_M port per kernel
>> Different I/O processes will have to access the AXl_M port sequentially

void K VADD( dType *A, dType *B, dType*R) {

#pragma HLS INTERFACE m axi port=A offset=slave
#pragma HLS INTERFACE m axi port=B offset=slave
#pragma HLS INTERFACE m axi port=R offset=slave

By default, SDAccel maps all pointer arguments to the same AXI_M interface

\ XILINX . .
)/<D F DEveLoper © Copyright 2018 Xilinx

AXI

K_ADD

gmem

Single AXI_M port

& XILINX



'Interface Bandwidth Optimization — Number of Ports

> Number of AXlI_M ports impacts kernel performance
>> Maximum theoretical bandwidth per AXI_M port is 512bits @ 300MHz (based on platform clock)

> By default, SDAccel creates a single AXlI_M port per kernel
>> Different I/O processes will have to access the AXl_M port sequentially

> Adding extra AXl_M ports increases kernel bandwidth
>> With at least two ports, a kernel can read inputs and write outputs simultaneously

AXI K_ADD
<+«——| p0
«—| pl

Use the “bundle” property on the INTERFACE pragma to create and name AXI_M ports Multiple AXI_Master ports

void K VADD( dType *A, dType *B, dType*R) {

#pragma HLS INTERFACE m axi port=A offset=slave bundle=pl
#pragma HLS INTERFACE m axi port=B offset=slave bundle=[il
#pragma HLS INTERFACE m axi port=R offset=slave bundle=p2

))(D F oeveLopes © Copyright 2018 Xilinx 8 XI LlNX
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'Interface Bandwidth Optimization — Bursting

> Read/Write accesses to DDR cause have a long latency overhead
> Random sequences of individual accesses are bad for performance
> Bursting is the most efficient way to access DDR as it hides latency

> To ensure bursting behavior, create a dedicated dataflow function in which a
pipelined loop reads or writes from an AXI_M port

template<typename out t>
void read blocks{const out_t *in, hls::stream<out_t> &out, unsigned int blocks) {
for{unsigned int i = @; i < blocks*2; i++) {
#pragma HLS loop tripcount min=2848 max=20848 Enable burst transfers
#pragma HLS PIPELINE from global memory
out.write(in[i]);

} Sequential data access
1 enables streaming data
between blocks
)\/<D F E,E'g%%)pgp © Copyright 2018 Xilinx & XILINX.




'Sustaining Interface Throughput in the Kernel

> Top function with Read, Compute, Write Dataflow blocks initiation interval
~3cycles
JEgEpEpEpEpEpEy =
top function(datatype t * m_in, // Memory data Input #pl;jaagtraT}iio\ll-leS read read

datatype_t * m_out, // Memory data Output
int inpl, // Other Input
int inp2) { // Other Input

#pragma HLS DATAFLOW

»

A

5 cycles
latency

hls::stream<datatype t> in varl; // Internal stream to transfer
hls::stream<datatype_t> out_wvarl; // data through the dataftlow region

read function(m in, inpl); // Read function contains pipelined for loop

// to infer burst Concurrent execution
of
read, execute, write

execute function(in warl, out varl, inpl, inp2); // Core compute function

write function{out warl, m out); // Write function contains pipelined for loop
!/ to infer burst

))(D F E’gl&%%“" © Copyright 2018 Xilinx & XILINX.



Topological Optimizations E
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' Multiple Compute Units (Kernel Instances)

> By default, SDAccel generates 1 instance of each kernel

> Use multiple instances when the same function is performed on independent

blocks of data (data-level parallelism)

> Example: 2D Image Filter
>> Use 1 CU to process Y, U and V color planes sequentially
>> Use 3 CUs to process Y, U and V color planes parallel
>> Use 6 CUs to process two images in parallel

# Create 3 CUs for kernel “foo”
xocc -1 —--nk foo:3 <other options>

Use the xocc --nk option during the link phase to specify
number of CUs for each kernel

XILINX
))(D F Porom © Copyright 2018 Xilinx

FPGA

AXI Interconnect

A
\ 4

/[

Memory
Controller

User Programmable Region

foo 1

foo 1

N

!

foo 3
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'Kernel Port Connections to DDR Banks

> SDAccel platforms typically contain 4 DDR banks

> By default all kernel AXI_M ports are mapped to the same DDR bank
>> DDR bandwidth is shared, multiple AXI requests are arbitrated

> Careful mapping of kernel ports to specific DDR banks improves performance
>> Take advantage of full DDR bandwidth
>> Simultaneous transfers to each DDR
>> Physical proximity of kernel and DDR improves Fmax

User Programmable Region
RR— AXI »{ p0 K_VADD
xocc —1 —-sp kernel top 1.m axi p0.bank0 \ | i “mpreen g ‘% " Pl
--sp kernel top 1. N bankl \ . "L P2
--sp kernel top l.m axi p2.bank2 \ ‘ L4
<other options> i E i
i |
Use the xocc --sp option during the link phase to specify desired mapping El

Update OpenCL Buffers properties in the host program



Implementation Optimization E
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'FPGA Physical View VU9P

> Today’s largest FPGA are stacked silicon
devices with several SLRs (super logic regions)

> Connections between SLRs incurs a greater
delay than standard intra-SLR routing

> By default, kernels are placed in the same SLR
as the Shell

> Careful placement of kernels in SLRs will
Improve Fmax

>> Aim to place kernels in the same SLR as the DDR
they interface with

>> Aim to minimize SLR congestion and cross-SLR
connections

PKDF e © Copyright 2018 Xilinx £ XILINX.



Understand the target DSA

> Review Documentation

>> SDAccel Release Notes (UG 1238)
— DSA Released 2017.4
>> DSA Specifications

> Shell
>> Consumes Resources to implement
>> Removes available resources from the dyna
>> Understand which SLRs are impacted

SLR resources and

DDR assignment can
impact performance

XILINX
DEVELOPER
FORUM

2XDF

Table 1: xilinx_vcu1525_dynamic_5_0

Area

SLRO

SLR1

SLR 2

General information

SLR description

Bottom of device; dedicated
to dynamic region.

Middle of device; shared by
dynamic and static region
resources.

Top of device; dedicated to
dynamic region.

Dynamic region pblock name

pfm_top_i_dynamic_r
egion_

pblock_dynamic_SLRO

edion_

pjm_tup_i_dynamic_r

pHlock _dynamic_SLR1

pfm_top_i_dynamic_r
egion_

pblock_dynamic_SLR2

Compute unit placement
syntax'

set_property
CONFIG.SLR_ASSIGNMENTS
SLRO [get _bd_cells

<cu_name>|

sefl property
CONFIG.SLR_ASSIGNMENTS
SLR1 [get _bd_ecells

<du_name>]

set_property
CONFIG.S5LR_ASSIGNMENTS
SLR2 [get _bd_cells

<cu_name>]

Global memory resources available in dynamic region®

Memory channels; system bank0 (16GE DDR4) bahk1 (16GB DDR4, in static | bank3 (16GB DDR4)
port name reqion)
bahk2 (16GB DDR4, in
dyhamic region)
Approximate available fabric resources in dynamic region Py e,
CLB LUT 388K [— = < > )= = J19%K |- — { < )= — 388K
CLB Register TTOR ~ EEELY ~ TTBR
Block RAM Tile 720 420 720
URAM 320 160 320
DSP 2280 1320 2280

© Copyright 2018 Xilinx
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' Kernel Placement Control VU9P

> Specify Kernel Locations

>> Provided by XOCC command line arguments
X0cc <arguments> --xp param:compiler.userPostSysLinkTcl=<path>/place_krnl.tcl

— Auto-executes a Vivado Tcl file

>> Kernel locations specified by Vivado Tcl script

place_krnl.tcl

set_property CONFIG.SLR_ASSIGNMENTS SLRO [get_bd_cells /krnl_0]
set_property CONFIG.SLR_ASSIGNMENTS SLR2 [get_bd_cells /krnl_1]

> Command line option provided in 2018.3
>> Requires a new DSA revision (5.2)
>> Also ensures local SLR reset is used

xocc <arguments> --sir krnl_0:SLRO --slr krnl_1:SLR2

PKDF e © Copyright 2018 Xilinx £ XILINX.



Performance Profiling with
SDAccel
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' Main Report Files

> SDAccel generates important report files that help to improve performance

> Reports from Hardware Emulation are most useful for performance improvement

> Guidance Report

> Reports to analyze overall system performance (combining Host and Kernel)
>> Profile Summary Report
>> Timeline Trace
>> Waveform

> Reports to understand/improve Kernel performance
>> HLS report
>> Schedule Viewer

PKDF e © Copyright 2018 Xilinx £ XILINX.



'Design Guidance

> Expert system built-in the tool

= |E| 15Warnings ] o 12 Met

I*] Problems B& Console | 2] Guidance 52 [0 Properties [E] SDx Log E SDx Terminal

| Hide All || example

-~
-

>>  Analysis of build results and emulation runs Name Threshold  Actual  Details
= . Emulation-HW (27)
. . . ~ . example-Default (23]
> Guidance window with feedback by < [+ Host Data Transfer (3
= HOST_WRITE_TRANSFER_SIZE (1) > 4,096
C ateg (@) ry +f HOST WRITE_TRAMSFER_SIZE #1 > 4,096 32.768 Host write average size was 32.768 KB ;
- HOST_MIGRATE_MEM (1) =0
+ HOST MIGRATE_MEM #1 =0 8 Migrate Mermory OpenCL APls were use
7z HOSt COde = HOST_READ_TRAMSFER_SIZE (1) > 4,096
+ HOST_READ TRAMSFER_SIZE #1 = 4,096 32.768 Host read average size was 32.768 KB a
>> Keme|S < _ Resource Usage (6)
- KERMEL_UTIL (1) = 100.000
>> Data transfers (hOSt to DDR, DDR to kernels) + KERNEL_UTIL #1 -100.000 | 100.000 | Kernel run - global size: 1, local size: 1.
= KERMNEL_COUNT (1) =1
L. . . KERMEL_COUNT #1 =1 1 Kernel run was executed 4 time(s) with
> Explicit and actionable hints < 22 OVERUSED_CUS (1 <16
+ OVERUSED_CUS #1 <14 1 Kernel run required 1 compute unit call(
> How to improve the design o DRVCETTR L - . |
+ DEVICE_UTIL #1 >0 0.339 Device xilinx_kcul500_dynamic_5_0-0
= LIRILIEER &~ (40 L 1

>> Links to detailed explanation and solutions a

> HTML report (available for makefile runs as
well)

\ XILINX . .
)/<D F DEveLoper © Copyright 2018 Xilinx
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Profile Summary

> Top Operations
>> Activity summary

> Kernel & Compute
Units

>> Detailed execution
statistics

> Data Transfer

>> Global Memory access
statistics from host and
from kernels

> Host Code OpenCL API
statistics

XILINX
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=| Profile Summary 32

Report name: Profile Summary (sdaccel profile_sumi Build configuration: Unknown

Project name: hostexe
Created: 21 Jun 2018 14:32

Top Operations Kernels & Compute Units Data Transfers @ OpenCL APIs

“ Data Transfer: Host and Global Memory

Context:Mumber Transfer FMumber OF Transfer Average Bandwidth Avarage
of Devices Type Transfers Fate (MB/s) Utilization (%) Size (KE)
contextd: 1 READ 128 [ A [ A 8.192*
contaxt0:l WRITE 252 [/ A [/ A 8,132
“ Data Transfer: Kernels and Global Memory

. Compute Unit/ kearnel Transfer
2 2uE Part Name Arguments BBk IE0 Type
wilinx _keul500_dynamic 5_0-0 pass_1l/m_axi_gmem in_r 0 REEAD
xilinx _kewl500_dynamic_5_0-0 pass_l/m_axi_gmeml out_r 1 WRITE

© Copyright 2018 Xilinx

Total

Time (ms)
[y A
[y A

Average

Time (ms)
I+
I+

Fumber OF Transf:
Transfers Fate (M
16384 5
16384 5
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> Shows task-level parallelism

In action

> Show how many tasks
overlap and for how long

\ XILINX
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Annotated Waveform Viewer

~ % User Functions

~ W Function: dataflow_in_loop_U0

- M Dataflow/Pipeline Activity
» Active lterations
> B Row 0
» B Row 1
» B Row 2

Wl StallMoContinue

% Intra-Kernel Dataflow
> % Function IfO

« M Dataflow/Pipeline Activity
~ Active Iterations
» B Row 0
il Stalll ntinue
> W RTL Signals
ion Stalls
> W Function |0

~ W Function: dataflow...op_U0/ processH

< B Dataflow/Pipeline Activity
v Active lterations
» B Row 0
i StallNoContinue
» T RTL Signals

» Function Stalls

© Copyright 2018 Xilinx

-Runn'ing Eunhing FRunning FRunning Runh
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HLS Report

> Static Performance Estimates:

>> Timing
>> Latency
>> Hierarchical contribution

> Utilization Estimates:
>> Summary
>> Detail analysis

\ XILINX
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Performance Estimates

= Timing (ns)
= Summary

Clock| Target Estimated

Uncertainty

ap_clkl 5.00

3.123

0.62

= Latency (clock cycles)

= Summary

Latency | Interval

min max min max Type

257 257| 257

257|nong

= Detail

Instance
Loop

Utilization Estimates

= Summary

MName BRAM_18K DSP48E FF LuUT

DSP -

Expression 0 53
FIFO -
Instance 0 1362
Memory -
Multiplexer 1173
Register 47 -
Total 0 0 47 2588
Available 4320 53520/1326720 663360
Available SLR 2160 2760 663360331680
Utilization (%) 0 0 ~0 ~0
Utilization SLR (%) 0 0 =0 ~0

© Copyright 2018 Xilinx

& XILINX



'HLS Schedule Viewer

> Shows in which cycle
operations are
scheduled

> Shows operator timing
and clock margin

> Shows data
dependencies

> Cross-probing from
operations to source
code

> Supports specific
focus on:
>> |l Violation
>> Timing Violation

\ XILINX
DEVELOPER
FORUM

=l Synthesis(solution) = Schedule Viewer(solution) £3
Current Module : run

Operation\Control Step

i{phi_mux)
exitcond(icmp)
i_1(+)
node_ 782(switch)
in_0 V read(read)
in_ V load 2 phi{mux)
in_V _load 1 phi(phi_mux)
tmp_3(+)
node_1297(write)

node 1302(write)

[

[ Properties 53 & Warnings

Property
Function Latency
Initiation Interval
Iteration Latency
Pipelined
Trip count
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o e e e [

Value
255

yes
255
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'Summary

> First address Guidance Suggestions provided by SDAccel
> Use performance analysis viewers to identify further optimization opportunities

> Consider all areas for Performance Optimization
>> Host program optimizations
>> Kernel Code optimizations
>> Topological optimizations
>> |mplementation optimizations
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'I\/Iore Detalls

> UG1207: SDAccel Environment Optimization Guide

> SDAccel Examples:
>> https://github.com/Xilinx/SDAccel Examples
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https://github.com/Xilinx/SDAccel_Examples




