Lab Workbook Building Custom AXI IP

Building Custom AXI IP

2016.3

Abstract

This lab guides you through the process of creating and adding a custom AXI peripheral to the
Vivado® IP catalog by using the Create and Package IP Wizard. The focus is on the process of
adding an AXI interface onto an existing peripheral—not the actual design of the peripheral
logic.

Objectives
After completing this lab, you will be able to:
e Create a custom AXI peripheral accessible for future design use from the IP catalog

e Modify the top-level and AXI interface skeleton files created by the wizard to add custom
functionality

e Create and import user-defined peripheral port signals and parameters using the Package IP
Wizard

Introduction

The purpose of this lab is for you to use the Create and Package IP Wizard to wrap an existing
peripheral (in this case, a simple LED controller) with the Xilinx AXI peripheral template and
export the wrapped peripheral as an XACT IP.

The lab will illustrate a design flow targeted to building AXI interface slave peripherals. A project
will be created in the Vivado integrated design environment (IDE). A project could be the
primary design project or it could be for the sole purpose of launching the Create and Package
IP Wizard to wrap the provided peripheral with an AXI interface.

Here you will use the Vivado Design Suite project as the starting point to launch the Create and
Package IP Wizard. The Create and Package IP Wizard will be used to generate the peripheral
directory structure, skeleton design files, and a Vivado IDE project file that can be used as a
design environment.

Once the IP is completed in the second instance of the Vivado IDE, the IP is passed back to the
original project as an XACT IP.

project info | Modify Wrapper
“Dummy Project” ——— > 2" Vivado Instance @ L i
Create and Package New KACT 1P to Build IP
IP Wizard LAl & - Builds Templates
] s Add Sources

Figure 4-1: How the Instances of the Vivado IDE Are Used

£ XILINX » ALL PROGRAMMABLE. www xilinx.com 1
© Copyright 2016 Xilinx

Building Custom AXI IP Lab Workbook

The actual peripheral design will be developed in the Vivado Design Suite project (which is
created by the Create and Package IP Wizard). The purpose of the Create and Package IP
Wizard-created project is to provide a design-authoring environment and the ability to check
HDL syntax.

Synthesis will be performed in this lab only as a means to verify the syntax of the HDL additions.
Implementation should not be performed in this lab because the IP RTL will be synthesized and
implemented at the time that the IP is instantiated into a design.

You will use the Create and Package IP Wizard to create the user (peripheral top-level AXI slave
interface) skeleton files and then add the custom LED controller user logic (provided).

The skeleton files will be modified to include the user-defined ports and generic parameters.
The user-defined ports and parameters will then be imported via the Vivado IP packager with
the peripheral becoming a member of the Vivado IP catalog.

Top_Level.vhd{v)

& AX|- Lite 3 AXI_Slave_attachment.vhe{v)
Create & Package IP

Wizard

Vivado
Create & Package IP
Framework

User_Logic.vhd{v} ﬂ: User Ports >

User Defined Generics
(Parameters)

Aftachment
Registers

File names are descriptive only

Figure 4-2: Create and Package IP Block Diagram

The Create and Package IP Wizard generates the above framework, which includes the directory
structure, Top_Level.vhd/v, AX|_Slave_Attachment.vhd/v, BEM simulation model, software driver
skeleton, and example files.

Note that the skeleton.vhd/v filenames are just descriptive, as the actual names are based on the
IP name and version and the type of AXI attachment selected in the wizard menu.

2 www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx

Lab Workbook Building Custom AXI IP

The User_Logic.vhd/v file is the user-defined part of the peripheral IP. For this lab, a simple LED
controller is provided for you. The block diagram is illustrated in the figure below.

Prescale Counter

~_
pre_en count —| .
EMl Qutput
CLK > > R5T Source
r Mux Cutput
Bit LEDs
RST e

CHNT_DISP

|
I
|
DATA_IN ' |
T
| |
| |
| |
1

I
| CMT_PRESCALE_ ‘AL | | LED _RESET_WAL | | MUM_ACTWE_LEDS | | MUM_LEDS

LED_Controller vhd

Figure 4-3: LED Controller Block Diagram

The operation of the IP is far from being an actual controller, but some basic concepts such as
custom user ports and parameterization are demonstrated.

The operation of the controller is simple. The intended output, LEDs, is vector-sized
parameterized by NUM_LEDS.

An output source multiplexer, controlled by user input CNT_DISP, selects between a DATA_IN
input or a counter that will drive the LEDs. It is intended that the DATA_IN input will be supplied
from an AXI attachment register.

The counter is driven by a prescaler that has a parameterized count value, CNT_PRESCALE_VAL,
so that the speed of the counter can be set to count fast for simulation viewing and slow so one
can actually see LEDs blink in hardware.

The counter also has a reset parameter LED_RESET_VAL, which is loaded into the counter when
RST is asserted.

The table below summarizes the user-defined ports and parameters.

User Signal | Direction Source/Destination

CLK in Driven by AXI attachment

RST in Driven by AXI attachment
DATA_IN in Driven by AXI attachment
CNT_DISP in External input

LEDs out External output — LEDs on board

User-defined parameters are set in the IP Configuration panel for each IP instance when it is
later instantiated into a design.

£ XILINX » ALL PROGRAMMABLE. www xilinx.com 3
© Copyright 2016 Xilinx

Building Custom AXI IP Lab Workbook

User Parameter Function

CNT_PRESCALE_VAL |[Counter clock rate divider

LED_RESET_VAL LED display reset value

NUM_ACTIVE_LEDS |LSB number of active LEDs output bits

NUM_LEDS LED vector width (number of LEDs)

The NUM_ACTIVE_LEDS parameter will not be critical during this lab, but it is included for a
simulation model for other labs. The NUM_ACTIVE_LEDS is an integer value that must be less
than or equal to NUM_LEDS, the number of LEDs on the board.

If equal to the number of LEDs, then either the count or DATA_IN will be displayed on the LEDs
(determined by input CNT_DISP).

If NUM_ACTIVE_LEDS is less than NUM_LEDS, then only the NUM_ACTIVE_LEDS number of LSB
will be displayed with the remaining MSB bits (NUM_LEDS — NUM_ACTIVE_LEDS) and will be
forced to '1' (always on).

While this feature is not practical, it is ideal for a simulation waveform demonstration.

General Flow

Step 1: Step 2: Step 3:

Creating = Adding = Importing
Placeholder - User “ | Ports and
& Projects HDL Parameters

Creating the Vivado IDE Project and Running the Create and Package
IP Wizard Step 1

You will begin the lab by creating a new Vivado Design Suite project. As
described in the introduction, you can create a project to be the main working
project in which all your design work is performed, or as a platform to launch the
Create and Package IP Wizard.

Here you will create a project for the purpose of launching the Create and
Package IP Wizard, which you will use to create the skeleton of an AXI-based
peripheral that will be the base connection between the user IP and AXI port.

There are a number of ways to launch the Vivado Design Suite. The two most
popular mechanisms are shown here.

4 www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx

Lab Workbook

Building Custom AXIIP

1-1.

Launch the Vivado Design Suite.

This can be done in two standard ways, use your preferred method.

1-1-1. Select Start > All Programs > Xilinx Design Tools > Vivado 2016.3 > Vivado 2016.3.

llllll[..-.
L

.A

. Kilinx Design Tools A

i: Uninstall Xilinx Information CEnter
i: Xilinx Information Center
. DocMav
. SDK 2010
. Vivado 201 »
.,9:‘ Add Design Tools o:,hevices 201

p

an Manage Xilinx Licaises

$ Uninstall 201 ‘-'
B Vivado 201 ;dSheII
4 Vivado 201

. Systern Generator
. Vivado HLS

"
»
]
o
y
¥

Figure 4-4: Launching the Vivado Design Suite from the Start Menu

--OR --

Double-click the Vivado Design Suite shortcut icon (Lfi'/) on the desktop.

The Vivado Design Suite opens to the Welcome window. From the Welcome window you
can create a new project, open an existing project, or enter Tcl commands directly into
the Vivado Design Suite as well as access documentation and examples.

Create a New Project,
Open an Existing
(including Recent)

HLx Editions

Projects or an
Example Project

B R

Open Project

Open Example Project

Create New Project
Manage IP, Open
Hardware Manager Ta
and Xilinx Tel Storect g:
-

Documentation, Information Center

Quick Take Videos

.

Documentation and Tutorials

Manage IP Open Hardware Manager

Quick Take Videos

R

Xilinx Tdl Store

Release Notes Guide

Vivado 201+ - ‘E@
VIVADO! £ XILINX

ALL PROGRAMMABLE.

Recent Projects

Tel Conscle
Td Console

{atarc_gut

& H

<

&

2 _O0@ x

Type a Tel command here

Figure 4-5: Vivado Design Suite Welcome Screen

& XILINX » ALL PROGRAMMABLE.

© Copyright 2016 Xilinx

www.xilinx.com

Building Custom AXI IP Lab Workbook

Since this is an intermediate-level lab, you are expected to know how to create a Vivado
Design Suite project.

Here are the following parameters for the project:

o Project name: bldLEDperiph

o Platform (board): Any (you will be specifying families for the IP to target later in this
lab)

o Project location: C:\training\AXIbldPeriph\lab

To simplify and accelerate getting to the interesting portion of the lab, a completer Tcl
script has been provided for you in this lab's support directory. Using this completer
script, you can build this lab to any step, allowing you to back up to a previous step, or
jump ahead to skip material you are already familiar with. Here you will load the
completer script.

The Vivado Design Suite offers both GUI and scripted control. Scripted control
takes the form of Tcl commands. These Tcl commands can be entered directly
into the tool one at a time, or an entire Tcl script can be loaded and executed.

1-2.
1-2-1.

Run a Tcl script.
Locate the Tcl command line entry.

The command line entry can be found either on the Welcome page prior to a project
being opened, or once a project has been opened.

From the Welcome screen:

Vivado o | B)

Fle Flow Tooks Wwindow Help Search commands

VIVADO! o s £ XILINX

~ =
ManagelP OpenHar dware Manager ‘ -
‘ Enter Tcl Commands Here
TelConsole - 0Oe x
| £ :
D

R N T o AN Y

Figure 4-6: Accessing the Tcl Console from the Getting Started Page

www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx

Lab Workbook Building Custom AXI IP

From an opened project:

L Tt e TSt A T e n syt Voo 201158 oo o=]
File Edit Flow Tools Window Layout View Help Search nands
A oeRE X &P W& X I G [Soefautlayout RYK J write_bitstream Complete

2 mpenentati. L] S|

£ Implementation Settings
: Enter Tcl Commands Here
\ - i " 3

qa'lcl(uusule © Messages | Ed Log | |3 Reports | (% Design Runs
Y e Sy M~"4’L"‘v"-“,h~F"“r~' (Gaall 4|

P Run Implementation

> [Open Implemented Design

Figure 4-7: Entering Commands into the Tcl Console from an Open Project

The default directory for the Tcl environment is nested within the Xilinx installation
directory. This placement, however, is often disadvantageous. In most cases, you will
want to navigate to a more useful path. To do this, use the cd command to change
directory to the user directory.

1-2-2. Change the current working directory to where the Tcl script is located by entering:
cd C:\training\AXIbldPeriph\support

Remember that the Tcl environment is based on Linux and requires the '/' character to
delimit hierarchical paths.

1-2-3. Verify that you are now where you want to be by entering the following into the Tcl
command line:

pwd

The current working directory is displayed. If you are not where you want to be, use the
cd command to change to C:\training\AXIbldPeriph\support.

1-2-4. Enter the following Tcl command:

source AXI buildPeriph completer.tcl

The Tcl script is run as though you typed each command included in the Tcl script into
the Tcl command line. You can follow the execution of the script and monitor for any
errors or warnings in the Tcl Console.

£ XILINX » ALL PROGRAMMABLE. www.xilinx.com 7
© Copyright 2016 Xilinx

Building Custom AXI IP Lab Workbook

1-3.

1-3-1.

1-3-2.

1-4.

1-4-1.

Now that the Tcl script is loaded, create the top-level project, or dummy
project, by using the appropriate Tcl proc.

The project needs to know what language you will be using so that the
templates that are created will be created in your preferred language.
Enter the following into the Tcl command line of the Tcl Console:

use <language>
Where <language> is either VHDL or Verilog. This is not case sensitive.

Alternately, you can set your language preference by clicking Flow Navigator > Project
Manager > Project Settings > General > Target Language and selecting your
preferred language.

Enter the following into the Tcl command line to run the proc that will build the project:

createProject

Use the Create and Package IP Wizard to create a new AXI peripheral.

The Create and Package IP Wizard provides a graphical means for creating a
design environment platform on which a custom AXI peripheral can be
implemented.

The wizard performs the mundane tasks of creating the directory structure
(to ensure that the peripheral will appear in the IP catalog), setting up IP
parameters (so that the peripheral can be further parameterized), and
creating an appropriate AXI interface (master, slave, or stream).

Skeleton structures are also generated for IP HDL, bus functional modeling
(BFM), JTAG-based hardware debug design, and a software device driver.

Select Tools > Create and Package IP.

E"' ip_placeholder -

File Edit Flow

'4’? !}l % Report
¢ Create and Package IP... ’ ‘

Run Tel Script...

Flows Mavigator [

Oy 52 o
e |
4 Property Edibor Chrl+]
4 Project Mana Associate ELF Files.,

% Project Compile Simulation Libraries. ..

5% add so wilin: Tel Store. ..
i} IP Catal Cuskomize Commands 3

{3 Project Settings...
& Options...
e

4 1P Integrator
ﬁ:’, Create

Figure 4-8: Selecting Create and Package IP

www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx

Lab Workbook Building Custom AXI IP

The Create and Package IP Wizard opens. This wizard is used to package existing IP and
to create a skeleton for a new AXI-based peripheral. Once packaged or created, the
custom IP will appear in the Vivado IP catalog as a selectable item.

i ™
g":!_:. Create and Package New IP @

Create and Package IP

This wizard can be used to accomplish bwo tasks:

V | \ADO Package a new IP for the ¥ivado IP Catalog

This wizard will quide you through the process of creating a new Vivado IP using source files and information
From wour current project, block design or specified directory.

Create a new AXI4 Peripheral
This wizard will quide vou through the process of creating a new AX14 peripheral which includes HDL, driver,
software test application, IP Integrator BFM simulation and debug demonstration design.

XILINX

ALL PROGRAMMABLE.
Click Mext to continue
< Back.

Finish Cancel

"

Figure 4-9: Create and Package IP Dialog Box

1-4-2. Click Next to continue past the welcome screen.
1-4-3. Select the Create new AXI peripheral option.

The first several options allow you to package finished designs as IP components that
will be placed into the IP catalog.

r ™
gl*:!_:. Create and Package New IP @

Create Peripheral, Package IP or Package a Block Design
Please select one of the following kasks. ‘

Packaging Options

Package wour current project

Use the project as the source For creating a new IP Definition.

Moke: All sources to be packaged must be located at or below the specified directory.
Package a block design from the current project

Choose a block design as the source For creating a new IP Definition,

= Package a specified directory
Choose a directory as the source for creating a new IP Definition.

Create Ax14 Peripheral

@ Create anew AXI4 peripheral
~ Create an AxI4 IP, driver, software ktest application, IP Integrator AxI4 BFM simulation and debug demonstration design.

[« Back][........ Mext >] FEinish Cancel

w -

Figure 4-10: Create Peripheral, Package IP or Package a Block Design Dialog Box
Note that the default location of the IP definition will be within the directory structure of
the dummy Vivado IDE project.

1-4-4. Click Next to continue to the Peripheral Details dialog box.
1-4-5. Enter LEDcntrl as the peripheral name.

£ XILINX » ALL PROGRAMMABLE. www.xilinx.com 9
© Copyright 2016 Xilinx

Building Custom AXI IP

Lab Workbook

1-4-6. Enter LED Controller as the display name.

1-4-7. Enter Simple LED controller example in the Description field.
1-4-8. Set the IP's location to C:\training\AXIbldPeriph\lab\LEDcntrl.

Note that the default IP location (./ip_repo), is one directory level above the current
Vivado Design Suite project. This is where the IP will be located and customized.
Currently this directory does not exist. You can edit the IP location path provided to

replace this default directory with /LEDcntrl.

¢ Create and Package New IP &J
Peripheral Details
Specify name, version and description for the new peripheral '
Name: LEDentrl
Version: 1.0
Display name: LED Controller
Description: | Simple LED controller example
IP location: C:ftraining/bldLEDperiph/labs/LEDcntr| B
D Overwrite existing
5

Figure 4-11: Peripheral Details Dialog Box

1-4-9. Click Next to accept the peripheral details and proceed to the Add Interfaces dialog box.

1-4-10. Enter SO0 _AXI_LEDs for the interface name.

-

g'*;f_;. Create and Package New IP

=)

Add Interfaces
Add AXI4 inkerfaces supported by wour peripheral

4

|| Enable Interrupt Support

+ -

[Interfaces

Mame

Interface Type
Interface Mode
Diaka Width (Bits)
[Mermotry Size (Bvtes)

=| =500_¥I_LEDs

SO0_AXI_LEDs

Lite
Slave
32

&4

Mumber of Registers |4 [4..512]
LED Controller
4 2
< Back. ” hext = Einish Cancel

"

Figure 4-12: Add Interfaces Dialog Box

Leave the remainder of the entries at their default, as a 32-bit AXI Lite slave peripheral is
what you will be building. If the peripheral required multiple AXI interfaces, you could
click the Add Interface button to add them. Each interface would then be assigned

unique names and properties.

10 www.xilinx.com

© Copyright 2016 Xilinx

£ XILINX » ALL PROGRAMMABLE.

Lab Workbook

Building Custom AXIIP

1-4-11. Click Next to accept the added AXI interfaces and proceed to the Create Peripheral

dialog box.

1-4-12. Select Edit IP to open the new IP in its own Vivado IDE project for further development
to complete the development of the custom peripheral.

¢ Create and Package New IP

=)

Create Peripheral

VIVAPO'

Peripheral Generation Summary
1. TP (xilinx.com:user:LEDcntrl:1.0) with 1 interface(s)
2. Driver(v1_00_a) and testapp more info
3. AXH BFM Simulation demonstration design more info
4. AXH Debug Hardware Simulation demonstration design more info

Feripheral created il be available in the catalog :
Ciftraining/bldLEDperiph/labs/LEDCntr|
Next Steps
(C) Add IP to the repository
(@ Edit P
*) Verify peripheral IP using AXM BFM Simulation interface

(©) Verify peripheral IP using JTAG interface

Click Finish to continue

£ XILINX

< Back Next > |¢ Finish

[cancel

Figure 4-13: Summary Dialog Box

1-4-13. Click Finish.

A new Vivado IDE project opens. This project will be used as the base design
environment where the new peripheral will be built.

Note the Package IP tab that will be used in the next step to customize the IP.

aining/ 1.xpr] - Vivado 201 =y X
adow Layout View Help
P ¥ & % I G |23 pefault Layout [& 2N Ready
Project Manager - edit_LEDentrl_v1_0 7 X
Sotscas AT T T Project Summary x | - Package IP - LEDentrd X a8 =
AT et BIE
e Packaging Steps <« | Identification 2
(5 Design Sources (2) - A
T Ehda - 1 + Identification Vendor:
: 1 IP-XACT (1)
~f ¥ Compatibil
| Constraints ompatibility Library:
1 Simulation Sources (1) + File Groups e
+ Customization Parameters Version
+ Ports and Interfaces Display name:
Description:

+ Addressing and Memory

Hierarchy | Libraries | Compile Order ¥ Customization GUI

Vendor display name:

" Company url:
2 x
Froperties RSN Review and Package
® Root directory: c:/training/|
Xml file name: c:/training/! xml
Categories

Select an object to see properties

I sl s u BB st AP e s, . Y il -tk B P P ¥,

4 AXI_Peripheral

Figure 4-14: Wizard-Generated Vivado IDE Project

Question 1

How many Vivado IDE projects are now open? How do they differ?

© Copyright 2016 Xilinx

Building Custom AXI IP Lab Workbook

Adding User HDL to the Peripheral Project Step 2

After this new IP project has been created, user code can be added and attached
to the AXI interface, and the automatically generated templates modified to
support the user code. This step will illustrate how the templates can be
customized and how user code can be added.

One of the aspects of this process will be creating custom user ports and
parameters in addition to the basic AXI interface.

You will first begin this step by working in the automatically launched edit Vivado
Design Suite that is now configured to help you build your IP. You will use this
project to complete the AXI simple LED controller IP. You should note the process
of creating custom user ports and parameters in addition to the basic AXI
interface.

The source code is provided as a VHDL file. Since the Vivado Design Suite is
capable of supporting mixed-language synthesis, this does not pose a problem.
Additionally, the only code modification that you will perform is the modification
of the generated templates (performed in the next step).

Begin by adding the provided source file to the project.

Note: If you are already familiar with the process of adding files, you can enter
addSources into the Tcl command line of the Tcl Console to launch the proc to
perform this task.

HDL source files can be added to the design at any time.

2-1. Add an HDL source file to the design.
2-1-1. Select Add Sources under the Flow Navigator tab in the Project Manager.

A\ pig A @0 | |

4 Project Manager
.)) =I-{= Design Sources (1]
b= Project Settings - -
04}7 Add Sources + | Constraints
+-1) Simulation Sources (1) =
'y Language Templates J
iy -

Figure 4-15: Selecting Add Sources

The Add Sources dialog box opens, allowing you to add HDL source files to the project.

12 www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx

Lab Workbook Building Custom AXI IP

2-1-2.

2-1-3.

2-1-4.
2-1-5.
2-1-6.
2-1-7.

2-1-8.

Select Add or create design sources.
,g Add Sources @‘

Add Sources

VIVADO‘ This guides you through the process of adding and creating sources for your project

HLx Ediians

() Add or greate constraints

() Add or create simulation sources
() Add or create DSP sources

(7) Add existing block design sources

() Add existing IP

£ XILINX

To continue, dick Next

gack ([Mext> Ty Fnish [coneel |

Figure 4-16: Selecting Add or Create Design Sources

Click Next to begin selecting source files.

The Add or Create Design Sources dialog box opens and prompts you to add existing
HDL source files or to create new HDL sources files.

Click the Plus (#) icon and select Add Files.
Browse to the C:\training\AXIbldPeriph\support if it is not open already.
Select LED_Controller.vhd.

Double-click the source file name in the Add Source Files dialog box to select the file(s)
or click OK.

4 Add Sources &1

Add or Create Design Sources | ; Add Source Files (===
Spedify HDL and netlist files, or director| ’

Y Lookin: P DE R OXG B

| Recent Directories

- v
Recent Items

=+ 1

File Preview

L e Y PO B0 W S VY o i o™ e’H‘ WJ Al

Computer

J‘ ﬁi\ File pame:

[Nebiok Fieofpype: Design Source Files (:vhd, vhd, vhf, vho, v, vf, veriog, v, v, vb, tf, iog, vp, vm, veo, vh, h, svh, edn, edf, edf,

Figure 4-17: Selecting Add Files

Ensure that the Copy sources into project option is selected (when building IP this will
be listed as Copy sources into IP Directory).

2-1-9. Click Finish in the Add or Create Design Sources dialog box to add the HDL sources to
the project.

© Copyright 2016 Xilinx

Building Custom AXI IP Lab Workbook

2-2. Open the IP top-level AXI interface and newly added resource HDL files.

2-2-1. Expand LEDcntrl_v1_0 under the Sources > Hierarchy pane.
2-2-2. Double-click the following resource files to open them:
o LEDcntrl_v1_0.[v | vhd]
o LEDcntrl_vl_0_S00_AXI_LEDs. [v | vhd]
o LED_Controller.vhd (this is the added source code and is currently only available as
VHDL)

Each will be opened in a new tab. HDL files are checked for syntax when they are added
to a project. If there is an error, there will be an error generated with a listing of the files
that have the incorrect syntax.

Project Manager - edit_LEDcntrl_v1l_0

Sources ? — 0O

- LEDentrl_vl_0_S00_AXI LEDs inst - LEDcntrl_vi_0_S00_AXI_LEDs - arch_imp (LEDcntrl_vi_0 500 _AXI LEDs.vhd)

Fi LED_Controller - Behavioral (LED_Controller.vhd)
- EHNP-XACT (1)

[+ Constraints

[EHE Simulation Sources (2)

IP Synthesizable
Sources

W‘-“—-"_—\

Figure 4-18: Open IP Source Files
2-2-3. Examine the contents of each of the files and answer the questions below.

Question 2

What is the function of each of the files from a design environment standpoint? Which file is the
top level of the custom IP?

Question 3

Examine the file hierarchy. Why is LED_Controller.vhd not under the top-level file?

14 www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx

Lab Workbook Building Custom AXI IP

2-3. Instantiate the custom user RTL LED_Controller.vhd into the design top-level
and AXI IP components.

You have three choices as to how you can instantiate the LED controller in
the top-level code:

« Type the code as it appears in the screenshots below.

e Cut-and-paste the code from the provided
LED Controller RTL_Snippets.txt file in the C:\training\AXIbldPeriph\
support\bldLEDperiph directory.

Note: You can select File > Open File to use Vivado Design Suite's editor.

Also note that only the VHDL version is available for the 2016.3 release.
Future releases may contain the Verilog version of the LED controller.

e Run the helper Tcl script by entering modifyTemplates into the Tcl
command line of the Tcl Console.

Note that when the script completes, you will need to reload the editor with
the updated code. Just click "Reload” in the message bar of the editor.

2-3-1. Update the code to add ports and instantiate the LED controller by using one of the
methods described above.
o Inclusion of generics which become parameters when this IP is defined (1)

o Creation of the ports that bring in an LED pattern and the port that connects to the
LEDs (2)

c:jtrainingfembsysdsgnylabs/buildcustomipall_boardsjledetr/ryip_led_ctrl_1.0/hd|myip_led_ctrl_w1_0.vhd
1library ieee;
Zuse ieee.std logic 1164.all;
Juse ieee.mumeric_std.all;
4
Sentity uyip_led ctrl_wl 0 is
6 generic |
7 ek bo gdd paraneters Bele

1
8 NUM_LEDS : integer := G;
9 NIM_ACTIVE_LEDI : integer := G;
10 LED_RESET_VAL : integer = 16#57#;
11 CNT_PRESCALE_WAL: integer := 50_000_000;

13 —— User parapeters ends
14 —— Do not modify the parameters beyond this line

17 —= Parameters of Axi Slave Bus Interface 500 AXT LEDs
18 C_S00_AXI_LEDs DATA WIDTH : integer := 32:

19 C_S00_AXI_LEDs_ADDR WIDTH : integer := 4

20)z

21 port |

22 —— Users to add ports here
23 cnt_disp : in std logic: 2
24 leds 1 out std logic_vector (NUM_LEDS-1 dowmto 0);

26 —— User ports ends
27 —— Do not modify the ports beyond this line

30 —— Ports of Axi Slave Bus Interface 500 AXT LEDs
31 300_axi_leds_aclk : in std logic:
500_ax, : in std loogk

aresetn

Figure 4-19: Addition to Entity Block

© Copyright 2016 Xilinx

Building Custom AXI IP Lab Workbook

o Addition of external port to component declaration of AXI interface IP to expose AXI
register (3)

o User RTL component declaration (4)
o Additional internal signal declaration for AXI register (5)

o Addition of external port to component instantiation of AXI interface IP to expose
AXI register (6)

whd
=] whd
55 architecture arch_imp of is
<] -
56
W 57— component declaration
? 5§ component is
59 gemeric (
“=| 60 C_5_AXI_DATA_WIDTH : intewer := 32;
Bf 61 s ax1_appR_UTOTH : integer := 4

v

pors | 3
C user_reqd @ our std logic vector{C_5_AXT_DATA_WIDTH-1 domsto 0]

T AXI_ACLK @ in std logic:

7} &6 § AXT_ARESETH : in std legic;
5 S_MXI_AVADDE : in std logic_vector(C_S_AXI_ADDR_WIDTH-1 dowmto 0):
&l e § AXI_AWPROT : in std legic_vector(Z downto 0);

U m_AXT_a5FALID :‘i.svw W= P P i,

83 34 . Lat std og._veet .1 iounto O):

84§ AXI RVALID : out std logic:

85 & AXI RREADY : in std logic

8 1

87 end component myip led ctrl vl 0_S00_AXI_LEDs:

&8

839 Gmpunent. LED_Controller is \
90| generic (@
91 NUM_LEDS : dinteger := 6;

92 NUM_ACTIVE LEDS : integer := &;

93 LED_RESET_VAL : integer := L6§57#:

94 CNT_PRESCALE VAL: integer := 50_000_00D

a5 1

96| port (clk : in std logic;

a7 st : in std logic:

E cnt_disp : in std_logic:

99 data in : in std logic_vector {31 downto 0);

100 Lleds : out std logic vector (NUM_LEDS-1 downto 0)
101 1

102 ed component;)
103

104 ("signal user_regd : std_legic_vector(C 300 AXI LEDs DATA WIDTH-1 downto n@
105

106 bewin

107

108 — Instantiation of Axi Bus Interfzce S00_AXI LEDs

108 :

110 generic map (

111 C % AXI DATA WIDTH => C_300_AXI_LEDs DATA WIDTH,

11z C_§ AXI_ADDR WIDTH => C_$00_AXI LEDS ADDR_WIDTH

113)

112 port uap

116 B BNI_ACLR = =00_me_leds_aclk,

117 5 AXI ARESETN => s00_axi_leds_aresetn,
3 i L5

Figure 4-20: Instantiation Additions

o User RTL component instantiation (7)

= v
133 5 AXI_RDATA => 500_axi_leds_rdata,

B354 s wXI_RRESP => s00_axi_leds_rresp,

O4)135 5 AXT RVALTD => =00_axi_leds_rvalid,

o|136 5 AMI FREADY <> 500 axi_leds rready
137 12

2 as

[139 - 242 wser logic here

3| 140 #TED Controller inst : LED_Lomtroller

J | eneric man ¢

| L4z WL_LEDS => WUN_LEDS,

=|143 NUM_ACTIVE_LEDS => NUM_ACTIVE_LEDS,

7)144 LED_FESET VAL => LED_RESET VAL,

_[1as CNT_PRECALE_VAL => CHT_PRESCALE_VAL

B\ g6) b - -

| 147 port uap |
oL clk => 200_sxi_leds_aclk,
¥ 1as st => 00_axi_leds_aresetn,
®| 150 ent_disp =» cnt_disp,
3|8t data_in = user_regn,
152 leds = leds
E4E R
154|
185 - User logic ends

156
157 end arch_iup;
158

Figure 4-21: Instantiating the Peripheral Core

16 www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx

Lab Workbook Building Custom AXI IP

2-3-2. Press <Ctrl + S> to save your work if you manually typed this information in or used the
cut-and-paste method.

2-3-3. Cut-and-paste the following sections from the LED_Controller_RTL_Snippets.txt file in the
C:\training\AXIbldPeriph\support\bldLEDperiph directory to
LEDcntrl_v1_0_SO00_AXI_LEDs.vhd.

The wizard generated the AX/4 Lite Slave Attachment logic.
Note that the line numbers shown are approximate.

o Expose internal slave register for User RTL access (8)

c:ftraining/embsysdsgnflabs/buildcustomip/al_boardsledctrlfmyip_led_ctrl_1.0/hdlfmyip_led_ckrl_v1_0_S00_aAXI_LEDs.vhd
1library ieee;
Zuse ieee.std logic 1164.all;
Juse ieee.numeric_std.all;
4
Sentity myip_led ctrl wl 0_S00_AXI LEDs is
6 generic |
7 —— Users to add parapeters here
5]
9 —— User parameters ends
10 — Do ot modify the parameters bevond this line
11
1z —— Width of § AXT data bus
13 C_%_A¥T_DATA_WIDTH : integer := 32:
14 —— Width of 5 AXI address bus
15 C_%_AWI_ADDE_WIDTH : integer := 4
16)2
17 port |
- J— = 8
19 user_regl i out std logic wector (C_%5_axI_DATA WIDTH-1 dowmto 0);
20
z1 —— User ports ends
22 —— Do not modify the ports beyond this line
23
24 —— Global Clock Signal
25 J_AXI_ACLE : in std logic:
26 —— Global Reset Signal. This Signal is Active LOW
27 G_AXI_ARESETN : in std logic:
—— Write address rissued by master, dacceped by 5lave)

Figure 4-22: myip_led_ctrl_vi_0_S0_AXI_LEDs.vhd File Additions 1

o Map internal AXI register to entity port (9)

c:ftrainingfembsysdsgnflabsfbuildcustomipfall_boardsfledctrlfmyip_led_ctrl_1.0/hdlfmyip_led_ctrl_v1_0_S00_AXI_LEDs,vhd
117 simmal slv_reg wren : std logic;

118 simmal reg data out :std logic_vector(C_5_AXI DATA WIDTH-1 dowmto 0);

119 sigmal byte_index : integer:

120

121 begin
122 ——
123
124
125 5 A¥I_AWREADY <= axi_awready;
126 5 _A¥I _WREADY <= axi_wready;

127 S_A&XI_BREESP <= axi_bresp;
128 T EVALID . il

Figure 4-23: myip_led_ctrl_vi_0_S0_AXI_LEDs.vhd File Additions 2

nuser_regl <= alw_regl:

Ny,

2-3-4. Press <Ctrl + S> to save your work.

2-3-5. Close the LED_Controller_RTL_Snippets.txt file if you used the cut-and-paste method,
as you will not need it any more.

© Copyright 2016 Xilinx

Building Custom AXI IP Lab Workbook

Use the Vivado synthesis tool to checking the syntax of the design. The actual
results of this synthesis will not be used here. Instead, whenever this core is
instantiated into a project, it will be synthesized as part of that project.

The purpose of checking the syntax here is to identify any problems early (while
still developing the core). It is easier to identify synthesis syntax and language
errors at this point rather than during your first use of the IP in a design effort.

As always, the completer Tcl script is available to you. Just enter runSynth into
the Tcl command line of the Tcl Console and the synthesis tool will be run.
Alternately, you can follow the manual process shown below.

2-4. Run synthesis.
2-4-1. Click Run Synthesis in the Flow Navigator under Synthesis.

Alternatively, you can also select Flow > Run Synthesis or press <F11>.

Flow Navigator 7«
az=

- Project Manager

> IP Integrator

- Simulation

> RTL Analysis

- Implementation

Figure 4-24: Selecting Run Synthesis

2-4-2. Click Save if you are asked to save your files.

After the synthesis process completes, the Synthesis Completed dialog box opens. The
dialog box prompts you to run implementation, open the synthesized design, or view
reports.

Synthesis Completed 23

_0] Synthesis successfully completed.
MNext
Run Implementation

'@ Open Synthesized Design

View Reports

Don't show this dialog again

=B

Figure 4-25: Synthesis Completed Dialog Box

18 www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx

Lab Workbook Building Custom AXI IP

2-4-3. Select whichever option best suits your needs.
Remember that any of these choices can be accessed from other places.

Note: If you do not want to do any of these operations options, you can click Cancel.
This will not undo the synthesis results.

2-4-4. Click OK to continue with your preferred choice or Cancel to simply close the dialog box
and return to the normal view of the Vivado Design Suite.

2-5. Close the three VHDL source files as they no longer need to be open.

2-5-1. Click the X to the right of each of the following filename tabs to close them:
o LEDcntrl v1_0.vhd
o LEDcntrl_vl_0_S00 _AXI|_LEDs.vhd
o LED Controller.vhd

Importing User Ports and Parameters Step 3

For custom AXI user IP to be included in the IP catalog and used in the Vivado
Design Suite IDE and block diagram editor, various Tcl scripts and XML files must
exist. The Package IP tab contains a checklist of items required to successfully
export an XACT-compliant IP and integrate it into the Vivado Design Suite
environment.

You will complete the custom IP creation by indicating the newly added user
ports and generic parameters that need to be imported into the Vivado IP
packager environment.

Pay particular attention to how user-defined ports and parameters are added.
Although beyond the scope of this lab, the IP packager will also allow further
control and graphical layout presentation of user-defined parameters. This same
process can be later used to edit, add, or delete parameters or ports at which
time the Tcl and XML IP project files will be updated.

Note the different check marks associated with the Package IP tab. Green is a

finished item, while red indicates that required work is needed on a topic. The
Vivado IP packager is sensitive to new project files and changes in HDL source
code that add parameters and ports.

© Copyright 2016 Xilinx

Building Custom AXI IP Lab Workbook

You may have noticed that all checks were originally green when the skeleton
peripheral was first created and some green-checked items turned red as a result
of modifying and adding files, parameters, and ports to the project and design.

ustomization Parameter
orts and Inkerfaces
Hdressing and Memory
ustomization GUI

Review and Package

= Project Summary X | & P

Packaging Steps E24

+ TMentification

Figure 4-26: Package IP Tab - Checks

Items with a green check can be changed to expand or modify peripheral
features. Items with a red check require attention. In many cases the Vivado IP
packager will provide a link to automatically perform the required update. All of
this is illustrated in the following steps.

3-1.

3-1-1.
3-1-2.

Configure family and life cycle support.

Since this LED controller design is generic (meaning that it uses logic
resources common to all Xilinx families) you will now configure this piece of
IP to be supported in all families rather than just the family you selected
during the project creation. This will ensure that your IP will show up in the
IP catalog regardless of which device family is selected for the user design.

Along with the family selection, you should set the Life Cycle property. The
Life Cycle property indicates the use status of the IP.

For this peripheral, this status will be set to production (rather than beta,
pre-production, discontinued, superseded, hidden, or removed).

A status other than production will show on the component's schematic
symbol when it is later instantiated in the block diagram editor.

Select the Package IP - LEDcntrl tab (1).

Select Compatibility as this provides the list of compatible Xilinx product families that
will be supported by this IP (2).

20

www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx

Lab Workbook Building Custom AXI IP

3-1-3. Click the Add (#) icon to add an entry to the list (3).

The Zyng® family was added by default as this family was selected when the project was
created. You can only add the families that were installed during the initial installation of
the Vivado Design Suite or when Add Design Tools or Devices was run.

That is, if you only chose one or two families to install (typically done to save space on
the hard drive) only these families can be selected. Add Design Tools or Devices can be
run after the initial install to add additional tools or families.

3-1-4. Click Add Family Explicitly (4) to open the Add Family dialog box (5).

3-1-5. Select All Families and Parts to indicate that this custom AXIIP peripheral is compatible
with all families (6).

Because the Zynq family is already part of the list, it must be deselected or a duplicate
entry will be created, which will cause an error.
3-1-6. Deselect the following families (7):
o kintexu (Kintex UltraScale)
o virtexu (Virtex UltraScale)
o zynq (Zynq-7000)
o From the Life-cycle drop-down list (8), select Production (9).

This sets all of the selections to consider this IP in the production state.

P

ZPrule:tiwhlﬂ Package IP - 81)

Packagingfsteps Compatibitay
1

Yy ﬁurecyc\efh

Add Farily Explicithy

culp

I ‘
§ AddFamiy using Regular Eepression. .
=)

’
File G
RS Pig = £ Add Famw =

- -
Customization Par ameters 2 Y
Choase agset of families or parts and specfy a
Ports and Interfaces \ifﬂvd%sn apply to them [

+ addressing and Memory

Customization GLUI

T sarter (ATt

Review and Package - (] artix? (Artic-7)

* - artic?l {Artix-7)

- [#] azynq (Zyng-7000)

linkex7 (Kintex-7)
7

M
&
&
| 4] kintex 7]
[T kintexu UltraScale)
. « [#] g
Deselect Family @ g
to Avoid Error i e
Message - irtex -,
Y)]
(V] wirtex? (virtex-7)
' =\ - [wirtesu (Wirtex UltraScale)
~ - | zyng (2yna-7000)
s ET -) &
¥uiction
emove
ancel

Figure 4-27: IP Compatibility - Family Support

3-1-7. Click OK to accept all of the selections and populate the Compatibility list (10).

The life cycle for the Zynq family is at its default selection of Pre-Production.

© Copyright 2016 Xilinx

Building Custom AXI IP Lab Workbook

3-2.

3-2-1.

3-2-2.

3-3.

3-3-1.

3-3-2.

Change the Life Cycle property for the Zynq family from Pre-Production to
Production.

Click the Life Cycle column's drop-down list next to zynq to list all of the life cycle
options.

Select Production.

. Project Summary X | Package IP - LEDcntrl X

+ Identification + Family Life Cycle

r

Packaging Steps % || Compatibility -
W

~ EET— ¢

+ Compatibility "

File Groups 4
& Customization Parameters

Ports and Interfaces

ww

Figure 4-28: Selecting Production

The File Groups step allows you to keep track of files used in the peripheral
design, simulation model, and software drivers. Since a source file was
added to the design, this must be updated.

Select File Groups as this is the point where the list of source files in the IP design is
managed from.

Click the Merge changes from File Groups Wizard link to update the project files list to
include the newly added LED_Controller.vhd source.

You can also right-click the related file group and add files manually.

%, Project Summary X | © Package IP - myip_led_ckrl =

Packaging Steps € File Groups

o Identifi.;ati?-f ——— * @ Merge changes From File Groups \Wizard ’

v b A | Mame
Compatibi
F W o =l Standard

(j File Groups) % --.;3. YHOL Sf:.fnth&fsis (21
i [T WHDL Simulation (2]

& Cuskorization Parameters E‘; =5 Advanced
[0 Saftware Driver (5]

7 Ports and Interfaces ad "O I U Layout (1)
@ [#-5 Block Diagram (1)

+" Addressing and Memory

Figure 4-29: Updating File Groups

22

www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx

Lab Workbook Building Custom AXI IP

3-3-3. Expand the VHDL Synthesis and VHDL Simulation groups under the Advanced branch
and ensure that the source file is shown in both groups.

Z Project Summary X | Package IP - LEDentrl X

Packaging Steps “|| File Groups
+ Identification A | name
LZ_J
+/ Compatibility o
(=1
+ File Grou, =
_ = B src/LED_C
Customization Parameters gk diyTEDCntT VI _T_STU_AXI_LEDs.vhd
= wh - hdl/LEDcntrl_v1_0.vhd
Ports and Interfaces] QLSS Tt

[4
srcf/LED_Controller.vhd
T eon_AXI_LEDs.vhd

L d LJ _wI_U_
~&h hdl/LEDentrl_v1_0.vhd

+ Addressing and Memory

Customization GUI [+ Software Driver (6)
B UI Layout (1)
Review and Package [+ Block Diagram (1)

\,“\“\-\h: “*

Figure 4-30: Verifying Source File Added to Project

3-4. Import the added user generics into the IP packager. This will make the
generic parameters visible in the schematic symbol when the IP is
instantiated from the IP catalog.

Parameters can also be added manually by right-clicking in the IP
configuration pane and selecting the appropriate add function. The newly
added generic parameters can be configured in each instance of this IP
when it is later instantiated in a block diagram design.

3-4-1. Select Customization Parameters from the Package IP tab and make sure that the
Customization Parameters list is expanded in the Customization Parameters pane.

The default parameters will be displayed.

Note that the only user-controllable parameters shown are the defaults provided by the
skeleton RTL.

3-4-2. Click the Merge changes from Customization Parameters Wizard link.

I Project summary X% | © Package IP - myip_led_ctrl X N

Packaging Steps od Customization Parameters
 Tdentification - mar & channes from Customization Parameters Wizard
Cd | Name Description Display Mame alus ‘alue Bit String Length Yalue Format Yalus

+f Compatibility 4

-3 C_S00_AXI_LEDs DATA_WIDTH Width of 5_ARIdatabus € S00 ARILEDs DATA WIDTH 32 0 long
_300_AXI_LEDs_ADDR_WIDTH ‘Width of S_ARI address bus © 500 AXI LEDs ADDR WIDTH 4 [1} long
_S00_AXI_LEDs_BASEADDR C 500 AXT LEDs BASEADDR. OxFFFFFFFF 32 bikString
4 ©_S00_AXI_LEDs HIGHADDR 2 500 XD LEDs HIGHADDR 000000000 32 bikString

+ File Groups (

‘ # Customization Parameters ’ =

Ports and Interfaces

« Addressing and Memary

Figure 4-31: Initial IP Customization Parameters

© Copyright 2016 Xilinx

Building Custom AXI IP

Lab Workbook

3-4-3.
present.

Expand Hidden Parameters and verify that the custom added generic parameters are

Newly added parameters are hidden by default, meaning that they will not show in the IP

Configuration GUI to be available for modification. You

will make them visible shortly.

L Project Summary X | © Package IP - myip_led ctrl x

Packaging Steps « || Customization Parameters

LED_RESET_VAL Led Reset Val

+ Addressing and Memory

Figure 4-32: User Parameters Now Visible

3-5.

+ Identification | Name Description Display Name value Value Bit String Length Value Format ~ Value Soi
= stomization Parameters
' Compatibility C_SO0_AXI_LEDS_DATA_WIDTH Width of S_AXIdata bus C 500 AXILEDS DATAWIDTH 32 0 long default
C_S00_AXI_LEDs_ADDR_WIDTH ‘Width of S_AXI address bus C S00 AXI LEDs ADDR WIDTH 4 0 long default
+/ File Groups C_S00_AXI_LEDs_BASEADDR C 500 AXT LEDs BASEADDR ~ OxFFFFFFFF 32 bitString default
) PR C 500 AXI LEDs HIGHADDR 0x00000000 32 bitStrini default
Customization Parameters “Par
@ NUM_LEDS Num Leds long default
V' Ports and Interfaces NUM_ACTIVE_LEDS Num Active Leds 8 long default

o=

0
0
87 0
0

default Q

CNT_PRESCALE_VAL Cnt Prescale Val 50000000 long default
+ Customization GUI ’

View the newly added user ports available in the IP packager. These user

ports will be present on the block diagram IP's schematic block.

This action was completed automatically when the custom user generic

parameters were imported in the previous step.

If this was not the case, a

wizard link, similar to the one for importing parameters would have been

visible.

Ports and interfaces can be added manually by right-clicking in the pane

and selecting the appropriate add function.

3-5-1. Select Ports and Interfaces to view the list.

3-5-2. Verify that the custom added ports were recognized.

% Project Summary X | Package IP - myip_led_ctrl X

Packaging Steps & Ports and Interfaces

3
+ 1dentification 20| ame

Interface Mode Enablement Dependency 1s Declaration Direction Driver Yalue Size Left Size Left Dependency 2

o

Figure 4-33: User Ports Now Visible

@ | @0 500_a¥I_LEDs slave B
~ Compatibility - [+ Clock and Reset Signals =l
] el O ent_disp (=] in
+' File Groups Lo leds B aut 7 (NUM_LEDS - 1)
+ Customization Parameters + ’
[Ports and Interfaces - _‘Im' ’I
] s
+ Addressing and Memary =

www.xilinx.com
© Copyright 2016 Xilinx

24

£ XILINX » ALL PROGRAMMABLE.

Lab Workbook Building Custom AXI IP

3-6. Update the IP Schematic GUI menu for the user-added generic parameters
and ports. In this window you will also configure the schematic GUI to
display parameters on a custom pane.

3-6-1. Select Customization GUI to access the controls for the generation of the schematic
symbol and IP configuration GUL

% Project Summary X | Package IP - myip_led_ctrl x
Packaging Steps <« Customization GUI
+ Identification La‘\:uuf . pr=vi=n
+ Compatibility Ewinf += [] Show disabled ports X Companent Name | myip_led_ctrd_0
' File Groups B -Co;nepgnant Mame € 500 AXI LEDs DATAWIDTH | 32
+ Customization Parameters) C 500 AX1 LEDS DATA WIDTH Parameters C 500 AXI LEDs ADDR WIDTH 4
500 AXTLEDs ADDR WIDTH 500 A1 LEDS BASEADDR DxFFFFFFFF
+/ Parts and Interfaces } C 500 AXI LEDs BASEADDR
E » C 500 A%1 LEDs HIGHADDR C 500 &%1 LEDs HIGHADDR. 0x00000000
+ addressing and Memory [Hidden Parameters
p
Review and Package Led Reset Val %
¢ Cnk Prescale Yal
Default User-
L Configurable
Hidden R0l _axi_ledls_aresetn Options
User
Parameters
Figure 4-34: GUI Customization - Merge Changes
Note that the added custom parameters show as hidden in the pane. They must be
added to a configuration GUI page to become visible on the schematic symbol.
You will begin by adding a new page to the schematic symbol GUI and then add each of
the custom user-defined parameters individually.
Also note that the skeleton parameters that are defined for the AXI interface are
contained in a page named Page 0.
3-6-2. Select Layout pane > Window.
3-6-3. Right-click anywhere in the Layout window and select Add Page.
Customization GUIL
’_\ Pres
+ ¥
‘ Add Page. ’
add Group...
#dd Parameter,..
Add Text, ..
: C 500 AxI LEDs HIGHADDR
[Hidden Parameters
Murm Leds
Mum Active Leds
Led Reset Wal
3 Cnk Prescale Val
Figure 4-35: Adding a New Parameter Page

© Copyright 2016 Xilinx

Building Custom AXI IP

Lab Workbook

3-6-4.

3-6-5.

3-6-6.

Enter LED Controller Parameters in the Display name field.

¢ Add Page

L

S5

Add page bo Window

Display name: L LED Controller Parameters Sl ~ ~

Taolkip: ‘
4

y

Cancel

J

Figure 4-36: Entering New Page Display Name

Click OK.

Now that a new page has been created, add parameters to it.

Left-click and drag each of the parameters from the Hidden Parameters list to the LED
Controller Parameters list.

Alternately, you can select all of the Hidden Parameters using multi-select and drag them
as a group into the LED Controller Parameters field.

T Project Summary X | Package IP - myip_led_ctrl X

Packaging Steps W Customization GUI

L 14
+ Identification EiEs

AIE+=1 4

+ Compatibility
1 window
+ File Groups
+ Customization Parameters
+ Ports and Interfaces

& Addressing and Memary

+' Customization GUI

MUM_ACTIVE_LEDS

500 AxRI LEDs DATA WIDTH
500 AxI LEDs ADDR. WIDTH
500 AxI LEDs BASEADDR.

Review and Package [Hidden Parameters

LED_RESET_WAlqes wen == -~
CMT_PRESCALE_WAL @==

-

Drag-and-Drop
User-Defined
Parameters to

New Page

Figure 4-37: Drag & Drop User Parameters to New Page

26

www.xilinx.com

& XILINX » ALL PROGRAMMABLE.

© Copyright 2016 Xilinx

Lab Workbook

Building Custom AXIIP

Note that you can select the parameters that you just moved (individually or as a group)
and use the up/down arrows to order them for your preferred viewing in the IP
Configuration GUL

% Project Summary X | Package IP - myip_led_ctrl X Ty
Packaging Steps ho Customization GUI
Layout P

+ Identification

e ==
hon M SR

Highlight
Parameter and Use
Arrows to Adjust
Position in List

' Compatibility “ Oh Ny N
[windaw
+ File Groups Component Mame
=2 Page D
; C 500 AXI LEDs DATA WIDTH
500 AXI LEDs ADDR 'WIDTH
500 AXI LEDs BASEADDR.
40 500 AXI LEDs HIGHADDR.
B:j LED Controller Parameters
MUM_LEDS
MUM_ACTIVE_LEDS
LED_RESET_WAL
CNT_PRESCALE A
[Hidden Parameters

+ Customization Paraneters

+ Ports and Interfaces

o Addressing and Memory

+ Customization GUI

Review and Package

Figure 4-38: Arranging User Parameters on the New Page

As previously mentioned, the Page 0 parameter page contains the default AXI interface
parameters. These AXI parameters are typically not configured as they must follow strict
rules so that the AXI ports can be connected to other devices, so, from a minimalists
point of view, this page is not really needed. It can be deleted so as not to clutter the
schematic symbol GUL

3-6-7. Right-click the Page 0 list to select it and open the context menu.

3-6-8. Select Remove Page.

T Project Summary % | & Package IP - myip_led_ctrl X
Packaging Steps W Customization GUI
L s Prewvi
+ Identification St WO
AZS =14
+/ Compatibility [sh
[window
+ File Groups i it Mame
+f Customization Parameters Vi - Add Group...
+ Ports and Interfaces ' .
L 1B Add Text..
& Addressing and Memory \EI
~ Edit Page...
+ Customization GUI Remave Page...

MNum Active Leds
- Led Reset Val
[Hidden Parameters

Review and Package

Figure 4-39: Removing Unused Parameter Page

& XILINX » ALL PROGRAMMABLE.

www.xilinx.com 27

© Copyright 2016 Xilinx

Building Custom AXI IP Lab Workbook

3-6-9.

3-7-1.

3-7-2.

3-7-3.

Click OK to confirm removing the page.

Notice that the Page 0 parameters are now part of the hidden list. All that should remain
visible under the LED controller parameters are the user-defined parameters on their
own user-defined page in the order that they were positioned in when created or
arranged via the up and down arrows in the Layout window.

£ Project Summary X Package IP - myip_led_ctrl X [mE
Packaging Steps «| | Customization GUI ?
Layout [
+ Identffication ayeu tonew
] —
 Compatibiity A=+ t Show disabled ports Component Name | myip_led _ctrl_0
[window
« Flle Groups @ Mum Leds 3

Num Active Leds |8

« Customization Parameters
o Ports and Interfares Lol 57
) t Prescale Val Cnt Prescale Yal | 50000000
+ Addressngand Memory | ST
{0 500 AR LEDs DATA WIDTH
500 A1 LEDs ADDR. WIDTH
500 Ax1 LEDs BASEADDR
w430 € 500 AXI LEDS HIGHADDR

+/ Customization GUL

Review and Package

Figure 4-40: Completed GUI Customization

Re-package the IP to save the changes made. This will update all the
necessary scripts and files for the IP catalog.

Select Review and Package.

£ Project Summary X Package IP - myip_led_ctrl x [mINES
Packaging Steps «|| Review and Package

' Identification Summary of your IP

' Compatibilty TP display name: LED Contraller

1P description: Example of simple contraller that blinks LEDs

File Gr
' File Groups IF oot directory: c:ftraining/EmbSysDsanjlabsibfmsimial_BoardsiLedCrrlimyip_led_ctrl_1.0

+ Customization Parameters

+ Ports and Interfaces

+ Addressing and Memary After Packaging
' Customization GUL o Create archive of IP - Ciftr iy iy All_Boards{LedChrlfmyin_ld_ctrl_1.0fsdlins. corn_user_wyip_led_ctrl_1.0.7ip i
& 1P will be made available in the catalog using the repository - c:jtraining/EmbsysDsgnlabs bfmsim il _BoardsfLedCtrlfryip_led_ctr_1,0
‘ edit psckaging settings
\ o
So - ‘\
— - \
. - v g Re-Package 1P)

Figure 4-41: Review and Package IP

Click Re-Package IP.

The script files are created (first use) or updated (when the IP is modified).

A dialog box should appear asking to close the project.

Click Yes to complete the packaging and close the project.

This Vivado Design Suite projects closes, but the ip_placeholder project will still be open.

This dialog box only appears the first time that the IP is packaged. If it does not appear,
it is probably because the project was previously closed and reopened. You can close the
project by selecting File > Exit.

28

www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx

Lab Workbook Building Custom AXI IP

You have successfully completed building a custom AXIIP peripheral. Let's verify
that the IP is available for use.

3-8. Verify that the IP was created properly.

3-8-1. [Optional] Locate the Vivado Design Suite in the operating system task bar and click the
Vivado Design Suite icon that appears there to bring the tool into view if the
ip_placeholder project is not visible.

The next set of steps is straightforward: create a new block design, open the IP catalog,
locate the new IP, and add it to the canvas. This process should be quite familiar to you
by now, so a Tcl proc has been created to remove this tedium for you.

3-8-2. [Optional] Select File > Open Project and select the placeholder_project.xpr project
located at C:\training\AXIbldPeriph\lab\placeholder_project.

3-8-3. [Optional] Enter the following into the Tcl command line of the Tcl Console:

source C:/training/AXIbldPeriph/support/
AXI buildPeriph completer.tcl

This will source the extra Tcl functions provided to automate several processes.

3-8-4. Enter the following into the Tcl command line of the Tcl Console:

createBlockDesign; addNewIP
This will create a new block design and add the LED IP that you just created.

The schematic symbol appears in the block diagram and is ready to be included in your

design.

i= Diagram X

#] & LED_IP_verify

\’_"Q.

Qg LEDcntrl_0

:QC 9= 500_AXI_LEDs

¥ i nt‘dls.p leds[7:0]

s00_axi_leds_aclk

W 0_axi_leds_aresatn

L

A LEDcntrl_v1.0 (Pre-Production)
Sp? ol b Pt)

Figure 4-42: Block Diagram with Symbol

© Copyright 2016 Xilinx

Building Custom AXI IP Lab Workbook

3-9. View the re-customization options for the IP.

3-9-1. Double-click the IP symbol in the Diagram tab to open the LED controller's Re-customize

IP dialog box.

All of the user generic parameters are present and can be adjusted for each instance of

the IP.

[& Re-customize 1P - |
LEDcntrl_v1.0 (1.0) ‘

i Documentation [TP Location
Show disabled ports Component Name | LED_IP_verify_LEDentrl_0_0
Led Reset Val 87

| dn500_ANT_LEDs Rimieds 8
ont_disp " Hum Active Leds 8

s00_axi_leds_aclk

Cnt Prescale Val | 50000000

Q<00_axi_leds_aresetn

Figure 4-43: Block Diagram IP Configuration

The user's custom AXIIP built in this lab is now in the IP catalog and can be added to a
block diagram and its parameters modified.

3-9-2. Click Cancel to close the Re-customize IP dialog box.

3-10. Close the Vivado Design Suite.
3-10-1. Select File > Exit.

The Exit Vivado dialog box opens.

Exit Vivado [

| OK to exit Vivado?

[7] Don't show this dialog agair:

[oK H Cancel I

Figure 4-44: Exit Vivado Dialog Box

3-10-2. Click OK.

3-10-3. Click Don't Save when exiting as the demo block diagram is not needed.

3-10-4. Answer the questions below to enhance your understanding of the operation of the
Vivado Design Suite regarding custom IP.

These topics were not specifically addressed in this lab, but are important in the design
environment.

30 www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx

Lab Workbook Building Custom AXI IP

Question 4

What is the procedure when custom IP, AXI, or any other aspect of the IP, needs to be later
updated or the HDL changed in the Vivado IP design project?

Question 5

What is the best practice to follow when updating IP?

Summary

Use the Create and Package IP Wizard in the Vivado IDE to design your custom AXI peripheral
and add it to the IP catalog. It will build a skeleton AXI interface design environment that your
user logic can be added to.

The wizard also creates the necessary folder structure, skeleton HDL files, and adds the
necessary Tcl scripts to the project directory, making the IP accessible from the IP catalog and
usable in the block diagram editor.

After creating a peripheral, use the resulting Vivado Design Suite project that the Create and
Package IP Wizard generated to add additional files and code to the peripheral design. Modify
the skeleton HDL files to bring up any user-defined parameters and I/O to the top-level project
file.

The Vivado synthesis tool can also be used to check the design HDL code syntax. Lastly, the
Package IP tab will be used to import user-added ports and parameters to the IP Catalog
symbol and customization GUL

© Copyright 2016 Xilinx

Building Custom AXI IP Lab Workbook

Answers

How many Vivado IDE projects are now open? How do they differ?

There are two Vivado IDE projects now open. The originally created project,
placeholder_project.xpr, is just a dummy project that is created only so that the Create and
Package IP Wizard can be launched. After that, this project is not used.

The Create and Package IP Wizard created the IP Vivado IDE project, edit_[your ip name].xpr,
that will be used as the design environment for building the custom IP.

What is the function of each of the files from a design environment standpoint? Which file is
the top level of the custom IP?

LEDcntrl_v1l_0.vhd: Top-level file of the design. This file was generated by the Create and
Package IP Wizard. It houses the AXI port interface and user logic RTL. This file is modified to
include user RTL components. User ports and generic parameters are added to its entity
statement.

LEDcntrl_vl_0_S00_AXI_LEDs.vhd: AXI port interface logic. This file was generated by the
Create and Package IP Wizard. The contents of this file are generated based on the type of
AXI interface and options chosen in the wizard. User modification is necessary to expose
internal registers and needed AXI signals via its entity statement to communicate to the user
logic component in the top-level entity.

LED_Controller.vhd: Custom user RTL. In this lab, this file is provided for you, as it is not
generated by the Create and Package IP Wizard.

Examine the file hierarchy. Why is LED_Controller.vhd not under the top-level file?

The user RTL is yet to be instantiated as a component into the design. This will be performed
in the next steps of the design.

What is the procedure when custom IP, AXI, or any other aspect of the IP, needs to be later
updated or the HDL changed in the Vivado IP design project?

The HDL code for the IP is modified in the edit_LEDcntrl_v1_0.xpr Vivado Design Suite
project. In the Package IP tab, under Review and Package, use the Re-Package IP selection
to update the IP catalog. When the block diagram (in the Vivado IDE project that uses the IP)
is opened, a message will be reported that the instance needs to be updated. Its schematic
symbol will be locked to any changes in parameters until the instance is updated.

What is the best practice to follow when updating IP?

When IP is updated, it is best practice to change the version in the Identification section of
the Package IP tab.

32

www.xilinx.com £ XILINX » ALL PROGRAMMABLE.
© Copyright 2016 Xilinx

