AI Engine API User Guide (AIE) 2023.2
Loading...
Searching...
No Matches
Changelog

Vitis 2023.2

Documentation changes

  • Integrate AIE-ML documentation
  • Document rounding modes
  • Expand accumulate documentation
  • Clarify limitations on 8b parallel lookup
  • Fix mmul member documentation
  • Clarify requirement for linear_approx step bits
  • Improve documentation of vector, accum, and mask
  • Highlight architecture requirements of functions using C++ requires clauses
  • Document FFT twiddle factor generation
  • Clarify internal rounding mode for bfloat16 to integer conversion
  • Clarify native and emulated modes for mmul
  • Clarify native and emulated modes for sliding_mul
  • Document sparse_vector_input_buffer_stream with memory layout and GEMM example
  • Document tensor_buffer_stream with a GEMM example

Global AIE API changes

  • Add cfloat support for AIE-ML

Changes to data types

  • vector: Optimize grow_replicate on AIE-ML
  • mmul: Support reinitialization from an accum
  • DM resources: Add compound aie_dm_resource variants
  • streams: Add sparse_vector_input_buffer_stream for loading sparse data on AIE-ML
  • streams: Add tensor_buffer_stream to handle multi-dimensional addressing for AIE-ML
  • bfloat16: Add specialization for std::numeric_limits on AIE-ML

Changes to operations

  • abs: Fix for float input
  • add_reduce: Optimize for 8b and 16b types on AIE-ML
  • div: Implement vector-vector and vector-scalar division
  • downshift: Implement logical_downshift for AIE
  • fft: Add support for 32 bit twiddles on AIE
  • fft: Fix for radix-3 and radix-5 FFTs on AIE
  • fft: Fix radix-5 performance for low vectorizations on AIE
  • fft: Add stage-based FFT functions and deprecate iterator interface
  • mul: Fix for vector * vector_elem_ref on AIE
  • print_fixed: Support printing Q format data
  • print_matrix: Added accumulator support
  • sliding_mul: Add support float
  • sliding_mul: Add support for remaining 32b modes for AIE-ML
  • sliding_mul: Add support for Points < Native Points
  • sliding_mul_ch: Fix DataStepX == DataStepY requirement
  • sincos: Optimize AIE implementation
  • to_fixed: Fix for AIE-ML
  • to_fixed/to_float: Add vectorized float conversions for AIE
  • to_fixed/to_float: Add generic conversions ((int8, int16, int32) <-> (bfloat16, float)) for AIE-ML

ADF integration

  • Add TLAST support for stream reads on AIE-ML
  • Add support for input_cascade and output_cascade types
  • Deprecate accum reads from input_stream and output_stream

Vitis 2023.1

Documentation changes

  • Add explanation of FFT inputs
  • Use block_size in FFT docs
  • Clarify matrix data layout expectations
  • Clarify downshift being arithmetic
  • Correct description of bfloat16 linear_approx lookup table

Global AIE API changes

  • Do not explicitly initialize inferred template arguments
  • More aggressive inlining of internal functions
  • Avoid using 128b vectors in stream helper functions for AIE-ML

Changes to data types

  • iterator: Do not declare iterator data members as const
  • mask: Optimized implementation for 64b masks on AIE-ML
  • mask: New constructors added to initialize the mask from uint32 or uint64 values
  • vector: Fix 1024b inserts
  • vector: Use 128b concats in upd_all
  • vector: Fix 8b unsigned to_vector for AIE-ML

Changes to operations

  • add/sub: Support for dynamic accumulator zeroization
  • begin_restrict_vector: Add implementation for io_buffer
  • eq: Add support for complex numbers
  • fft: Correctly set radix configuration in fft::begin_stage calls
  • inv/invsqrt: Add implementation for AIE-ML
  • linear_approx: Performance optimization for AIE-ML
  • logical_downshift: New function that implements a logical downshift (as opposed to aie::downshift, which is arithmetic)
  • max/min/maxdiff: Add support for dynamic sign
  • mmul: Implement 16b 8x2x8 mode for AIE-ML
  • mmul: Implement 8b 8x8x8 mode for AIE-ML
  • mmul: Implemet missing 16b x 8b and 8b x 4b sparse multiplication modes for AIE-ML
  • neq: Add support for complex numbers
  • parallel_lookup: Optimize implementation for signed truncation
  • print_matrix: New function that prints vectors with the specified matrix shape
  • shuffle_up/down: Minor optimization for 16b
  • shuffle_up/down: Optimized implementation for AIE-ML
  • sliding_mul: Support data_start/coeff_start values larger than vector size
  • sliding_mul: Add support for 32b modes for AIE-ML
  • sliding_mul: Add 2 point 16b 16 channel for AIE-ML
  • sliding_mul_ch: New function for multi-channel multiplication modes for AIE-ML
  • sliding_mul_sym_uct: Fix for 16b two-buffer implementation
  • store_unaligned_v: Optimized implementation for AIE-ML
  • transpose: Add support for 64b and 32b types
  • transpose: Enable transposition of 256 element 4b vectors (scalar implementation for now)
  • to_fixed: Add bfloat16 to int32 conversion on AIE-ML

Vitis 2022.2

Documentation changes

  • Add code samples for load_v/store_v and load_unaligned_v/store_unaligned_v
  • Enhanced documentation for parallel_lookup and linear_approx
  • Clarify coeff vector size limit on AIE-ML

Global AIE API changes

  • Remove usage of srs in compare functions, to avoid compilation warnings as it is deprecated
  • Add support for stream ADF vector types on AIE-ML

Changes to data types

  • mask: add shift operators
  • saturation_mode: add saturate value. It was previously named truncate, which is not correct. The old name is also kept until it is deprecated

Changes to operations

  • add: support accumulator addition on AIE-ML
  • add_reduce: add optimized implementation for cfloat on AIE
  • add_reduce: add optimized implementation for bfloat16 on AIE-ML
  • eq/neq: enhanced implementation on AIE-ML
  • le: enhanced implementation on AIE-ML
  • load_unaligned_v: leverage pointer truncation to 128b done by HW on AIE
  • fft: add support for radix 3/5 on AIE
  • mmul: add matrix x vector multiplicatio modes on AIE
  • mmul: add support for dynamic accumulator zeroization
  • to_fixed: added implementation for AIE-ML
  • to_fixed: provide a default return type
  • to_float: added implementation for AIE-ML
  • reverse: optimized implementation for 32b and 64b on AIE-ML
  • zeros: include fixes on AIE

Vitis 2022.1

Documentation changes

  • Small documentation fixes for operators
  • Issues of documentation on msc_square and mmul
  • Enhance documentation for sliding_mul operations
  • Change logo in documentation
  • Add documentation for ADF stream operators

Global AIE API changes

  • Add support for emulated FP32 data types and operations on AIE-ML

Changes to data types

  • unaligned_vector_iterator: add new type and helper functions
  • random_circular_vector_iterator: add new type and helper functions
  • iterator: add linear iterator type and helper functions for scalar values
  • accum: add support for dynamic sign in to/from_vector on AIE-ML
  • accum: add implicit conversion to float on AIE-ML
  • vector: add support for dynamic sign in pack/unpack
  • vector: optimization of initialization by value on AIE-ML
  • vector: add constructor from 1024b native types on AIE-ML
  • vector: fixes and optimizations for unaligned_load/store

Changes to operations

  • adf::buffer_port: add many wrapper iterators
  • adf::stream: annotate read/write functions with stream resource so they can be scheduled in parallel
  • adf::stream: add stream operator overloading
  • fft: performance fixes on AIE-ML
  • max/min/maxdiff: add support for bfloat16 and float on AIE-ML
  • mul/mmul: add support for bfloat16 and float on AIE-ML
  • mul/mmul: add support for dynamic sign AIE-ML
  • parallel_lookup: expanded to int16->bfloat, performance optimisations, and softmax kernel
  • print: add support to print accumulators
  • add/max/min_reduce: add support for float on AIE-ML
  • reverse: add optimized implementation on AIE-ML using matrix multiplications
  • shuffle_down_replicate: add new function
  • sliding_mul: add 32b for 8b * 8b and 16b * 16b on AIE-ML
  • transpose: add new function and implementation for AIE-ML
  • upshift/downshift: add implementation for AIE-ML

Vitis 2021.2

Documentation changes

  • Fix description of sliding_mul_sym_uct
  • Make return types explicit for better documentation
  • Fix documentation for sin/cos so that it says that the input must be in radians
  • Add support for concepts
  • Add documenttion for missing arguments and fix wrong argument names
  • Fixes in documentation for int4/uint4 AIE-ML types
  • Add documentation for the mmul class
  • Update documentation about supported accumulator sizes
  • Update the matrix multiplication example to use the new MxKxN scheme and size_A/size_B/size_C

Global AIE API changes

  • Make all entry points always_inline
  • Add declaration macros to aie_declaration.hpp so that they can be used in headers parsed by aiecompiler

Changes to data types

  • Add support for bfloat16 data type on AIE-ML
  • Add support for cint16/cint32 data types on AIE-ML
  • Add an argument to vector::grow, to specify where the input vector will be located in the output vector
  • Remove copy constructor so that the vector type becomes trivial
  • Remove copy constructor so that the mask type becomes trivial
  • Make all member functions in circular_index constexpr
  • Add tiled_mdspan::begin_vector_dim functions that return vector iterators
  • Initial support for sparse vectors on AIE-ML, including iterators to read from memory
  • Make vector methods always_inline
  • Make vector::push be applied to the object it is called on and return a reference

Changes to operations

  • add: Implementation optimization on AIE-ML
  • add_reduce: Implement on AIE-ML
  • bit/or/xor: Implement scalar x vector variants of bit operations
  • equal/not_equal: Add fix in which not all lanes were being compared for certain vector sizes.
  • fft: Interface change to enhance portability across AIE/AIE-ML
  • fft: Add initial support on AIE-ML
  • fft: Add alignment checks for x86sim in FFT iterators
  • fft: Make FFT output interface uniform for radix 2 cint16 upscale version on AIE
  • filter_even/filter_odd: Functional fixes
  • filter_even/filter_odd: Performance improvement for 4b/8b/16b implementations
  • filter_even/filter_odd: Performance optimization on AIE-ML
  • filter_even/filter_odd: Do not require step argument to be a compile-time constant
  • interleave_zip/interleave_unzip: Improve performance when configuration is a run-time value
  • interleave_*: Do not require step argument to be a compile-time constant
  • load_floor_v/load_floor_bytes_v: New functions that floor the pointer to a requested boundary before performing the load.
  • load_unaligned_v/store_unaligned_v: Performance optimization on AIE-ML
  • lut/parallel_lookup/linear_approx: First implementation of look-up based linear functions on AIE-ML.
  • max_reduce/min_reduce: Add 8b implementation
  • max_reduce/min_reduce: Implement on AIE-ML
  • mmul: Implement new shapes for AIE-ML
  • mmul: Initial support for 4b multiplication
  • mmul: Add support for 80b accumulation for 16b x 32b / 32b x 16b cases
  • mmul: Change dimension names from MxNxK to MxKxN
  • mmul: Add size_A/size_B/size_C data members
  • mul: Optimized mul+conj operations to merged into a single intrinsic call on AIE-ML
  • sin/cos/sincos: Fix to avoid int -> unsigned conversions that reduce the range
  • sin/cos/sincos: Use a compile-time division to compute 1/PI
  • sin/cos/sincos: Fix floating-point range
  • sin/cos/sincos: Optimized implementation for float vector
  • shuffle_up/shuffle_down: Elements don't wrap around anymore. Instead, new elements are undefined.
  • shuffle_up_rotate/shuffle_down_rotate: New variants added for the cases in which elements need to wrap-around
  • shuffle_up_replicate: Variant added which replicates the first element.
  • shuffle_up_fill: Variant added which fills new elements with elements from another vector.
  • shuffle_*: Optimization in shuffle primitives on AIE, especially for 8b/16b cases
  • sliding_mul: Fixes to handle larger Step values for cfloat variants
  • sliding_mul: Initial implementation for 16b x 16b and cint16b x cint16b on AIE-ML
  • sliding_mul: Optimized mul+conj operations to merged into a single intrinsic call on AIE-ML
  • sliding_mul_sym: Fixes in start computation for filters with DataStepX > 1
  • sliding_mul_sym: Add missing int32 x int16 / int16 x int32 type combinations
  • sliding_mul_sym: Fix two-buffer sliding_mul_sym acc80
  • sliding_mul_sym: Add support for separate left/right start arguments
  • store_v: Support pointers annotated with storage attributes