
SDSoC Environment
Debugging Guide

UG1282 (v2019.1) May 22, 2019

See all versions
of this document

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG1282

Revision History
The following table shows the revision history for this document.

Section Revision Summary

05/22/2019 Version 2019.1

Entire document Editorial updates.

12/05/2018 Version 2018.3

Entire document Editorial updates.

01/24/2019 Version 2018.3

Entire document Editorial updates.

12/05/2018 Version 2018.3

Entire document Editorial updates.

07/02/2018 Version 2018.2

Entire document Editorial updates.

06/06/2018 Version 2018.2

General updates Initial Xilinx release.

Revision History

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=2

Table of Contents
Revision History...2

Chapter 1: Introduction to Debugging in SDSoC.. 4
SDSoC Environment Overview...4
SDSoC Debug Flow Overview...11

Chapter 2: SDSoC Debug Features...16
SDx Environment Debug Tools..16
System Emulation..25
Hardware Execution Features Available to All Platforms... 31
Hardware/Software Event Tracing.. 40

Chapter 3: Debug Techniques..45
Debugging System Hangs and Runtime Errors.. 46
Peeking and Poking IP Registers...52
Event Tracing... 53
Debugging with Software/Hardware Cross Probing.. 55
Tips for Debugging Performance..57
Troubleshooting Compile and Link Time Errors..58
Troubleshooting Performance Issues.. 59

Appendix A: SDSoC Environment Troubleshooting................................... 61

Appendix B: Additional Resources and Legal Notices............................. 62
Documentation Navigator and Design Hubs...62
References..62
Training Resources..63
Please Read: Important Legal Notices... 63

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=3

Chapter 1

Introduction to Debugging in
SDSoC

The SDSoC™ environment includes an Eclipse-based integrated development environment (IDE)
for implementing heterogeneous embedded systems. SDSoC supports Arm® Cortex™-based
applications using the Zynq®-7000 SoC and Zynq® UltraScale+™ MPSoC devices, as well as
MicroBlaze™ processor-based applications on all Xilinx® SoCs and FPGAs.

This user guide introduces the debugging capabilities of the SDSoC environment, and provides
you with detailed instructions on how to analyze any failure encountered within the SDSoC flow.

Note: This user guide does not cover performance issues. If no tool problems are encountered, and the
behavior of the design is deemed functionally correct, you can look for answers in the SDSoC Environment
Profiling and Optimization Guide (UG1235) to examine whether the performance of the design can be
further improved.

SDSoC Environment Overview
The SDSoC environment includes a system compiler that transforms C/C++ programs into
complete hardware/software systems with select functions compiled into the programmable
logic (PL). The SDSoC system compiler analyzes a program to determine the data flow between
software and hardware functions, and generates an application-specific system-on-chip (SoC) to
realize the program.

To achieve high performance, each hardware function runs as an independent thread; the system
compiler generates hardware and software components that ensure synchronization between
hardware and software threads, while enabling pipelined computation and communication.
Application code can involve many hardware functions, multiple instances of a specific hardware
function, and calls to a hardware function from different parts of the program.

The SDx integrated development environment (IDE) supports software development workflows
including profiling, compilation, linking, system performance analysis, and debugging. It also
provides a fast performance estimation capability to enable exploration of the hardware/
software interface before committing to a full hardware compile.

Chapter 1: Introduction to Debugging in SDSoC

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 4Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=4

The SDSoC system compiler targets a base platform and invokes the Vivado® High-Level
Synthesis (HLS) tool to compile synthesizable C/C++ functions into programmable logic. The
system compiler then generates a complete hardware system, including DMAs, interconnects,
hardware buffers, other IP, and the FPGA bitstream by invoking the Vivado Design Suite tools. To
ensure that all hardware function calls preserve their original behavior, the SDSoC system
compiler generates system-specific software stubs and configuration data. The program includes
the function calls to drivers required to use the generated IP blocks. Application and generated
software is compiled and linked using a standard GNU toolchain.

By generating complete applications from a single source, the system compiler lets you iterate
over design and architecture changes by refactoring at the program level, which reduces the time
needed to achieve working programs running on the target platform.

Terminology
The following terms are widely used while designing in the SDSoC environment. The terms and
their definitions are provided below.

• Accelerator: Portions of the application code that have been implemented in the hardware in
the FPGA general interconnect. These are also called hardware functions.

• Data Mover: The data mover transfers data between accelerators, and between the
processing system (PS) and accelerators. The SDSoC environment can generate various types
of data movers based on the properties and size of the data being transferred.

• Pipelining: Pipelining is a technique to increase instruction-level parallelism in the hardware
implementation of an algorithm by overlapping independent stages of operations or functions.
The data dependence in the original software implementation is preserved for functional
equivalence, but the required circuit is divided into a chain of independent stages. All stages in
the chain run in parallel on the same clock cycle. The only difference is the source of data for
each stage. Each stage in the computation receives its data values from the result computed
by the preceding stage during the previous clock cycle.

• Pragma: Special directives that can be inserted into the source code to guide the system
compiler. In the SDSoC environment, you control the system generation process by
structuring hardware functions and calls to hardware functions in a way that balances
communication and computation, and by inserting pragmas into your source code to guide the
system compiler.

• Processor: Processors in the context of the SDSoC environment mean a soft processor such
as a MicroBlaze processor, or a hard processor such as the Arm processors on Zynq-7000
SoCs and Zynq UltraScale+ MPSoCs.

• System Port: A system port connects a data mover to the PS. It can be an ACP, AFI
(corresponding to high-performance ports), MIG (corresponding to a PL-based DDR memory
controller), or a stream port on the Zynq.

Chapter 1: Introduction to Debugging in SDSoC

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=5

Elements of SDSoC
The SDSoC environment includes the following features:

• The sds++ system compiler, which generates complete hardware/software systems. The sds
++ system compiler employs underlying features from the Vivado Design Suite System
Edition, including the Vivado High-Level Synthesis (HLS) tool, Vivado IP integrator, IP libraries
for data movement and interconnect, and tools for RTL synthesis, placement, routing, and
bitstream generation.

• An Eclipse-based integrated development environment (IDE) to create and manage application
projects and workflows.

• A system performance estimation capability to explore different scenarios for the hardware/
software interface.

The SDSoC environment also inherits many of the tools in the Xilinx Software Development Kit
(SDK), including GNU toolchains for Zynq-7000 SoCs and Zynq UltraScale+ MPSoCs, standard
libraries (for example, glibc), and the Target Communication Framework (TCF) for communicating
with embedded processor targets. It also features a performance analysis perspective within the
Eclipse/CDT-based IDE.

The sds++ system compiler generates an application-specific system-on-chip for a targeted
platform. The environment includes a number of standard base platforms for application
development, and other platforms can be developed by third-party partners, or by SDSoC design
teams. The SDSoC Environment Platform Development Guide (UG1146) describes how to create a
hardware platform design in the Vivado Design Suite, configure platform interfaces, and define
the corresponding software runtime environment to build a platform for use in the SDx™ IDE.

The SDx™ IDE lets you customize a target platform with application-specific hardware
accelerators, and data motion networks connecting accelerators to the platform. A simplified
Zynq and DDR configuration with memory access ports and hardware accelerators is shown
below.

Chapter 1: Introduction to Debugging in SDSoC

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 6Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1146-sdsoc-platform-development.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=6

Figure 1: Simplified Zynq + DDR Diagram Showing Memory Access Ports and
Memories

Zynq Programmable Logic (PL)

ARM A9
Processor

L2 Cache
Memory

Memory
Controller

DMA1 DMA2

Hardware
Function1

Hardware
Function2

DDR
Memory

GPx ACP HPx/AFI

Zynq Processing System (PS)

X14709-061518

Execution Model of an SDSoC Application
The execution model for an SDSoC environment application can be understood in terms of the
normal execution of a C++ program running on the target CPU after the platform has booted. It is
useful to understand how a C++ binary executable interfaces to hardware.

The set of declared hardware functions within a program is compiled into hardware accelerators
that are accessed with the standard C runtime through calls into these functions. Each hardware
function call in effect invokes the accelerator as a task and each of the arguments to the function
is transferred between the CPU and the accelerator, accessible by the program after accelerator
task completion. Data transfers between memory and accelerators are accomplished through
data movers, such as a DMA engine, automatically inserted into the system by the sds++ system
compiler taking into account user data mover pragmas such as zero_copy.

Chapter 1: Introduction to Debugging in SDSoC

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=7

Figure 2: Architecture of an SDSoC System

SDSoC Platform

DDR Banks

Zynq

Embedded Processor (PS Region)
Operating System Drivers

Application Code

Peripherals
(Vision, Graphics, Measurement...)

Programmable Logic
(PL Region)

Hardware Function Accelerators
Data Movers

Direct I/O Access

X21358-082418

To ensure program correctness, the system compiler intercepts each call to a hardware function,
and replaces it with a call to a generated stub function that has an identical signature but with a
derived name. The stub function orchestrates all data movement and accelerator operation,
synchronizing software and accelerator hardware at the exit of the hardware function call. Within
the stub, all accelerator and data mover control is realized through a set of send and receive APIs
provided by the sds_lib library.

When program dataflow between hardware function calls involves array arguments that are not
accessed after the function calls have been invoked within the program (other than destructors
or free() calls), and when the hardware accelerators can be connected using streams, the
system compiler transfers data from one hardware accelerator to the next through direct
hardware stream connections, rather than implementing a round trip to and from memory. This
optimization can result in significant performance gains and reduction in hardware resources.

The SDSoC program execution model includes the following steps:

1. Initialization of the sds_lib library occurs during the program constructor before entering
main().

Chapter 1: Introduction to Debugging in SDSoC

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=8

2. Within a program, every call to a hardware function is intercepted by a function call into a
stub function with the same function signature (other than name) as the original function.
Within the stub function, the following steps occur:

a. A synchronous accelerator task control command is sent to the hardware.

b. For each argument to the hardware function, an asynchronous data transfer request is
sent to the appropriate data mover, with an associated wait() handle. A non-void return
value is treated as an implicit output scalar argument.

c. A barrier wait() is issued for each transfer request. If a data transfer between
accelerators is implemented as a direct hardware stream, the barrier wait() for this
transfer occurs in the stub function for the last in the chain of accelerator functions for
this argument.

3. Clean up of the sds_lib library occurs during the program destructor, upon exiting main().

TIP: Steps 2a–2c ensure that program correctness is preserved at the entrance and exit of accelerator pipelines
while enabling concurrent execution within the pipelines.

Sometimes, the programmer has insight of the potential concurrent execution of accelerator
tasks that cannot be automatically inferred by the system compiler. In this case, the sds++
system compiler supports a #pragma SDS async(ID) that can be inserted immediately
preceding a call to a hardware function. This pragma instructs the compiler to generate a stub
function without any barrier wait() calls for data transfers. As a result, after issuing all data
transfer requests, control returns to the program, enabling concurrent execution of the program
while the accelerator is running. In this case, it is your responsibility to insert a #pragma SDS
wait(ID) within the program at appropriate synchronization points, which are resolved into
sds_wait(ID) API calls to correctly synchronize hardware accelerators, their implicit data
movers, and the CPU.

IMPORTANT! Every async(ID) pragma requires a matching wait(ID) pragma.

SDSoC Build Process
The SDSoC build process uses a standard compilation and linking process. Similar to g++, the
sds++ system compiler invokes sub-processes to accomplish compilation and linking.

As shown in the following figure, compilation is extended not only to object code that runs on
the CPU, but it also includes compilation and linking of hardware functions into IP blocks using
the Vivado High-Level Synthesis (HLS) tool, and creating standard object files (.o) using the
target CPU toolchain. System linking consists of program analysis of caller/callee relationships for
all hardware functions, and the generation of an application-specific hardware/software network

Chapter 1: Introduction to Debugging in SDSoC

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=9

to implement every hardware function call. The sds++ system compiler invokes all necessary
tools, including Vivado HLS (function compiler), the Vivado Design Suite to implement the
generated hardware system, and the Arm compiler and sds++ linker to create the application
binaries that run on the CPU invoking the accelerator (stubs) for each hardware function by
outputting a complete bootable system for an SD card.

Figure 3: SDSoC Build Process

Embedded Process
 Application

Hardware
Functions

SDS++
Compilation

HLS Function
Compile

GNU Arm
Toolchain

SDS++
Linking

Vivado
Design Suite

Update SW
Image

C/C++

Arm Build
Steps

Application
Executable

(.elf)

RTL, C/C++

Programmable Logic
Build Steps

FPGA Binary
(Bitstream)

Bootable System Image

Embedded System Source Code

X21126-041119

The compilation process includes the following tasks:

1. Analyzing the code and running a compilation for the main application on the Arm core, as
well as a separate compilation for each of the hardware accelerators.

2. Compiling the application code through standard GNU Arm compilation tools with an object
(.o) file produced as final output.

3. Running the hardware accelerated functions through the HLS tool to start the process of
custom hardware creation with an object (.o) file as output.

After compilation, the linking process includes the following tasks:

1. Analyzing the data movement through the design and modifying the hardware platform to
accept the accelerators.

2. Implementing the hardware accelerators into the programmable logic (PL) region using the
Vivado Design Suite to run synthesis and implementation, and generate the bitstream for the
device.

3. Updating the software images with hardware access APIs to call the hardware functions from
the embedded processor application.

4. Producing an integrated SD card image that can boot the board with the application in an
Executable and Linkable Format (ELF) file.

Chapter 1: Introduction to Debugging in SDSoC

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=10

SDSoC Debug Flow Overview
The systems produced by the SDSoC environment are high-performance, complex, and
composed of hardware and software components. It can be difficult to understand the execution
of applications in such systems with portions of software running in a processor, hardware
accelerators executing in the programmable fabric, and many simultaneous data transfers
between them. The SDSoC environment lets you create and debug projects using the Xilinx
System Debugger (XSDB), and provides sophisticated hardware/software event tracing, offering
an integrated timeline view of data transfers and accelerator tasks, including driver software
setup and execution in hardware. Outside the SDx IDE, you can use command line or scripting
options to debug your projects.

The SDSoC development environment lets you target the build process of the compilation,
linking commands to either a system emulation target, or to the hardware target of the specified
platform. As an alternative to building a complete system, you can create a system emulation
model that consists of the target platform and application binaries. For the emulation target, the
sds++ system compiler creates a simulation model using the source files for the accelerator
functions.

System emulation is one of the most capable debug features in the SDSoC environment. It can
help debug functional issues and determine why an application is hanging. This feature is only
available on Xilinx base platforms, including the ZC702, ZC706, ZCU102, ZCU104, ZCU106, and
ZedBoard base platforms.

After you identify the hardware functions, you can use system emulation to quickly compile the
logic, and verify the entire system. This provides a Quick Emulator (QEMU)-based emulator that
runs the cross-compiled Arm code, interacting with the hardware accelerator being run in the
Vivado simulator. The RTL simulator can display waveforms, or it can be run without waveforms
for faster simulation. The emulator can be run within the SDx IDE or on the command line
(sdsoc_emulator), providing accurate visibility of the final hardware implementation without
the need to compile the system into a bitstream, and program the device on the board.

Chapter 1: Introduction to Debugging in SDSoC

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=11

Figure 4: System Emulation Flow

X21984-112018

SW App Code

Debug in
Emulation

Functionally
correct?

Xilinx or
custom

platform?

Build SW app
 with or without
HW function for

emulation

Functionally
correct?

Standard SW
Debug

Yes

Xilinx

To build in HW,
Trace Events,

Profile and
Optimize

To build in HW,
Trace Events,

Profile and
Optimize

Custom

YesNo

No

When targeting the hardware platform, you can also enable hardware and software event tracing
to analyze the execution of events, and identify any issues (see Hardware/Software Event
Tracing). If there are problems with respect to the hardware design itself, you can use hardware
debug from the Vivado Lab Edition tools by inserting debug cores in the hardware functions
implemented in the SDSoC environment. The following flow chart shows a typical hardware build
and debug process.

Chapter 1: Introduction to Debugging in SDSoC

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=12

Figure 5: Hardware Build and Debug Flow

HW build
success?

Run on HW

Functionally
correct?

Is
performance

met?

Finish debug

See UG1027 for
SDSoC

Environment
troubleshooting

Build in HW, Trace
Events, Profile and

Optimize

See UG1235 for
performance and

optimization

No

Yes

Yes

Switch to Xilinx
platform for further

debug

Hardware
Debug using
ChipScope

No
App

Hang
Board
Hang

App
Crash

Bad
Data

No

Successful completion of
emulation

To SW app code

To SW app code

To SW app code

To SW app code

Categorize failure and fix

Yes

X21658-100818

Xilinx base platforms support both system emulation and hardware target builds. Custom and
third-party platforms, without emulation capabilities, support only the hardware build and debug
flow.

Related Information
Debugging System Hangs and Runtime Errors

Chapter 1: Introduction to Debugging in SDSoC

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=13

System Emulation
On Xilinx base platforms, you can use system emulation to debug register transfer level (RTL)
transactions in the entire system (PS and PL). Running your application on the SDSoC emulator
(sdsoc_emulator) gives you visibility of data transfers with a debugger. You can debug system
hangs and inspect associated data transfers in the simulation waveform view, which gives you
visibility into signals on the hardware blocks associated with the data transfer.

Hardware Execution Flow
During hardware execution, you can use the actual hardware platform to run the accelerated
application. You can create a debug configuration of the hardware that includes special debug
logic in the accelerators, such as the System Integrated Logic Analyzer (System ILA), Virtual
Input/Output (VIO) debug cores, and AXI performance monitors. The SDSoC environment
provides specific hardware debug capabilities using the Vivado hardware manager, with
waveform analysis, kernel activity reports, and memory access analysis to provide visibility into
these critical hardware issues.

In-system debugging lets you debug your design in real time, on your target hardware. This is an
essential step in design completion. Invariably, there are situations that are extremely hard to
replicate in a simulator. Therefore, there is a need to debug the problem in the running hardware.
In this step, you place debug cores into your design to provide you the ability to observe and
control the design. After the debugging process is complete, you can remove the debug cores to
increase performance and reduce resource usage of the device.

The SDx IDE and command line options provide ways to instrument your design for debugging.
The --dk compiler switch lets you add ILA debug cores to the interfaces of your hardware
function. To debug C-callable IP that are used in your application code, you must have
instantiated the required debug cores into the RTL code of the IP prior to packaging it as a C-
callable IP.

IMPORTANT! Debugging the hardware function on the SDSoC platform hardware requires additional logic to be
incorporated into the overall hardware model. This means that if hardware debugging is enabled, there is some
impact on resource utilization of the Xilinx device, as well as some impact on the performance of the hardware
function.

Connecting to the Hardware

The board connection requirements are slightly different depending on the operating system:
standalone, FreeRTOS, or Linux.

• For standalone and FreeRTOS, you must download the ELF file to the board using the USB/
JTAG interface. Trace data is read out over the same USB/JTAG interface as well.

Chapter 1: Introduction to Debugging in SDSoC

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=14

• For Linux, the SDx environment assumes the OS boots from the SD card. It then copies
the .elf file and runs it using the TCP/TCF agent running in Linux over the Ethernet
connection between the board and host PC. The trace data is read out over the USB/JTAG
interface. Both USB/JTAG and TCP/TCF agent interfaces are needed for tracing Linux
applications.

The figure below shows the connections required.

Figure 6: Connections Required When Using Trace with Different Operating Systems

Linux

Standalone/FreeRTOS

Host PC Board

Ethernet Ethernet

USB JTAG

Zynq-7000
SoC

Host PC Board

Ethernet Ethernet

USB JTAG

Zynq-7000
SoC

X16744-010419

Event Tracing
The event tracing feature provides a detailed view of what is happening in the system during the
execution of an application. Trace events are produced and gathered into a timeline view, giving
you a perspective of the running application. This detailed view can help you understand the
performance of your application given the workload, hardware/software partitioning, and system
design choices. This view enables event tracing of software running on the processor, as well as
hardware accelerators and data transfer links in the system. Such information helps you to
identify problems, optimize the design, and improve system implementation.

Tracing an application produces a log that records information about system execution.
Compared to event logging, event tracing shows the correlation between events for the duration
of the event, rather than an instantaneous event at a particular time. The goal of tracing is to help
debug execution by observing what happened when, and how long events took. This is best used
to analyze performance and get an indication of whether there is an application hang.

Chapter 1: Introduction to Debugging in SDSoC

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=15

Chapter 2

SDSoC Debug Features
This section provides details on debugging in the SDx™ environment using the Vivado® Design
Suite IDE or the command line.

SDx Environment Debug Tools
The SDx environment includes the Xilinx System Debugger (XSDB) for debugging SDSoC
environment designs.

Xilinx System Debugger (XSDB)
Xilinx System Debugger (XSDB) uses the Xilinx hw_server as the underlying debug engine.

The Xilinx Software Development Kit (SDK) translates each user interface action into a sequence
of Target Communication Frameworks (TCF) commands. It then processes the output from
System Debugger to display the current state of the program being debugged. It communicates
to the processor on the hardware using Xilinx hw_server. You can debug multiple processors
simultaneously with a single System Debugger debug configuration. This is the recommended
debug engine for SDxenvironment designs. The System Debugger can either be launched on the
hardware or the QEMU engine.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=16

.elf

SDK Debug
Perspective

hw_server

Program
Running on
Hardware or

ISS

Create Debug
Configurations

Specify
hw_server

details

X21076-120218

The workflow is made up of the following components:

• ELF file: To debug your application, you must use an ELF file compiled for debugging. The
debug ELF file contains additional debug information for the debugger to make direct
associations between the source code and the binaries generated from that original source.
Refer to Build Configurations for more information.

• Debug configuration: To launch the debug session, you must create a debug configuration in
the SDx environment. This configuration captures options required to start a debug session,
including the executable name, processor target to debug, and other information. Refer to
Setting Debug Configurations for more information.

• SDx debug perspective: Using the debug perspective, you can manage the debugging or
running of a program in the SDx workbench. You can control the execution of your program
by setting breakpoints, suspending launched programs, stepping through your code, and
examining the contents of variables.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 17Send Feedback

https://www.xilinx.com/html_docs/xilinx2018_3/SDK_Doc/SDK_concepts/concept_sdk_build_configurations.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=17

You can repeat the cycle of modifying the code, building the executable, and debugging the
program in the SDx environment.

Note: If you edit the source after compiling, the line numbering will be out of step because the debug
information is tied directly to the source. Similarly, debugging optimized binaries can also cause
unexpected jumps in the execution trace.

Setting Debug Configurations

To debug, run, and profile an application, you must create a debug configuration that captures
the settings for executing and debugging the application. To create a debug configuration, in the
Assistant view, right-click on the Debug build configuration, and select Debug → Debug
Configurations from the menu. Alternatively, you can select the Run → Debug Configurations
command from the main menu. The Debug Configurations dialog box opens as shown below.

TIP: Based on the OS and system configuration of your application project, and the type of application being
debugged, the tabs of the Debug Configurations dialog box can change. The tabs and options discussed here
might be different from what you see.

Figure 7: Debug Configurations

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=18

In the Debug Configurations dialog box, select the Xilinx SDx Application Debugger to create a
debug configuration for the project. A new debug configuration is created for the application
project, and is opened with multiple tabs to manage the configuration.

Main Tab

The Main tab is automatically populated with the debug and connection type for the current
application project. For example, a Linux application uses the Linux debug type and the Linux
agent for connecting to the application.

TIP: You can change the selected Debug Type, but this also resets the application project associated with the
debug configuration.

Figure 8: Debug Configurations - Main Tab

Application Tab

The Application tab displays the compiled application .ELF file that is being downloaded to be
run on the processor.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=19

Figure 9: Debug Configuration - Application Tab

Target Setup Tab

For Linux applications, the Target Setup tab is blank. For standalone applications, the tab lets you
specify the hardware platform, and whether to use the first stage boot loader (FSBL) flow for
initialization (if you need to initialize devices on the platform).

Arguments Tab

In the Arguments tab, you can specify any variables that are needed for launching the debug
session. Click Variables to display the Select Variable dialog box.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=20

Environment Tab

In the Environment tab, you can set any environment variables for the debug configurations.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=21

Figure 10: Add, Set, and Edit Environment Variables

Click New to create and define a value for a new environment variable to add to the debug
configuration. Click Select to display a list of existing environment variables that can be added to
the debug configuration. These can be edited and set to specific values.

Remaining Debug Configuration Tabs

The Symbol Files, Source, Path Map, and Common tabs are for advanced debugging of
application-specific functions that do not apply to XSDB, and can be safely ignored.

Target Connections

In the Target Connections view, you can configure multiple remote targets. It displays connected
targets, and you can add or delete target connections. The SDx environment establishes target
connections through the Hardware Server agent. In order to connect to remote targets, the
hardware server agent must be running on the remote host, which is connected to the target.

Use the Hardware Server when the application is for standalone. The Hardware Server only
requires a JTAG connection to the board. Use the Linux TCF Agent for when the application is
compiled to run on Linux for the SoC. The Linux TCF Agent requires an Ethernet connection
from the machine to the board.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=22

For more information, refer to Connecting to the Hardware.

Debug Linux Applications in the SDx IDE

In the SDx IDE, use the following procedure to debug your application:

Ensure the board is connected to your host computer using the JTAG Debug connector, and that
there is an Ethernet connection between the board and host PC.

1. Set the platform to boot from the SD card, as specified in the User Guide for the selected
SDSoC platform.

2. In the SDx Application Project Settings window, set the Target to Hardware, and enable the
Generate SD card image checkbox.

3. In the Assistant view, right-click the Debug build configuration, and select the Set Active
command.

4. Click the Build () button, in the Assistant view or the main menu, to build the Debug
configuration.

5. From a file browser, or command shell, copy the contents of the Debug/sd_card folder to
an SD card.

6. Insert the SD card into the card reader of the platform, and boot the card.

7. Make sure the board is connected to the network, and note its IP address, for example, by
executing ifconfig eth0 on the board at the command prompt using a terminal
communicating with the board over UART.

8. In the Assistant view, right-click the Debug build configuration, and select Debug → Debug
Configurations to create a new debug configuration.

9. Double click or right-click and select New on the Xilinx SDx Application Debugger.

10. In the new configuration, click the New button next to Connection: Linux Agent.

11. In the Target Connection Details specify the target name and enter the IP address of the
board. It is highly suggested to test the connection by click the Test Connection button to
make sure it can connect to the board.

12. Click Apply to save the changes and click Debug.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=23

13. Switch to the SDSoC environment debug perspective, where you can start, stop, step, set
breakpoints, examine variables and memory, and perform various other debug operations.

Debugging Standalone or FreeRTOS Applications in the SDx IDE

To debug applications running on a standalone (bare-metal) or FreeRTOS OS, ensure the board is
connected to your host computer using the JTAG debug connector, and then set the board to
boot from JTAG.

1. In the Assistant view, right-click the Debug build configuration, and select the Set Active
command.

2. Click the Build () button, in the Assistant view or the main menu, to build the Debug
configuration.

3. In the Assistant view, right-click the Debug build configuration, and select Debug → Debug
Configurations to create a new debug configuration.

4. Optional: Switch to the SDSoC environment Debug Perspective, where you can start, stop,
step, set breakpoints, examine variables and memory, and perform various other debug
operations.

5. Optional: In the SDx IDE toolbar, click Debug, which provides a shortcut to the procedure
described above.

Xilinx Software Command-Line Tool (XSCT)
Graphical development environments such as the SDx environment are useful for improving
development for a new processor architecture. It helps to abstract away and group most of the
common functions into logical wizards that even a novice can use. However, the scriptability of a
tool is also essential for providing the flexibility to extend what is done with that tool. It is
particularly useful when developing regression tests that are run nightly, or for running a set of
commands that are used often by the developer.

Xilinx Software Command-line Tool (XSCT) is an interactive and scriptable command line
interface to the SDx environment. As with other Xilinx tools, the scripting language for XSCT is
based on Tool Command Language (Tcl). You can run XSCT commands interactively or script the
commands for automation. XSCT supports the following actions:

• Create hardware, board support packages (BSPs), and application projects.

• Manage repositories.

• Set toolchain preferences.

• Configure and build BSPs/applications.

• Download and run applications on hardware targets.

• Create and flash boot images by running Bootgen and program_flash tools.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=24

For information on XSCT commands, see the Xilinx Software Command-Line Tool (XSCT) Reference
Guide (UG1208).

System Emulation
System emulation can be run on System Debugger using the Target Communications Framework
(TCF) server.

Note: Currently, emulation is not supported for custom platforms. Only the base platforms provided by
Xilinx support emulation.

Running System Emulation from the IDE
System emulation provides the same level of accuracy as the final implementation without the
need to compile the system into a bitstream and program the device on the board. System
emulation can be used for debugging applications without involving the actual hardware. It can
also be used for identifying any bottlenecks in performance.

Enable System Emulation

To enable system emulation within the Application Project Settings window, take the following
steps:

1. Set the Active build configuration to Debug.

2. Set the Target to Emulation.

3. Set the emulation model. There are two emulation model modes:

• Debug: Builds the system through RTL generation, and the IP integrator block design
containing the hardware function, elaborates the hardware design, and runs behavioral
simulation on the design, with a waveform viewer to help you analyze the results. You
interact with the Vivado simulator within the Vivado Design Suite to analyze the
waveforms.

• Optimized: Runs the behavioral simulation in batch mode, returning the results without
the waveform data. While the Optimized model can be faster, it returns less information
than the Debug model.

For faster emulation without capturing this hardware debug information, select Optimized.
For example, to debug system hang issues, use the Debug mode and look at the state of
different signals in the Waveform viewer within the Vivado simulator. Alternatively, if you are
debugging the application only, you can use the Optimized emulation model.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 25Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1208-xsct-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=25

Because emulation does not require a full system compile, the tool disables the generation of
the bitstream and the Generate SD card image option to improve runtime and iteration time.
Using system emulation allows you to verify and debug the system with the same level of
accuracy as a full bitstream compilation.

4. After specifying the emulation model, click the Build button () to compile the system for
emulation.

The duration of the build process depends on your application code, the size of your
hardware functions, and the options you have selected. To compile the hardware functions,
the tool stack includes the SDx environment, and Vivado High-Level Synthesis (HLS) tool, and
the Vivado Design Suite.

Run the System Emulator

1. After building the emulation target, you can run the system emulator using Xilinx → Start/
Stop Emulator. Alternatively, you can also select the application in the Assistant panel, by
right-clicking, and then selecting Start/Stop Emulator.

2. When the Start/Stop Emulator dialog box opens, the emulation mode is specified:

• If the emulation mode is Debug, you can choose to run the emulation with or without
waveforms.

• If the emulation mode is Optimized, the Show Waveform check box is disabled, and
cannot be changed.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=26

The Start/Stop Emulator dialog box displays the Project name, the build Configuration, and
has the Show Waveform option. Disabling the Show Waveform option lets you run emulation
with the output directed solely at the Emulation Console view, which shows all system
messages including the results of any print statements in the source code. Some of these
statements might include the values transferred to and from the hardware functions, or a
statement that the application has completed successfully, which would verify that the
source code running on the PS and the compiled hardware functions running in the PL are
functionally correct. Enabling the Show Waveform option provides the same functionality in
the Console window, plus the behavioral simulation of the register transfer level (RTL), with a
waveform window. The RTL waveform window allows you to see the value of any signal in
the hardware functions over time. When using Show Waveform, you must manually add
signals to the waveform window before starting the emulation.

3. Use the Scopes pane to navigate the design hierarchy.

4. Select the signals to monitor in the Object pane, and then right-click to add the signals to the
waveform pane.

5. Click the Run All toolbar button to start updates to the waveform window. For more
information about working with the Vivado simulator waveform window, refer to Vivado
Design Suite User Guide: Logic Simulation (UG900).

Note: Running with RTL waveforms results in a slower runtime, but enables detailed analysis into the
operation of the hardware functions.

TIP:

You can also start the system emulation by selecting the active project in the Project Explorer view, and then
right-clicking to select one of the following menu commands:

• Run As → Launch on Emulator

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 27Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=27

• Debug As → Launch on Emulator

Launching the emulator from the Debug As menu causes the perspective change to the
debug perspective to arrange the windows and views to facilitate debugging the project.

View Emulation Output

1. After you run the system emulator, you can see the program output in the console tab, and if
the Show Waveform option was selected, the Vivado IDE is launched with the simulator
running.

Add waveforms to the Waveforms window as desired. To start the simulation, click the Run
All button.

2. To start a debug session with the emulator running, in the Assistant view right-click on the
Debug build configuration and select Debug → Launch on Emulator (SDx Application
Debugger).

3. The Confirm Perspective Switch dialog box is displayed. Click Yes to switch to the Debug
perspective.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=28

4. The application is started in the Debug perspective and the program execution is stopped at
the main function. To resume the execution of the application code, click Resume.

This starts execution of the application code. The output of the application code can be seen
in the Emulation Console, as shown in the following figure:

The status of different signals is displayed in the Vivado Waveform window. You also see any
appropriate response in the hardware functions in the register transfer level (RTL) waveform.
During any pause in the execution of the code, the RTL waveform window continues to
execute and update, just like an FPGA running on the board.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=29

5. You can stop the emulation at any time using the menu option Xilinx → Start/Stop Emulator,
and then selecting Stop.

TIP: For an example project to demonstrate emulation, create a new SDx environment project using the
Emulation Example template. The README.txt file in the project has a step-by-step guide for doing emulation
on both the SDx IDE and the command line.

Running System Emulation from the Command Line
You can create a design outside of the SDx IDE in a general command-line flow, using individual
SDx commands to build and compile the project, or with a Makefile flow. In the following sample
script, the TARGET flag defines that the compilation should be done for emulation.

FPGA Board Platform (Default ~ zcu102)
PLATFORM := zcu102

Run Target:
hw - Compile for hardware
emu - Compile for emulation (Default)
TARGET := emu

The emulation mode, as shown in the sample script below, can be specified with one of two
options:

• debug: Captures waveform data from the PL hardware emulation for viewing and debugging.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=30

• optimized: Provides faster emulation without capturing hardware debug information.

Target OS:
linux (Default), standalone
TARGET_OS := linux

Emulation Mode:
debug - Include debug data
optimized - Exclude debug data (Default)
EMU_MODE := optimized

Type make to build the program at the command prompt. If you want to view the waveform in
the simulator, change directory to the level where you have the _sds directory, then type
sdsoc_emulator -graphic-xsim. This starts the Vivado Simulator, as shown below.

Hardware Execution Features Available to All
Platforms

Although system emulation is only available for application projects running on Xilinx base
platforms, the hardware execution flow is available to run on any platform that is the target of an
SDSoC project. The hardware execution flow is the embedded processor operating system, the
application code, and the hardware functions running in concert, as designed, on the hardware
platform. The types of debugging you can perform on the hardware include the following:

• Full software debug using the Xilinx System Debugger (XSDB)

• Co-debug of hardware and software using the Xilinx System Debugger (XSDB)

• Event Tracing

Note: Hardware debug includes instrumenting the hardware for analyzing signals in the Vivado hardware
manager feature. The application needs to be built with special instructions to instrument the hardware for
this.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=31

Hardware Debugging in SDSoC Using ChipScope
After the final system image is generated and executed in the SDx environment, the entire
system (including the embedded processor OS, the application code, and the accelerated
hardware functions) can be validated to be executing correctly on the actual hardware, and any
necessary debug activity can be performed. The ChipScope™ feature is used to debug designs in
hardware using the Vivado IDE. Cross-probing hardware and software requires an advanced
understanding of the SDx environment and the Vivado tool suite.

This debugging step can reveal issues relating to connecting to the target platform, booting the
processor, and programming the hardware with the system image. It might also highlight
problems with interactions between the application code and the hardware functions in the form
of protocol violations, and with validating multiple hardware functions with the application code.

This step could also reveal system performance metrics that could shift your focus from debug to
performance tuning. In the SDx environment, you can instrument the hardware to analyze
transactions on the interfaces of the hardware accelerators and adapters. You can also debug the
hardware portion of the design.

Using --dk to Enable Debugging the Accelerated Function

Visibility into a running design is crucial for debugging difficult situations, like when the
application hangs. The System ILA debug core provides transaction-level visibility into an
accelerated kernel or function running on hardware. AXI traffic of interest can also be captured
and viewed using the System ILA core.

The System ILA core can be instantiated in the overall hardware of an existing SDx environment
design to enable debugging features within that design, or it can be inserted automatically by the
compiler. The sds++ compiler provides the -–dk switch to attach System ILA cores at the
interfaces to the hardware functions for debugging and performance monitoring purposes. Use
the -–dk option to enable System ILA core insertion:

 --dk arg <[protocol|chipscope|
list_ports]:<compute_unit_name>:<interface_name>>

The following is an example of the -–dk option in use:

sds++ -c --dk chipscope:vadd_cu0:s_axi_control --dk
chipscope:vadd_cu0:m_axi_gmem

The following is an example of a Makefile to insert debug cores:

APPSOURCES = main.cpp mmult.cpp madd.cpp
EXECUTABLE = mmultadd.elf

PLATFORM = zc702
CLKID =
DMCLKID =
SDSFLAGS = -sds-pf ${PLATFORM} ${DMCLKID} \

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=32

 -sds-hw mmult mmult.cpp ${CLKID} -sds-end \
 -sds-hw madd madd.cpp ${CLKID} -sds-end \
 -debug-port mmult:A \
 -debug-port madd:C \
 --dk chipscope:madd_1:A \
 --dk chipscope:madd_1_if:ap_ctrl

CC = sds++ ${SDSFLAGS}

CFLAGS = -O3 -c
CFLAGS += -MMD -MP -MF"$(@:%.o=%.d)"
LFLAGS = -O3

OBJECTS := $(APPSOURCES:.cpp=.o)
DEPS := $(OBJECTS:.o=.d)

.PHONY: all clean ultraclean

all: ${EXECUTABLE}

${EXECUTABLE}: ${OBJECTS}
 ${CC} ${LFLAGS} $^ -o $@

-include ${DEPS}

%.o: %.cpp
 ${CC} ${CFLAGS} $^ -o $@

clean:
 ${RM} ${EXECUTABLE} ${OBJECTS} ${DEPS}

ultraclean: clean
 ${RM} ${EXECUTABLE}.bit
 ${RM} -rf _sds sd_card

The –debug-port option specifies a function name and argument name to insert a System ILA
for accelerators. The lower level --dk option specifies the tool command language (Tcl) file used
to recreate the block design instance and port name, such as in the following example.

• -debug-port mmult:A is equivalent to --dk chipscope:mmult_1:A , but the sds++
command determines what the instance and port names are in the Tcl file used to recreate the
block design.

Note: A Tcl file is used by the SDx environment to recreate a block design in the hardware platform
including the accelerators in the Vivado Design Suite.

• --xp param:compiler.userPostSysLinkTcl=<user_tcl_file>, where
<user_tcl_file> contains IP integrator Tcl commands for advanced users who need to
perform post-processing of the System ILA in the block diagram after system linking and
before synthesis.

Note: Advanced users can change ILA settings using Tcl commands. It is often possible to enable
additional probes and interfaces in an ILA and debug other signals in the same clock domain as needed.
Doing this can save logic resources in the FPGA. You can also cross-trigger a chain of ILAs using this
feature.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=33

• --dk can be used to insert the System ILA for accelerator and adapter ports. You need to use
this option to observe the adapter ports. Once the design is built, you can debug the design
using the Vivado hardware manager features, as described in Vivado Design Suite User Guide:
Programming and Debugging (UG908).

Add Flags to Build Settings

If you are working in the SDx IDE, the system options shown in the previous section can be
specified in the build settings as shown below:

1. From the Assistant view, right-click the Debug or Release build configuration, and select the
Settings command.

2. In the Build Configuration Settings dialog box, click the Edit Toolchain Settings link.

3. In the Tool Settings tab of the Properties for <Application_Name> dialog box, select SDS++
Linker → Miscellaneous.

4. Click in the Linker Flags field and add the debug flags as needed.

TIP: At the top of the Tool Settings tab, there is a Configuration field that lets you select the build to apply the
settings to the Debug build, the Release build, or All builds.

See the SDx Command and Utility Reference Guide (UG1279) for more information on compiler
and linker options.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 34Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=34

Analyzing the Hardware Design

When the design has been built with appropriate System ILA instances, you can open and
analyze the Vivado design by performing the following steps:

1. To confirm which signals can be debugged, navigate to Debug/Release → _sds → p0 → vivado 
→ prj folder in the Project Explorer.

2. Double-click prj.xpr, which opens the design in the Vivado IDE.

3. In the Vivado IDE, click Open Block Design in the Flow Navigator under IP integrator.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=35

4. In the Designs window, look for the instances of system_ila_x.

5. Select the System ILA instance(s) in the Design window to highlight the instances in the block
design.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=36

6. Select the interface nets connected to the System ILA and ensure that they have been
connected to the interfaces specified in the SDx IDE.

Debugging Designs Using Vivado Hardware Manager

After you instrument the SDx environment application to insert debug cores, the next step is to
connect to the Vivado hardware manager feature and look at Integrated Logic Analyzer (ILA) core
transactions. To connect to the target board using the hardware manager, perform the following
steps:

1. Launch the Vivado Design Suite.

2. Select Open Hardware Manager from the Tasks menu. An alternate method is to open the
Vivado project from the SDx IDE:

<application_project_name>/Debug/_sds/p0/vivado/prj/prj.xpr

Then, from the Vivado Flow Navigator, click Program and Debug → Open Hardware
Manager → Open Target → Open New Target, as shown below.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=37

3. For either method you used to open the project, the Open New Hardware Target wizard is
displayed as shown below. Click Next.

4. In Hardware Server Settings, connect to the correct target by clicking Connect to, and then
selecting either Remote Server or Local Server. If you select Remote Server, you need to add
a Host name and the correct Port number. The following example assumes that you are
connected locally:

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=38

5. Click Next. The Select Hardware Target page opens which identifies the target(s) present on
the board.

6. Click Next. The Open Hardware Target Summary page opens which summarizes the server
name, the port it is connected to, and the correct target and operating frequency.

7. Click Finish. The Hardware Manager window opens as shown below.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=39

8. The Vivado hardware manager can now be used to connect to the ILA that is running on your
design. Refer to the Vivado Design Suite User Guide: Programming and Debugging (UG908) for
more information on working with the tool.

Hardware/Software Event Tracing
Event tracing provides visibility into each phase of the hardware function execution, including
the software setup for the accelerators and data transfers, as well as the hardware execution of
the accelerators and data transfers. Tracing an application produces a log that records correlation
between events for a duration of time. The goal of tracing is to help debug execution by
observing what happened when, and how long events took.

Software event tracing automatically instruments the stub of the hardware function to capture
software control events associated with a hardware function call. The event types that are
recorded include the setup and initialization of the hardware accelerator, data transfers, and
hardware-software synchronization events.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 40Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=40

Hardware event tracing of accelerators with data transfers over AXI4-Stream connections can
also be enabled through the use of the -trace option of the sds++ system compiler. When the
linker is invoked with the -trace option, it inserts hardware monitor IP cores into the RTL
implementation of the hardware function to track the accelerator start and stop, and the
duration of data transfers.

As with hardware debugging, event tracing requires you to connect the SDSoC environment
platform to a host computer as described in Connecting to the Hardware. To run event tracing,
execute the application using the SDx IDE from the host using a debug or release build
configuration.

Hardware/Software System Runtime Operation
The system compiler implements hardware functions either by cross-compiling them into IP
using the Vivado High-Level Synthesis (HLS) tool, or by linking them as C-callable IP, as described
in the SDSoC Environment Platform Development Guide (UG1146).

Each hardware function call site is rewritten to call a stub function that manages the execution of
the hardware accelerator. The figure below shows an example of hardware function rewriting.
The original user code is shown on the left. The code section on the right shows the hardware
function calls rewritten with new function names.

Figure 11: Hardware Function Call Site Rewriting

X16743-040516

The stub function initializes the hardware accelerator, initiates any required data transfers for the
function arguments, and then synchronizes hardware and software by waiting at an appropriate
point in the program for the accelerator and all associated data transfers to complete. For
example, if the hardware function foo() is defined in foo.cpp, you can view the generated
rewritten code in _sds/swstubs/foo.cpp for the project build configuration. As an example,
the stub code shown below replaces a user function marked for hardware. This function starts
the accelerator, starts data transfers to and from the accelerator, and waits for those transfers to
complete.

void _p0_mmult0(float *A, float *B, float *C) {
 switch_to_next_partition(0);
 int start_seq[3];
 start_seq[0] = 0x00000f00;
 start_seq[1] = 0x00010100;
 start_seq[2] = 0x00020000;
 cf_send_i(cmd_addr,start_seq,cmd_handle);

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 41Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1146-sdsoc-platform-development.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=41

 cf_wait(cmd_handle);
 cf_send_i(A_addr, A, A_handle);
 cf_send_i(B_addr, B, B_handle);
 cf_receive_i(C_addr, C, C_handle);
 cf_wait(A_handle);
 cf_wait(B_handle);
 cf_wait(C_handle);

Event tracing provides visibility into each phase of the hardware function execution, including
the software setup for the accelerators and data transfers, as well as the hardware execution of
the accelerators and data transfers. For example, the stub code below is instrumented for trace.
Each command that starts the accelerator, starts a transfer, or waits for a transfer to complete is
instrumented.

void_p0_mmult_0(float *A, float *B, float *C) {
 switch_to_next_partition(0);
 int start_seq[3];
 start_seq[0] = 0x00000f00;
 start_seq[1] = 0x00010100;
 start_seq[2] = 0x00020000;
 sds_trace(EVENT_START);
 cf_send_i(cmd_addr,start_seq,cmd_handle);
 sds_trace(EVENT_STOP);
 sds_trace(EVENT_START);
 cf_wait(cmd_handle);
 sds_trace(EVENT_STOP);
 sds_trace(EVENT_START);
 cf_send_i(A_addr, A, A_handle);
 sds_trace(EVENT_STOP);
 sds_trace(EVENT_START);
 cf_send_i(B_addr, B, B_handle);
 sds_trace(EVENT_STOP);
 sds_trace(EVENT_START);
 cf_receive_i(C_addr, C, C_handle);
 sds_trace(EVENT_STOP);
 sds_trace(EVENT_START);
 cf_wait(A_handle);
 sds_trace(EVENT_STOP);
 sds_trace(EVENT_START);
 cf_wait(B_handle);
 sds_trace(EVENT_STOP);
 sds_trace(EVENT_START);
 cf_wait(C_handle);
 sds_trace(EVENT_STOP);

Software Tracing
Event tracing automatically instruments the stub function to capture software control events
associated with the implementation of a hardware function call. The event types include the
following:

• Accelerator setup and initiation

• Data transfer setup

• Hardware/software synchronization barriers (“wait for event”)

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=42

See SDSoC Environment Programmers Guide (UG1278) for more detail on these topics.

Each of these events is independently traced and results in a single AXI4-Lite write into the
programmable logic, where it receives a time stamp from the same global timer as hardware
events.

Hardware Tracing
The SDSoC environment supports hardware event tracing of accelerators cross-compiled using
Vivado High-Level Synthesis (HLS) tool, and data transfers over AXI4-Stream connections. When
sds++ is invoked with the -trace option, it automatically inserts hardware monitor IP cores
into the generated system to log the following event types:

• Accelerator start and stop, defined by ap_start and ap_done signals.

• Data transfer start and stop, defined by AXI4-Stream handshake and TLAST signals.

Each of these events is independently monitored and receives a time stamp from the same global
timer used for software events. If the hardware function explicitly declares an AXI4-Lite control
interface using the following pragma, it cannot be traced because its ap_start and ap_done
signals are not part of the IP interface:

#pragma HLS interface s_axilite port=foo

These debug cores use some hardware resources; less than 0.1% of the hardware resources
available on a ZC706 board.

The AXI4-Stream monitor core has two modes: basic and statistics. The basic mode does just the
start/stop trace event generation. The statistics mode enables an AXI4-Lite interface to two 32-
bit registers. The register at offset 0x0 presents the word count of the current, on-going transfer.
The register at offset 0x4 presents the word count of the previous transfer. As soon as a transfer
is complete, the current count is moved to the previous register. By default, the AXI4-Stream
core is configured in the basic mode.

In addition to the hardware trace monitor cores, the output trace event signals are combined by a
single integration core. This core has a parameterizable number of ports (from 1–63), and can
thus support up to 63 individual monitor cores (either accelerator or AXI4-Stream). The resource
utilization of this core depends on the number of ports enabled, and thus the number of monitor
cores inserted.

On a ZC706 platform, this can use between roughly 0.1-1.0 percent of the available hardware
resources, and up to approximately 10% of the memories with the integration logic.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 43Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1278-sdsoc-programmers-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=43

Implementation Flow
During the implementation flow, when tracing is enabled, tracing instrumentation is inserted into
the software code and hardware monitors are inserted into the hardware system automatically.
The hardware system (including the monitor cores) is then synthesized and implemented,
producing the bitstream. The software tracing is compiled into the regular user program.

Hardware and software traces are time-stamped in hardware and collected into a single trace
stream that is buffered up in the programmable logic.

Chapter 2: SDSoC Debug Features

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=44

Chapter 3

Debug Techniques
This chapter describes the different styles of debugging techniques applicable to SDSoC™
applications. It highlights different approaches for software-based debugging and hardware-
oriented techniques. In the software-based approaches, a full understanding of the
implementation of the design in the FPGA is not required. However, this concept can only be
extended to a certain degree, at which point a hardware-based detailed analysis should be
performed. Highlighting pure software debugging techniques is not the intent of this document.

When debugging SDSoC applications, you can use the same methods and techniques as
applications used for debugging standard C/C++. Most SDSoC applications consist of specific
functions tagged for hardware acceleration and surrounded by standard C/C++ code.

When debugging an SDSoC application with a board attached to the debug host machine, you
can right-click on a build configuration in the Assistant view, and select the Debug → Launch on
Hardware option to begin a debug session.

You can select options other than the default settings by using the Debug → Debug
Configurations command to create a new custom debug configuration. As the debug
environment is initialized, Xilinx recommends that you switch to the Debug perspective when
prompted. The debug perspective view provides the ability to debug the standard C/C++
portions of the application by single-stepping code, setting and removing breakpoints, displaying
variables, dumping registers, viewing memory, and controlling the code flow with “run until” and
“jump to” debugging directives. Inputs and outputs can be observed before and after the function
call to determine the correct behavior.

You can determine if a hardware accelerated application meets its real-time requirements by
placing debug statements to start and stop a counter just before and just after a hardware
accelerated function. The SDx™ environment provides the sds_clock_counter() function,
which is typically used to calculate the elapsed time for a hardware accelerated function.

You can also perform debugging without a target board connected to the debug host by building
the SDx project for emulation. During emulation, you can control and observe the software and
data just as before through the debug perspective view, but you can also view the hardware
accelerated functions through a Vivado® simulator waveform viewer. You can observe
accelerator signaling for conditions such as accelerator start and accelerator done, and you can
monitor data buses for inputs and outputs. Building a project for emulation also avoids a possibly
long Vivado implementation step to generate an FPGA bitstream.

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=45

See the SDSoC Environment Debugging Guide (UG1282) for information on using the interactive
debuggers in the SDx IDE.

Debugging System Hangs and Runtime Errors
Programs compiled using sds++ can be debugged using the standard debuggers supplied with
the SDx environment or Vivado. Typical runtime errors are incorrect results, premature program
exits, and program hangs. The first two kinds of error are familiar to C/C++ programmers, and
can be debugged by stepping through the code using a debugger.

Note: Applications might hang when you are running on the board. Hangs commonly happen due to a
mismatch of data size between the producer and the consumer.

A program hang is a runtime error caused by specifying an incorrect amount of data to be
transferred across a streaming connection created using #pragma SDS data
access_pattern(A:SEQUENTIAL), by specifying a streaming interface in a synthesizable
function within the Vivado High-Level Synthesis (HLS) tool, or by a C-callable hardware function
in a pre-built library that has streaming hardware interfaces. A program hangs when the
consumer of a stream is waiting for more data from the producer, but the producer has stopped
sending data. Consider the following code fragment that results in streaming input/output from a
hardware function:

#pragma SDS data access_pattern(in_a:SEQENTIAL, out_b:SEQUENTIAL)
void f1(int in_a[20], int out_b[20]); // declaration

void f1(int in_a[20], int out_b[20]) { // definition
 int i;
 for (i=0; i < 19; i++) {
 out_b[i] = in_a[i];
 }
}

In_a[] has 20 elements, but the loop only reads 19 of them. Anything calling f1 would appear
to hang, waiting indefinitely for f1 to consume the final element. Program errors that lead to
hangs can be detected by using system emulation to ascertain whether the data signals are static
by reviewing the associated protocol signals such as TLAST, ap_ready, ap_done, and TREADY.
Program errors causing hangs can also be detected by instrumenting the code to flag streaming
access errors such as non-sequential access or incorrect access counts within a function and
running in software. Streaming access issues are typically flagged as improper streaming
access warnings in the log file, and you can determine if these are actual errors. Running your
application on the SDSoC emulator is a good way to gain visibility of data transfers with a
debugger. You can see where in software the system is hanging (often within a cf_wait() call),
and can then inspect associated data transfers in the simulation waveform view, which gives you
access to signals on the hardware blocks associated with the data transfer.

Chapter 3: Debug Techniques

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 46Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1282-sdsoc-debugging-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=46

System Hang Debugging Example
As another example, consider the following code that results in streaming input/output from the
hardware function:

#pragma SDS data access_pattern(in:SEQUENTIAL, out:SEQUENTIAL)
#pragma SDS data copy(in[0:large], out[0:small])
void too_large_copy(int* in, int* out, int small, int large)
{
 for(int i = 0; i < small; i++) {out[i] = in[i];}
}

int main()
{
 int* temp_var1 = new int[1024 * 1024];
 int* temp_var2 = new int[1024 * 1024];

 too_large_copy(temp_var1, temp_var2, 1024, 1024 * 1024); //hangs
because the input DMA continues to try to feed data to a halted HLS core

}

In this case, the direct memory access (DMA) continues to try to send data to the hardware
function, whereas the hardware function is already done and is not accepting any data. This
results in a system hang.

1. To debug this type of issue, build the code for emulation on the base platform. When the
application is compiled, start the emulator by selecting Xilinx → Start/Stop Emulator.
Alternatively, you can start the emulator from the Assistant window as shown below. Right-
click the Active build configuration for the application and select Start/Stop Emulator.

2. In the Emulation dialog box, ensure that the Show Waveform (Programmable Logic only)
check box is checked. This brings up the Vivado Simulator where the state of different
interfaces can be viewed in the Waveform window. To monitor the interfaces of the
hardware function, right-click on the function and select Add to Wave window. This adds all
the I/O ports of the selected function to the Waveform window.

3. Start the simulator by clicking the Run All icon in the toolbar.

4. Go back to the SDx IDE, and then launch the application on the debugger. To do this, select
the application to be debugged, right-click, and then select Launch on Emulator (SDx
Application Debugger).

Chapter 3: Debug Techniques

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=47

In the Confirm Perspective Switch dialog box, click Yes. The Debug Perspective opens with
the application running on the hardware. The code execution stops at the main program
entry.

5. Click the Resume button on the toolbar to execute the application.

The application is now stuck: a system hang has been encountered.

Chapter 3: Debug Techniques

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=48

6. To determine the cause of the system hang, go back to Vivado Design Suite. Look at the state
of the ap_done, ap_start, ap_idle and ap_ready signals for the function. The state of
these signals indicates that a transaction was started at the instance when the ap_start
signal went High, followed by the transaction ending when the ap_done signal went Low.
The ap_ready and ap_idle signals likewise indicate the state of the function.

Analyzing the state of the DMA at the same point of time, you can see that while the
hardware function has finished accepting data, the DMA is still writing to it, as indicated by
the M00_AXIS_tready and the M00_AXIS_tvalid signals.

Chapter 3: Debug Techniques

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=49

Now that you know the cause of the system hang, you can go back to the hardware function
code and fix any outstanding issues.

Causes of System Hangs
There are other situations where a system hang can occur as listed below:

1. If you can Ctrl+C out of the application, there was probably not enough data from the
accelerator. The Arm® processor is expecting more data than the accelerator is sending.
Review latencies if there is more than one path from a producer to a consumer. Designs
where there are multiple paths with equal latencies between two accelerators (for example, A
-> B ... -> Z, while there is also A -> Z direct) need to be fixed at the design level equalizing
the branches.

2. If Ctrl+C does not work, but you can ping or ssh into the board, there is not enough data in
a Scatter Gather DMA (SGDMA) operation. Review the data movers (copy or zero-copy) and
the access pattern.

3. If you cannot ping the board and it has hard locked, only coming back to life after a power
cycle, common causes are interaction between the following:

Chapter 3: Debug Techniques

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=50

a. The SDSoC environment design and IP on the platform. Debug with the ChipScope™
feature and peeking and poking of registers; see Hardware Debugging in SDSoC Using
ChipScope and Peeking and Poking IP Registers.

b. The SDSoC environment design and C-callable IP libraries. Debug with the ChipScope
feature and peeking and poking of registers; see Hardware Debugging in SDSoC Using
ChipScope and Peeking and Poking IP Registers.

c. The RTL or the SW driver generated in the SDSoC flow. If you have enough Vivado
Design Suite or C driver experience you might be able to debug this; otherwise, contact
the Xilinx forums.

Causes of Runtime Errors
The following list shows other sources of runtime errors:

• Improper placement of wait() statements could result in the following issues:

○ The software might read invalid data before a hardware accelerator has written the correct
value.

○ A blocking wait() might be called before a related accelerator is started, resulting in a
system hang.

• Inconsistent use of the memory consistency SDS data mem_attribute pragma can result
in incorrect results.

Unexpected Data Values

When the application is running, it is possible to get unexpected data. The hardware function
might not be returning the expected data, or it might be returning expected data at the wrong
time. This can be caused by hardware and/or software issues. If hardware is the suspected root
cause, check data inputs to your board using the ChipScope feature if needed. If software is the
suspected root cause, perform the following steps:

1. Go back to software debug and confirm that your software is good.

2. If the software debug is good, you need to visually inspect the code. Two common causes for
unexpected data are from the use of the #SDS data or the #SDS zero copy pragmas.

3. If you are using #SDS data pragmas, the tools trust what you write. Confirm that the data
access pattern in the code matches the data access pattern specified by the pragma.

4. An incorrectly sized (normally too large) #SDS zero copy can pull invalid data from cache.
This is seen in hardware. Emulation is likely to pass as there is no cache controller in software.

Chapter 3: Debug Techniques

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 51Send Feedback

https://forums.xilinx.com
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=51

Peeking and Poking IP Registers
With the Xilinx® System Debugger tool (XSDB), you can understand what is happening with the
IP blocks included with the platform or the various C-callable IP blocks. From the Xilinx Software
Command Line Tool (XCST) console, you can read and write registers within various IP blocks in
the integrated design. Registers can be read by typing the memory read command, mrd. Likewise,
a writable register in any IP in the design can be written to by typing the mwr command in the
XSCT console. For help with commands, type <command> -help.

You need to be familiar with the memory map of the various IP blocks within the design to be
able to perform reads and writes to the registers. You can access this information by opening the
Vivado project and looking at the address editor. The Vivado project can be found at
<project_name>/<Debug or Release>/_sds/p0/vivado/prj/prj.xpr. Double-
clicking prj.xpr opens up the project in Vivado. In the Vivado IDE, click on IP Integrator → 
Open Block Design under Flow Navigator. Click on the Address Editor tab to view the memory
map information.

For details on XSDB, refer to SDK Online Help (UG782).

CAUTION! Trying to access an address that is not mapped results in a BUS ERROR. Addresses that are mapped,
but lack proper backing, result in a system hang.

Chapter 3: Debug Techniques

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 52Send Feedback

https://www.xilinx.com/html_docs/xilinx2019_1/SDK_Doc/index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=52

Event Tracing
This section describes how traces are collected and displayed in the SDSoC environment.

Runtime Trace Collection
Software traces are inserted into the same storage path as the hardware traces and receive a
time stamp using the same timer/counter as hardware traces. This single-trace data stream is
buffered in the hardware system and accessed over JTAG by the host PC.

In the SDSoC environment, traces are read back constantly while the program executes
attempting to empty the hardware buffer as quickly as possible and prevent buffer overflow.
However, trace data only displays when the application is finished.

Trace data is collected in real time when you are running on the hardware. For information about
connecting to the hardware, refer to Connecting to the Hardware.

Trace Visualization
The SDSoC environment displays a graphical rendering of the hardware and software trace
stream. Each trace point in the user application is given a unique name, and its own axis on the
timeline. In general, a trace point can create multiple trace events throughout the execution of
the application, for example, if the same block of code is executed in a loop, or if an accelerator is
invoked more than once.

Figure 12: Example Trace Visualization Highlighting the Different Types of Events

X22041-112718

Each trace event has a few different attributes: name, type, start time, stop time, and duration.
This data is shown as a tool-tip when the cursor hovers above one of the event rectangles in the
view.

Chapter 3: Debug Techniques

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=53

Figure 13: Example Trace Visualization Highlighting the Detailed Information
Available for Each Event

X22041-112718

Figure 14: Example Trace Visualization Highlighting the Event Names and Correlation
to the User Program

X22040-112718

Troubleshooting
The following section provides general information on troubleshooting the different conditions
encountered during event tracing.

• Incremental build flow: The SDSoC environment does not support any incremental build flow
using the trace feature. To ensure the correct build of your application and correct trace
collection, do a project clean first, followed by a build after making any changes to your source
code. Even if the source code you change does not relate to or impact any function marked
for hardware, you can see incorrect results.

Chapter 3: Debug Techniques

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=54

• Programming and bitstream: The trace functionality is a single-use type of analysis. The timer
used for time-stamping events is not started until the first event occurs, and runs indefinitely
afterward. If you run your software application once after programming the bitstream, the
timer is in an unknown state after your program is finished running. Running your software for
a second time results in incorrect timestamps for events. Be sure to program the bitstream
first, followed by downloading your software application, each and every time you run your
application to take advantage of the trace feature. Your application will run correctly a second
time, but the trace data will not be correct. For Linux, you need to reboot because the
bitstream is loaded during boot time by U-Boot.

• Buffering up traces: In the SDSoC environment, traces are buffered up and read out in real
time as the application executes (although at a slower speed than they are created on the
device), but are displayed after the application finishes in a post-processing fashion. This relies
on having enough buffer space to store traces until they can be read out by the host PC. By
default, there is enough buffer space for 1024 traces. After the buffer fills up, subsequent
traces that are produced are dropped and lost. An error condition is set when the buffer
overflows. Any traces created after the buffer overflows are not collected, and traces just
prior to the overflow might be displayed.

• Errors: In the SDSoC environment, traces are buffered up in hardware before being read out
over JTAG by the host PC. If traces are produced faster than they are consumed, a buffer
overflow event might occur. The trace infrastructure is recognizes this and sets an error flag
that is detected during the collection on the host PC. After the error flag is parsed during
trace data collection, collection is halted and the trace data that was read successfully is
prepared for display. However, some data read successfully just prior to the buffer overflow
might appear incorrectly in the visualization.

After an overflow occurs, an error file is created in the <build_config>/_sds/trace
directory with the name in the following format: archive_DAY_MON_DD_HH_MM_SS_-
GMT_YEAR_ERROR. You must reprogram the device (reboot Linux and so on) prior to running the
application and collecting trace data again. The only way to reset the trace hardware in the
design is with reprogramming.

Debugging with Software/Hardware Cross
Probing

After an SDx environment application has been created and functions are marked for hardware
acceleration, build the design with the appropriate settings. Then, connect to the target board
(see Connecting to the Hardware).

Setting Debug Configurations
1. In the Project Explorer view, click the ELF (.elf) file in the Debug folder in the project.

Chapter 3: Debug Techniques

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=55

2. In the toolbar, click Debug, or use the Debug drop-down list to select Debug As → Launch on
Hardware (SDx Application Debugger).

3. Alternatively, right-click the project and select Debug As → Launch on Hardware (SDx
Application Debugger). The Confirm Perspective Switch dialog box appears.

4. Ensure that the board is switched on before debugging the project. Click Yes to switch to the
debug perspective. You are now in the Debug Perspective of the SDx IDE.

Note: The debugger resets the system, programs and initializes the device, and then breaks at the main
function. The source code is shown in the center panel, and local variables are shown in the top right
corner panel. The SDx environment log at the bottom right panel shows the Debug Configuration log.

Before you run the application, connect a serial terminal to the board so that you can see the
output from your program. As an example, the following settings can be used:

• Connection Type: Serial

• Port: COM<n>

• Baud Rate: 115200

Running the Application
Click Resume to run your application and observe the output in the terminal window. The source
code window shows the _exit function, and the Terminal tab shows the output from the
application.

Figure 15: Debug Perspective

Chapter 3: Debug Techniques

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=56

The code stops execution at the main function, as can be seen in the Debug tab. Additional
breakpoints can be set in the code at specific points to stop the execution of the code at that
specific point. Breakpoints can be enabled or disabled by double-clicking on the vertical blue bar
adjacent to the line numbers in the code. Execution of the code can be resumed by clicking the
Resume icon on the toolbar.

Tips for Debugging Performance
The SDSoC environment provides some basic performance monitoring capabilities with the
following functions:

• sds_clock_counter(): Use this function to determine how much time different code
sections, such as the accelerated code and the non-accelerated code, take to execute.

• sds_clock_frequency(): This function returns the number of CPU cycles per second.

You can estimate the actual hardware acceleration time by looking at the latency numbers in the
Vivado Design Suite High-level Synthesis (HLS) tool report files (_sds/vhls/…/*.rpt) or in the
IDE under Reports → HLS Report. The latency of X accelerator clock cycles equals X *
(processor_clock_freq/accelerator_clock_freq)processor clock cycles.
Compare this with the time spent on the actual function call to determine the overhead of setup
and data transfers.

For best performance improvement, the time required for executing the accelerated function
must be much smaller than the time required for executing the original software function. If this
is not true, try to run the accelerator at a higher frequency by selecting a different clkid on the
sds++ command line. If that does not work, try to determine whether the data transfer
overhead is a significant part of the accelerated function execution time, and reduce the data
transfer overhead. Note that the default clkid is 100 MHz for all platforms. More details about
the clkid values for the given platform can be obtained by running -sds-pf-info <path>/
<platform_name>.

If the data transfer overhead is large, the following changes might help:

• Move more code into the accelerated function so that the computation time increases, and
the ratio of computation to data transfer time is improved.

• Reduce the amount of data to be transferred by modifying the code or using pragmas to
transfer only the required data.

• Sequentialize the access pattern as observed from the accelerator code, because it is more
efficient to burst transfers than to make a series of unrelated random accesses.

Chapter 3: Debug Techniques

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=57

• Ensure that data transfers make use of system ports that are appropriate for the cache-ability
of the data being transferred. Cache flushing can be an resource-intensive procedure, and
using coherent ports to access coherent data, and non-coherent ports to access non-coherent
ports makes a significant impact.

Use sds_alloc() instead of malloc, where possible. The memory that sds_alloc()
issues is physically contiguous, and enables the use of data movers that are faster to configure
that require physically contiguous memory. Also, pinning virtual pages, which is necessary
when transferring data issue by malloc() data, is very costly.

Troubleshooting Compile and Link Time
Errors

Typical compile/link time errors are indicated by error messages issued when running make. To
analyze further, look at the log files and rpt files in the _sds/reports sub-directory created
by the SDSoC environment in the build directory. The most recently generated log file usually
indicates the cause of the error, such as a syntax error in the corresponding input file, or an error
generated by the tool chain while synthesizing accelerator hardware or the data motion network.

The following are tips and strategies to address errors specific to the SDSoC environment.

Tool Errors Are Reported by Tools in the SDSoC Environment Chain

Try the following troubleshooting steps:

• Check whether the corresponding code adheres to the Coding Guidelines in SDSoC
Environment Programmers Guide (UG1278).

• Check the syntax of pragmas. See the SDx Pragma Reference Guide (UG1253) for more details.

• Check for typos in pragmas that might prevent them from being applied as intended.

Vivado Design Suite High-Level Synthesis (HLS) Cannot Meet Timing Requirement

Try the following troubleshooting steps:

• Select a slower clock frequency for the accelerator in the SDx IDE (or with the sdscc/sds++
command line parameter).

• Modify the code structure to allow HLS to generate a faster implementation. See the
Improving Hardware Function Parallelism section in SDSoC Environment Profiling and
Optimization Guide (UG1235) for more information on how to do this.

Vivado Tools Cannot Meet Timing

Try the following troubleshooting steps:

Chapter 3: Debug Techniques

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 58Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1278-sdsoc-programmers-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1253-sdx-pragma-reference.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=58

• In the SDx IDE, select a slower clock frequency for the data motion network or accelerator, or
both (from the command line, use sdscc/sds++ command line parameters).

• Use the -xp option to specify a Vivado implementation strategy to improve results. For
example:

-impl-strategy Performance_Explore

• Provide an example/resource to help the user synthesize the HLS block to a higher clock
frequency so that the synthesis/implementation tools have a bigger margin.

• Modify the C/C++ code passed to HLS, or add more HLS directives to make the HLS block go
faster.

• Reduce the size of the design in cases where the resource usage exceeds 80%. Refer to the
Vivado tools reports in the _sds folder.

The Design Is Too Large to Fit

Try the following troubleshooting steps:

• Reduce the number of accelerated functions.

• Change the coding style for an accelerator function to produce a more compact accelerator.
You can reduce the amount of parallelism using the mechanisms described in the Improving
Hardware Function Parallelism section in SDSoC Environment Profiling and Optimization Guide
(UG1235).

• Modify pragmas and coding styles (pipelining) that cause multiple instances of accelerators to
be created.

• Use pragmas to select smaller data movers such as AXIFIFO instead of AXIDMA_SG.

• Rewrite hardware functions to have fewer input and output parameters/arguments, especially
in cases where the inputs/outputs are continuous stream (sequential access array argument)
types that prevent the sharing of data mover hardware.

Troubleshooting Performance Issues
The SDSoC environment provides some basic performance monitoring capabilities in the form of
the sds_clock_counter() function. Use this function to determine how much time different
code sections, such as the accelerated and the non-accelerated code, take to execute.

To estimate the actual hardware acceleration time, you need to know the latency numbers from
the Vivado HLS report, the clock frequency for the accelerator, and the Arm CPU clock
frequency. To open the Vivado HLS report for the latency numbers, in the Assistant view, go to
<Project Name> → <Build Configuration> → <Accelerator Name> → HLS report. To view the
clock frequency for the accelerator, go to the Hardware Functions section of the Project Settings.

Chapter 3: Debug Techniques

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 59Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=59

Click on the Platform link in the Project Overview to open the Platform Summary dialog. The
CPU frequency is shown under Clock Frequencies. A latency of X accelerator clock cycles is
equal to X * (<processor clock frequency>/<accelerator clock frequency>) processor clock cycles.
Compare this with the time spent on the actual function call to determine the data transfer
overhead.

For best performance improvement, the time required for executing the accelerated function
must be much smaller than the time required for executing the original software function. If this
is not true, try to run the accelerator at a higher frequency by selecting a different clkid on the
sdscc/sds++ command line. If that does not work, try to determine whether the data transfer
overhead is a significant part of the accelerated function execution time, and reduce the data
transfer overhead.

Note: More details about the clkid values for a given platform can be obtained by running the following
command:

sds++ -sds-pf-info

If the data transfer overhead is large, the following changes might help:

• Move more code into the accelerated function so that the computation time increases, and
the ratio of computation to data transfer time is improved.

• Reduce the amount of data to be transferred by modifying the code or using pragmas to
transfer only the required data.

Chapter 3: Debug Techniques

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=60

Appendix A

SDSoC Environment
Troubleshooting

There are several common types of issues you might encounter using the SDSoC™ environment
flow:

• Compile/link time errors might be the result of typical software syntax errors caught by
software compilers, or errors specific to the SDSoC environment flow, such as the design
being too large to fit on the target platform.

• Runtime errors might be the result of general software issues, such as null-pointer access, or
issues specific to the SDSoC environment, such as incorrect data being transferred to/from
accelerators.

• Performance issues are related to the choice of the algorithms used for acceleration, the time
taken for transferring the data to/from the accelerator, and the actual speed at which the
accelerators and the data motion network operate.

• Incorrect program behavior can be the result of logical errors in code that fails to implement
algorithmic intent.

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=61

Appendix B

Additional Resources and Legal
Notices

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

1. SDSoC Environments Release Notes, Installation, and Licensing Guide (UG1294)

2. SDSoC Environment User Guide (UG1027)

3. SDSoC Environment Getting Started Tutorial (UG1028)

4. SDSoC Environment Tutorial: Platform Creation (UG1236)

5. SDSoC Environment Platform Development Guide (UG1146)

Appendix B: Additional Resources and Legal Notices

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 62Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1294-sdsoc-rnil.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1027-sdsoc-user-guide.pdf
https://github.com/Xilinx/SDSoC-Tutorials/tree/master/getting-started-tutorial
https://github.com/Xilinx/SDSoC-Tutorials/tree/master/platform-creation-tutorial
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1146-sdsoc-platform-development.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=62

6. SDSoC Environment Profiling and Optimization Guide (UG1235)

7. SDx Command and Utility Reference Guide (UG1279)

8. SDSoC Environment Programmers Guide (UG1278)

9. SDSoC Environment Debugging Guide (UG1282)

10. SDx Pragma Reference Guide (UG1253)

11. UltraFast Embedded Design Methodology Guide (UG1046)

12. Zynq-7000 SoC Software Developers Guide (UG821)

13. Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137)

14. ZC702 Evaluation Board for the Zynq-7000 XC7Z020 SoC User Guide (UG850)

15. ZCU102 Evaluation Board User Guide (UG1182)

16. PetaLinux Tools Documentation: Reference Guide (UG1144)

17. Vivado Design Suite User Guide: High-Level Synthesis (UG902)

18. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)

19. SDSoC Development Environment web page

20. Vivado® Design Suite Documentation

Training Resources
1. SDSoC Development Environment and Methodology

2. Advanced SDSoC Development Environment and Methodology

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any

Appendix B: Additional Resources and Legal Notices

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 63Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1278-sdsoc-programmers-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1282-sdsoc-debugging-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1253-sdx-pragma-reference.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1046-ultrafast-design-methodology-guide.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug821-zynq-7000-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
https://www.xilinx.com/cgi-bin/docs/bkdoc?k=zcu102;d=ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com/training/courses/sdsoc-development-environment-method.html
https://www.xilinx.com/training/courses/advanced-sdsoc-development-environment-methodology.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=63

action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2018–2019 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. OpenCL and the OpenCL logo are trademarks of Apple Inc.
used by permission by Khronos. HDMI, HDMI logo, and High-Definition Multimedia Interface are
trademarks of HDMI Licensing LLC. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight,
Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other
countries. All other trademarks are the property of their respective owners.

Appendix B: Additional Resources and Legal Notices

UG1282 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Debugging Guide 64Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1282&Title=SDSoC%20Environment%20Debugging%20Guide&releaseVersion=2019.1&docPage=64

	SDSoC Environment Debugging Guide
	Revision History
	Table of Contents
	Ch. 1: Introduction to Debugging in SDSoC
	SDSoC Environment Overview
	Terminology
	Elements of SDSoC
	Execution Model of an SDSoC Application
	SDSoC Build Process

	SDSoC Debug Flow Overview
	System Emulation
	Hardware Execution Flow
	Connecting to the Hardware

	Event Tracing

	Ch. 2: SDSoC Debug Features
	SDx Environment Debug Tools
	Xilinx System Debugger (XSDB)
	Setting Debug Configurations
	Main Tab
	Application Tab
	Target Setup Tab
	Arguments Tab
	Environment Tab
	Remaining Debug Configuration Tabs

	Target Connections
	Debug Linux Applications in the SDx IDE
	Debugging Standalone or FreeRTOS Applications in the SDx IDE

	Xilinx Software Command-Line Tool (XSCT)

	System Emulation
	Running System Emulation from the IDE
	Enable System Emulation
	Run the System Emulator
	View Emulation Output

	Running System Emulation from the Command Line

	Hardware Execution Features Available to All Platforms
	Hardware Debugging in SDSoC Using ChipScope
	Using --dk to Enable Debugging the Accelerated Function
	Add Flags to Build Settings

	Analyzing the Hardware Design
	Debugging Designs Using Vivado Hardware Manager

	Hardware/Software Event Tracing
	Hardware/Software System Runtime Operation
	Software Tracing
	Hardware Tracing
	Implementation Flow

	Ch. 3: Debug Techniques
	Debugging System Hangs and Runtime Errors
	System Hang Debugging Example
	Causes of System Hangs
	Causes of Runtime Errors
	Unexpected Data Values

	Peeking and Poking IP Registers
	Event Tracing
	Runtime Trace Collection
	Trace Visualization
	Troubleshooting

	Debugging with Software/Hardware Cross Probing
	Setting Debug Configurations
	Running the Application

	Tips for Debugging Performance
	Troubleshooting Compile and Link Time Errors
	Troubleshooting Performance Issues

	Appx. A: SDSoC Environment Troubleshooting
	Appx. B: Additional Resources and Legal Notices
	Documentation Navigator and Design Hubs
	References
	Training Resources
	Please Read: Important Legal Notices

