
Vitis High-Level Synthesis
User Guide

UG1399 (v2022.2) October 19, 2022

See all versions
of this document

Xilinx is creating an environment where employees, customers, and
partners feel welcome and included. To that end, we’re removing non-
inclusive language from our products and related collateral. We’ve
launched an internal initiative to remove language that could exclude
people or reinforce historical biases, including terms embedded in our
software and IPs. You may still find examples of non-inclusive
language in our older products as we work to make these changes and
align with evolving industry standards. Follow this link for more
information.

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG1399
https://www.xilinx.com/content/dam/xilinx/publications/about/Inclusive-terminology.pdf

Table of Contents
Section I: Introduction...11

Navigating Content by Design Process.. 11
Benefits of High-Level Synthesis... 12
Introduction to Vitis HLS...14
Tutorials and Examples.. 16

Section II: HLS Programmers Guide...17

Chapter 1: Design Principles..18
Three Paradigms for Programming FPGAs...19
Combining the Three Paradigms... 26
Conclusion - A Prescription for Performance... 30

Chapter 2: Abstract Parallel Programming Model for HLS...............33
Control and Data Driven Tasks... 35
Data-driven Task-level Parallelism... 36
Control-driven Task-level Parallelism.. 39
Mixing Data-Driven and Control-Driven Models..50
Summary... 52

Chapter 3: Loops Primer.. 54
Pipelining Loops... 54
Unrolling Loops.. 66
Merging Loops..67
Working with Nested Loops..69
Working with Variable Loop Bounds... 72

Chapter 4: Arrays Primer... 75
Mapping Software Arrays to Hardware Memory... 75
Array Accesses and Performance...76
Arrays on the Interface..81
Initializing and Resetting Arrays.. 85

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=2

Implementing ROMs..87
C Simulation with Arrays... 88

Chapter 5: Functions Primer..90
Function Inlining.. 90
Function Pipelining.. 91
Function Instantiation... 92

Chapter 6: Data Types... 94
Standard Types...95
Composite Data Types...100
Arbitrary Precision (AP) Data Types...116
Global Variables..122
Pointers... 123
Vector Data Types.. 134
Bit-Width Propagation...135

Chapter 7: Unsupported C/C++ Constructs... 136
System Calls.. 136
Dynamic Memory Usage... 137
Pointer Limitations...139
Recursive Functions... 139
Undefined Behaviors... 140
Virtual Functions and Pointers... 141

Chapter 8: Interfaces of the HLS Design...142
Defining Interfaces.. 142
Vitis HLS Memory Layout Model.. 205
Execution Modes of HLS Designs...217
Controlling Initialization and Reset Behavior... 227

Chapter 9: Creating Efficient HLS Designs... 230

Chapter 10: Optimizing Techniques and Troubleshooting Tips...233
Understanding High-Level Synthesis Scheduling and Binding....................................235
Optimizing Logic.. 242
Optimizing AXI System Performance.. 244
Managing Area and Hardware Resources ... 278
Unrolling Loops in C++ Classes...281

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=3

Limitations of Control-Driven Task-Level Parallelism.. 282
Limitations of Pipelining with Static Variables... 287

Section III: Using Vitis HLS.. 289

Chapter 11: Launching Vitis HLS..290
Setting Up the Environment... 291
Overview of the Vitis HLS IDE... 291

Chapter 12: Creating a New Vitis HLS Project..296
Working with Sources..303
Setting Configuration Options... 324
Specifying the Clock Frequency..327
Using the Flow Navigator..329
Vitis HLS Flow Overview...330

Chapter 13: Verifying Code with C Simulation...................................... 333
hls::print Function.. 336
Writing a Test Bench..337
Using the Debug View Layout.. 344
Output of C Simulation..345
Pre-Synthesis Control Flow... 345

Chapter 14: Synthesizing the Code.. 348
Synthesis Summary... 350
Output of C Synthesis.. 357
Improving Synthesis Runtime and Capacity...358

Chapter 15: Analyzing the Results of Synthesis....................................359
Schedule Viewer .. 359
Function Call Graph Viewer...363
Dataflow Viewer... 365
Timeline Trace Viewer..367

Chapter 16: Optimizing the HLS Project..370
Creating Additional Solutions...370
Adding Pragmas and Directives... 372

Chapter 17: C/RTL Co-Simulation in Vitis HLS.. 378

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=4

Output of C/RTL Co-Simulation.. 381
Automatically Verifying the RTL... 382
Analyzing RTL Simulations.. 386
Cosim Deadlock Viewer... 388
Debugging C/RTL Co-Simulation... 390

Chapter 18: Exporting the RTL Design... 394
Running Implementation..397
Implementation Report...399
Output of RTL Export... 401
Archiving the Project..402

Chapter 19: Running Vitis HLS from the Command Line.................404

Section IV: Vitis HLS Command Reference... 406

Chapter 20: vitis_hls Command..407
hls_init.tcl...408

Chapter 21: Project Commands..409
add_files...409
cat_ini...411
close_project... 412
close_solution... 412
cosim_design.. 413
cosim_stall...415
create_clock...416
csim_design...417
csynth_design... 418
delete_project... 418
delete_solution... 419
enable_beta_device.. 420
export_design... 420
get_clock_period...422
get_clock_uncertainty.. 423
get_files... 423
get_part... 424
get_project.. 424
get_solution.. 425

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=5

get_top...426
help.. 426
list_part.. 427
open_project... 428
open_solution... 429
open_tcl_project... 430
set_clock_uncertainty...431
set_part..432
set_top... 433

Chapter 22: Configuration Commands.. 434
config_array_partition..434
config_compile..435
config_cosim... 437
config_csim... 439
config_dataflow.. 440
config_debug.. 442
config_export.. 442
config_interface..445
config_op...448
config_rtl..451
config_schedule..453
config_storage.. 453
config_unroll... 454

Chapter 23: Optimization Directives...455
set_directive_aggregate.. 455
set_directive_alias...456
set_directive_allocation..458
set_directive_array_partition...459
set_directive_array_reshape..462
set_directive_bind_op...464
set_directive_bind_storage..468
set_directive_dataflow... 471
set_directive_dependence...473
set_directive_disaggregate... 475
set_directive_expression_balance.. 477
set_directive_function_instantiate..478

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=6

set_directive_inline... 480
set_directive_interface... 481
set_directive_latency.. 486
set_directive_loop_flatten..487
set_directive_loop_merge..489
set_directive_loop_tripcount... 490
set_directive_occurrence... 491
set_directive_performance..492
set_directive_pipeline...494
set_directive_protocol.. 496
set_directive_reset..497
set_directive_stable.. 498
set_directive_stream.. 499
set_directive_top...501
set_directive_unroll.. 502

Chapter 24: HLS Pragmas.. 504
pragma HLS aggregate... 505
pragma HLS alias..506
pragma HLS allocation.. 508
pragma HLS array_partition..510
pragma HLS array_reshape...512
pragma HLS bind_op... 515
pragma HLS bind_storage...519
pragma HLS dataflow.. 523
pragma HLS dependence..525
pragma HLS disaggregate.. 528
pragma HLS expression_balance... 530
pragma HLS function_instantiate...531
pragma HLS inline..532
pragma HLS interface..535
pragma HLS latency...541
pragma HLS loop_flatten...543
pragma HLS loop_merge...545
pragma HLS loop_tripcount.. 547
pragma HLS occurrence..548
pragma HLS performance...550
pragma HLS pipeline... 551

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=7

pragma HLS protocol...554
pragma HLS reset...555
pragma HLS stable...556
pragma HLS stream... 557
pragma HLS top..559
pragma HLS unroll... 560

Section V: Vitis HLS C Driver Reference..564

Chapter 25: AXI4-Lite Slave C Driver Reference....................................565
X<DUT>_Initialize..565
X<DUT>_CfgInitialize..566
X<DUT>_LookupConfig.. 566
X<DUT>_Release... 567
X<DUT>_Start.. 567
X<DUT>_IsDone.. 567
X<DUT>_IsIdle...568
X<DUT>_IsReady...568
X<DUT>_Continue...568
X<DUT>_EnableAutoRestart..569
X<DUT>_DisableAutoRestart...569
X<DUT>_Set_ARG.. 569
X<DUT>_Set_ARG_vld... 570
X<DUT>_Set_ARG_ack...570
X<DUT>_Get_ARG... 571
X<DUT>_Get_ARG_vld...571
X<DUT>_Get_ARG_ack.. 571
X<DUT>_Get_ARG_BaseAddress... 572
X<DUT>_Get_ARG_HighAddress... 572
X<DUT>_Get_ARG_TotalBytes..573
X<DUT>_Get_ARG_BitWidth...573
X<DUT>_Get_ARG_Depth... 574
X<DUT>_Write_ARG_Words... 574
X<DUT>_Read_ARG_Words.. 575
X<DUT>_Write_ARG_Bytes... 575
X<DUT>_Read_ARG_Bytes..576
X<DUT>_InterruptGlobalEnable... 576
X<DUT>_InterruptGlobalDisable.. 577
X<DUT>_InterruptEnable...577

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=8

X<DUT>_InterruptDisable..578
X<DUT>_InterruptClear... 578
X<DUT>_InterruptGetEnabled.. 578
X<DUT>_InterruptGetStatus... 579

Section VI: Vitis HLS Libraries Reference.. 580

Chapter 26: C/C++ Builtin Functions..581

Chapter 27: Arbitrary Precision Data Types Library...........................582
Using Arbitrary Precision Data Types.. 582
C++ Arbitrary Precision Integer Types... 585
C++ Arbitrary Precision Fixed-Point Types.. 606

Chapter 28: Vitis HLS Math Library.. 634
HLS Math Library Accuracy .. 634
HLS Math Library..636
Fixed-Point Math Functions.. 637
Verification and Math Functions.. 640
Common Synthesis Errors...643

Chapter 29: HLS Stream Library...645
C Modeling and RTL Implementation..646
Using HLS Streams...647

Chapter 30: HLS Vector Library.. 655

Chapter 31: HLS Task Library...658
Tasks and Channels... 659
Tasks and Dataflow.. 661

Chapter 32: HLS Split/Merge Library...664

Chapter 33: HLS Stream of Blocks Library..669
Stream-of-Blocks Modeling Style... 670
Checking for Full and Empty Blocks...673
Modeling Feedback in Dataflow Regions..675
Limitations.. 676

Chapter 34: HLS IP Libraries...678

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=9

FFT IP Library.. 678
FIR Filter IP Library...687
DDS IP Library...696
SRL IP Library..701

Section VII: Vitis HLS Migration Guide..704

Chapter 35: Migrating to Vitis HLS... 705
Key Behavioral Differences... 705

Chapter 36: Deprecated and Unsupported Features......................... 712

Chapter 37: Unsupported Features .. 717
Assertions..717
Pragmas.. 717
HLS Video Library... 718
C Arbitrary Precision Types .. 718

Appendix A: Additional Resources and Legal Notices........................... 719
Xilinx Resources...719
Documentation Navigator and Design Hubs.. 719
References..719
Revision History...720
Please Read: Important Legal Notices... 723

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=10

Section I

Introduction
This section contains the following chapters:

• Navigating Content by Design Process

• Section II: HLS Programmers Guide

• Vitis HLS Flow Overview

Navigating Content by Design
Process

Xilinx® documentation is organized around a set of standard design processes to help you find
relevant content for your current development task. All Versal® ACAP design process Design
Hubs and the Design Flow Assistant materials can be found on the Xilinx.com website. This
document covers the following design processes:

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, functional simulation, and evaluating the Vivado® timing,
resource use, and power closure. Also involves developing the hardware platform for system
integration. Topics in this document that apply to this design process include:

• Launching Vitis HLS

• Verifying Code with C Simulation

• Synthesizing the Code

• Analyzing the Results of Synthesis

• Optimizing the HLS Project

Section I: Introduction

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 11Send Feedback

https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/support/documentation-navigation/design-process/versal-decision-tree-welcome.html
https://www.xilinx.com
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=11

Benefits of High-Level Synthesis
High-Level Synthesis is an automated design process that takes an abstract behavioral
specification of a digital system and generates a register-transfer level structure that realizes the
given behavior.

A typical flow using High-Level Synthesis has the following steps:

1. Write the algorithm at a high abstraction level using C/C++/SystemC with a given
architecture in mind

2. Verify the functionality at the behavioral level

3. Use the HLS tool to generate the RTL for a given clock speed, input constraints

4. Verify the functionality of the generated RTL

5. Explore different architectures using the same input source code

HLS can enable the path of creating high-quality RTL, rather quickly than manually writing error-
free RTL.

The designer needs to create the macro-architecture of the algorithm in C/C++ at a high level,
meaning that the design intent and how this design interacts with the outside world should be
carefully thought through. HLS tool also requires input constraints like clock period, performance
constraints, etc.

Micro-architecture decisions like creating the state machine, datapath, register pipelines, etc are
not needed at a high level. These details can be left to the HLS tool and optimized RTL can be
generated by providing input constraints like clock speed, performance pragmas, target device,
etc.

Section I: Benefits of High-Level Synthesis

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=12

Figure 1: Design Processes

Using the defined macro-architecture of the C/C++ algorithm, designers can also vary constraints
to generate multiple RTL solutions to explore trade-offs between performance and area. So a
single algorithm can lead to multiple implementations, allowing designers to choose an
implementation that best meets the needs of the overall application.

Improve Productivity

With HLS. the designer is working on a high abstraction level, meaning fewer lines of code will
need to be written as input to HLS. Due to less time spent on writing the C++ code and quicker
turnaround, less error-prone thus increasing overall design productivity. The designers can focus
more time on creating efficient designs at a higher level than worrying about mechanical RTL
implementation tasks.

HLS not only enables high design productivity but also verification productivity. With HLS, the
testbench is also generated or created at a high level, meaning the original design intent can be
verified very quickly. The designer can explore quick turnarounds of verified algorithms as the
flow is still within the C/C++ domain. Once the algorithm is verified in C/C++, the same
testbench can be used for generated RTL by the HLS tool. Nevertheless, the generated RTL can
be integrated with the existing RTL verification flow for more comprehensive verification
coverage.

The design and verification benefits of using high-level synthesis (HLS) are summarized here:

Section I: Introduction

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=13

• Developing and validating algorithms at the C-level for the purpose of designing at an abstract
level from the hardware implementation details.

• Using C-simulation to validate the design, and iterate more quickly than with traditional RTL
design.

• Creating multiple design solutions from the C source code and pragmas to explore the design
space, and find an optimal solution.

Enable Re-Use

The designs created for High-level synthesis are generic and unaware of implementation. These
sources are not tied to any technology node or any given clock period like a given RTL. With few
updates of input constraints and without any source code changes, multiple architectures can be
explored. A similar practice with the RTL is not pragmatic. The designers create the RTL for a
given clock period and any change for a derivative product, however small it is leads to a new
complex project. Working at a higher level with HLS, designers don't need to worry about the
micro-architecture and can rely on the HLS tool to regenerate new RTL automatically.

Introduction to Vitis HLS
The Vitis HLS tool synthesizes a C or C++ function into RTL code for implementation in the
programmable logic (PL) region of a Versal ACAP, Zynq MPSoC, or Xilinx FPGA device. Vitis HLS
is tightly integrated with both the Vivado Design Suite for synthesis, place, and route, and the
Vitis core development kit for heterogeneous system-level design and application acceleration.

Vitis HLS can be used to develop and export:

• Vivado IP to be integrated into hardware designs using the Vivado Design Suite

• Vitis kernels for use in the Vitis application acceleration development flow

TIP: The Vitis kernel (.xo ) is a Vivado IP with specific requirements and limitations as described in
Interfaces for Vitis Kernel Flow; while Vivado IP have few restrictions and offer greater design flexibility as
described in Interfaces for Vivado IP Flow.

In the Vitis application acceleration flow, the Vitis HLS tool automates much of the code
modifications required to implement and optimize the C/C++ code in programmable logic and to
achieve low latency and high throughput. The inference of required pragmas to produce the right
interface for your function arguments and to pipeline loops and functions within your code is the
foundation of Vitis HLS.

In the Vivado IP flow, Vitis HLS also supports customization of your code to implement broader
interface standards to achieve your design objectives. The RTL generated can be used as an IP
directly within the Vivado tool or Model composer.

Section I: Introduction to Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=14

Here are the steps for the development of the C++ function.

1. Architect the algorithm based on the Design Principles

2. (C-Simulation) Verify the C/C++ Code with the C/C++ testbench

3. (C-Synthesis) Generate the RTL using HLS

4. (Co-Simulation) Verify the kernel generated with C++ outputs

5. (Analyze) Review the HLS synthesis reports and co-simulation reports, analyze

6. Re-run previous steps until performance goals are met.

Figure 2: Vitis HLS Development Flow

Vitis HLS implements the solution based on the target flow, default tool configuration, design
constraints, and any optimization pragmas or directives you specify. You can use optimization
directives to modify and control the implementation of the internal logic and I/O ports,
overriding the default behaviors of the tool.

The C/C++ code is synthesized as follows:

Section I: Introduction

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=15

• Top-level function arguments synthesize into RTL I/O port interfaces automatically by Vitis
HLS. As described in Defining Interfaces, the default interfaces that the tool creates depends
on the target flow, the data type and direction of the function argument, the default interface
mode, and any user-specified INTERFACE pragmas or directives that manually define the
interface. Sub-functions of the top-level C/C++ function synthesize into blocks in the
hierarchy of the RTL design

• The Vitis HLS tool will not unroll loops unless it improves the performance of the solution, like
unrolling nested loops to pipeline the top-level loop. When loops are rolled, synthesis creates
the logic for one iteration of the loop, and the RTL design executes this logic for each iteration
of the loop in sequence. Unrolled loops let some or all iterations of the loop occur in parallel,
but also consume more device resources.

• Arrays in the code are synthesized into block RAM (BRAM), LUT RAM, or UltraRAM in the
final FPGA design. If the array is on the top-level function interface, high-level synthesis
implements the array as ports with access to a block RAM outside the design.

Vitis HLS uses Tcl commands to input constraints or directives that are associated with a specific
solution or set of solutions. The constraints can be used for overriding specific thresholds or
behaviors in a particular scope such as a function, loop or region of the code. Global
configuration commands can also be used to override default features for the whole design, like
auto-pipelining loops with a number of iterations greater than 16.

Tutorials and Examples
To help you quickly get started with the Vitis HLS, you can find tutorials and example
applications at the following locations:

• Vitis HLS Introductory Examples (https://github.com/Xilinx/Vitis-HLS-Introductory-
Examples): Hosts many small code examples to demonstrate good design practices, coding
guidelines, design pattern for common applications, and most importantly, optimization
techniques to maximize application performance. All examples include a README file, and a
run_hls.tcl script to help you use the example code.

• Vitis Accel Examples Repository (https://github.com/Xilinx/Vitis_Accel_Examples): Contains
examples to showcase various features of the Vitis tools and platforms. This repository
illustrates specific scenarios related to host code and kernel programming for the Vitis
application acceleration development flow, by providing small working examples. The kernel
code in these examples can be directly compiled in Vitis HLS.

• Vitis Application Acceleration Development Flow Tutorials (https://github.com/Xilinx/Vitis-
Tutorials): Provides a number of tutorials that can be worked through to teach specific
concepts regarding the tool flow and application development, including the use of Vitis HLS
as a standalone application, and in the Vitis bottom up design flow.

Section I: Tutorials and Examples

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 16Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples
https://github.com/Xilinx/Vitis_Accel_Examples
https://github.com/Xilinx/Vitis-Tutorials
https://github.com/Xilinx/Vitis-Tutorials
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=16

Section II

HLS Programmers Guide
Introduction

This Programmers Guide is intended to provide real world design techniques, and details of
hardware design which will help you get the most out of the Vitis™ HLS tool. This guide provides
details on programming techniques you should apply when writing C/C++ code for high-level
synthesis into RTL code, and a checklist of best practices to follow when creating IP that utilizes
AXI4 interfaces. Finally, it details various optimization techniques that can improve the
performance of your code, improving both the fit and function of the resulting hardware design.

This section contains the following chapters:

• Design Principles

• Interfaces of the HLS Design

• Optimizing Techniques and Troubleshooting Tips

Section II: HLS Programmers Guide

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=17

Chapter 1

Design Principles
Introduction

You might be working with the HLS tool to take advantage of productivity gains from writing C/C
++ code to generate RTL for hardware; or you might be looking to accelerate portions of a C/C++
algorithm to run on custom hardware implemented in programmable logic. This chapter is
intended to help you understand the process of synthesizing hardware from a software algorithm
written in C/C++. This document introduces the fundamental concepts used to design and create
good synthesizable software in such a way that it can be successfully converted to hardware
using high-level synthesis (HLS) tools. The discussion in this document will be tool-agnostic and
the concepts introduced are common to most HLS tools. For experienced designers, reviewing
this material can provide a useful reinforcement of the importance of these concepts; help you
understand how to approach HLS, and in particular how to structure HLS code to achieve high-
performance designs.

Throughput and Performance

C/C++ functions implemented as custom hardware in programmable logic can run at a
significantly faster rate than what is achievable on traditional CPU/GPU architectures, and
achieve higher processing rates and/or performance. Let us first establish what these terms mean
in the context of hardware acceleration. Throughput is defined as the number of specific actions
executed per unit of time or results produced per unit of time. This is measured in units of
whatever is being produced (cars, motorcycles, I/O samples, memory words, iterations) per unit
of time. For example, the term "memory bandwidth" is sometimes used to specify the throughput
of the memory systems. Similarly, performance is defined as not just higher throughput but higher
throughput with low power consumption. Lower power consumption is as important as higher
throughput in today's world.

Architecture Matters

In order to better understand how custom hardware can accelerate portions of your program,
you will first need to understand how your program runs on a traditional computer. The von
Neumann architecture is the basis of almost all computing done today even though it was
designed more than 7 decades ago. This architecture was deemed optimal for a large class of
applications and has tended to be very flexible and programmable. However, as application
demands started to stress the system, CPUs began supporting the execution of multiple
processes. Multithreading and/or Multiprocessing can include multiple system processes (For
example: executing two or more programs at the same time), or it can consist of one process that

Section II: HLS Programmers Guide
Chapter 1: Design Principles

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=18

has multiple threads within it. Multi-threaded programming using a shared memory system
became very popular as it allowed the software developer to design applications with parallelism
in mind but with a fixed CPU architecture. But when multi-threading and the ever-increasing
CPU speeds could no longer handle the data processing rates, multiple CPU cores and
hyperthreading were used to improve throughput as shown in the figure on the right.

This general purpose flexibility comes at a cost in terms of power and peak throughput. In today's
world of ubiquitous smart phones, gaming, and online video conferencing, the nature of the data
being processed has changed. To achieve higher throughput, you must move the workload closer
to memory, and/or into specialized functional units. So the new challenge is to design a new
programmable architecture in such a way that you can maintain just enough programmability
while achieving higher performance and lower power costs.

A field-programmable gate array (FPGA) provides for this kind of programmability and offers
enough memory bandwidth to make this a high-performance and lower power cost solution.
Unlike a CPU that executes a program, an FPGA can be configured into a custom hardware circuit
that will respond to inputs in the same way that a dedicated piece of hardware would behave.
Reconfigurable devices such as FPGAs contain computing elements of extremely flexible
granularities, ranging from elementary logic gates to complete arithmetic-logic units such as
digital signal processing (DSP) blocks. At higher granularities, user-specified composable units of
logic called kernels can then be strategically placed on the FPGA device to perform various roles.
This characteristic of reconfigurable FPGA devices allows the creation of custom macro-
architectures and gives FPGAs a big advantage over traditional CPUs/GPUs in utilizing
application-specific parallelism. Computation can be spatially mapped to the device, enabling
much higher operational throughput than processor-centric platforms. Today's latest FPGA
devices can also contain processor cores (Arm-based) and other hardened IP blocks that can be
used without having to program them into the programmable fabric.

Three Paradigms for Programming FPGAs
While FPGAs can be programmed using lower-level Hardware Description Languages (HDLs)
such as Verilog or VHDL, there are now several High-Level Synthesis (HLS) tools that can take an
algorithmic description written in a higher-level language like C/C++ and convert it into lower-
level hardware description languages such as Verilog or VHDL. This can then be processed by
downstream tools to program the FPGA device.

Section II: HLS Programmers Guide
Chapter 1: Design Principles

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=19

The main benefit of this type of flow is that you can retain the advantages of the programming
language like C/C++ to write efficient code that can then be translated into hardware.
Additionally, writing good code is the software designer's forte and is easier than learning a new
hardware description language. However, achieving acceptable quality of results (QoR), will
require additional work such as rewriting the software to help the HLS tool achieve the desired
performance goals. The next few sections will discuss how you can first identify some macro-
level architectural optimizations to structure your program and then focus on some fine-grained
micro-level architectural optimizations to boost your performance goals.

Producer-Consumer Paradigm
Consider how software designers write a multithreaded program - there is usually a master
thread that performs some initialization steps and then forks off a number of child threads to do
some parallel computation and when all the parallel computation is done, the main thread
collates the results and writes to the output. The programmer has to figure out what parts can be
forked off for parallel computation and what parts need to be executed sequentially. This fork/
join type of parallelism applies as well to FPGAs as it does to CPUs, but a key pattern for
throughput on FPGAs is the producer-consumer paradigm. You need to apply the producer-
consumer paradigm to a sequential program and convert it to extract functionality that can be
executed in parallel to improve performance.

You can better understand this decomposition process with the help of a simple problem
statement. Assume that you have a datasheet from which you will import items into a list. You
will then process each item in the list. The processing of each item takes around 2 seconds. After
processing, you will write the result in another datasheet and this action will take an additional 1
second per item. So if you have a total of 100 items in the input Excel sheet then it will take a
total of 300 seconds to generate output. The goal is to decompose this problem in such a way
that you can identify tasks that can potentially execute in parallel and therefore increase the
throughput of the system.

Section II: HLS Programmers Guide
Chapter 1: Design Principles

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=20

Figure 3: Program Workflows

Import
Data

Import
Data

Process
Data

Process
Data

Write
Output

Write
Output

Export
Data

Export
Data

Program Workflow (no overlap)

Program Workflow (with overlap)

X25607-073021

The first step is to understand the program workflow and identify the independent tasks or
functions. The four-step workflow is something like the Program Workflow (no overlap) shown in
the above diagram. In the example, the "Write Output" (step 3) task is independent of the
"Process Data" (step 2) processing task. Although step 3 depends on the output of step 2, as
soon as any of the items are processed in Step 2, you can immediately write that item to the
output file. You don't have to wait for all the data to be processed before starting to write data to
the output file. This type of interleaving/overlapping the execution of tasks is a very common
principle. This is illustrated in the above diagram (For example: the program workflow with
overlap). As can be seen, the work gets done faster than with no overlap. You can now recognize
that step 2 is the producer, and step 3 is the consumer. The producer-consumer pattern has a
limited impact on performance on a CPU. You can interleave the execution of the steps of each
thread but this requires careful analysis to exploit the underlying multi-threading and L1 cache
architecture and therefore a time consuming activity. On FPGAs however, due to the custom
architecture, the producer and consumer threads can be executed simultaneously with little or no
overhead leading to a considerable improvement in throughput.

Section II: HLS Programmers Guide
Chapter 1: Design Principles

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=21

The simplest case to first consider is the single producer and single consumer, who communicate
via a finite-size buffer. If the buffer is full, the producer has a choice of either blocking/stalling or
discarding the data. Once the consumer removes an item from the buffer, it notifies the producer,
who starts to fill the buffer again. In the same way, the consumer can stall if it finds the buffer
empty. Once the producer puts data into the buffer, it wakes up the sleeping consumer. The
solution can be achieved by means of inter-process communication, typically using monitors or
semaphores. An inadequate solution could result in a deadlock where both processes are stalled
waiting to be woken up. However, in the case of a single producer and consumer, the
communication pattern strongly maps to a first-in-first-out (FIFO) or a Ping-Pong buffer (PIPO)
implementation. This type of channel provides highly efficient data communication without
relying on semaphores, mutexes, or monitors for data transfer. The use of such locking primitives
can be expensive in terms of performance and difficult to use and debug. PIPOs and FIFOs are
popular choices because they avoid the need for end-to-end atomic synchronization.

This type of macro-level architectural optimization, where the communication is encapsulated by
a buffer, frees the programmer from worrying about memory models and other non-deterministic
behavior (like race conditions etc). The type of network that is achieved in this type of design is
purely a "dataflow network" that accepts a stream of data on the input side and essentially does
some processing on this stream of data and sends it out as a stream of data. The complexities of
a parallel program are abstracted away. Note that the "Import Data" (Step 1) and "Export Data"
(Step 4) also have a role to play in maximizing the available parallelism. In order to allow
computation to successfully overlap with I/O, it is important to encapsulate reading from inputs
as the first step and writing to outputs as the last step. This will allow for a maximal overlap of
I/O with computation. Reading or writing to input/output ports in the middle of the computation
step will limit the available concurrency in the design. It is another thing to keep in mind while
designing the workflow of your design.

Finally, the performance of such a "dataflow network" relies on the designer being able to
continually feed data to the network such that data keeps streaming through the system. Having
interruptions in the dataflow can result in lower performance. A good analogy for this is video
streaming applications like online gaming where the real-time high definition (HD) video is
constantly streamed through the system and the frame processing rate is constantly monitored
to ensure that it meets the expected quality of results. Any slowdown in the frame processing
rate can be immediately seen by the gamers on their screens. Now imagine being able to support
consistent frame rates for a whole bunch of gamers all the while consuming much less power
than with traditional CPU or GPU architectures - this is the sweet spot for hardware acceleration.
Keeping the data flowing between the producer and consumer is of paramount importance. Next,
you will delve a little deeper into this streaming paradigm that was introduced in this section.

Section II: HLS Programmers Guide
Chapter 1: Design Principles

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=22

Streaming Data Paradigm
A stream is an important abstraction: it represents an unbounded, continuously updating data set,
where unbounded means “of unknown or of unlimited size”. A stream can be a sequence of data
(scalars or buffers) flowing unidirectionally between a source (producer) process and a
destination (consumer) process. The streaming paradigm forces you to think in terms of data
access patterns (or sequences). In software, random memory accesses to data are virtually free
(ignoring the caching costs), but in hardware, it is really advantageous to make sequential
accesses, which can be converted into streams. Decomposing your algorithm into producer-
consumer relationships that communicate by streaming data through the network has several
advantages. It lets the programmer define the algorithm in a sequential manner and the
parallelism is extracted through other means (such as by the compiler). Complexities like
synchronization between the tasks etc are abstracted away. It allows the producer and the
consumer tasks to process data simultaneously, which is key for achieving higher throughput.
Another benefit is cleaner and simpler code.

As was mentioned before, in the case of the producer and consumer paradigm, the data transfer
pattern strongly maps to a FIFO or a PIPO buffer implementation. A FIFO buffer is simply a
queue with a predetermined size/depth where the first element that gets inserted into the queue
also becomes the first element that can be popped from the queue. The main advantage of using
a FIFO buffer is that the consumer process can start accessing the data inside the FIFO buffer as
soon as the producer inserts the data into the buffer. The only issue with using FIFO buffers is
that due to varying rates of production/consumption between the producers and consumers, it is
possible for improperly sized FIFO buffers to cause a deadlock. This typically happens in a design
that has several producers and consumers. A Ping Pong Buffer is a double buffer that is used to
speed up a process that can overlap the I/O operation with the data processing operation. One
buffer is used to hold a block of data so that a consumer process will see a complete (but old)
version of the data, while in the other buffer a producer process is creating a new (partial) version
of data. When the new block of data is complete and valid, the consumer and the producer
processes will alternate access to the two buffers. As a result, the usage of a ping-pong buffer
increases the overall throughput of a device and helps to prevent eventual bottlenecks. The key
advantage of PIPOs is that the tool automatically matches the rate of production vs the rate of
consumption and creates a channel of communication that is both high performance and is
deadlock free. It is important to note here that regardless of whether FIFOs/PIPOs are used, the
key characteristic is the same: the producer sends or streams a block of data to the consumer. A
block of data can be a single value or a group of N values. The bigger the block size, the more
memory resources you will need.

The following is a simple sum application to illustrate the classic streaming/dataflow network. In
this case, the goal of the application is to pair-wise add a stream of random numbers then print
them. The first two tasks (Task 1 and 2) provide a stream of random numbers to add. These are
sent over a FIFO channel to the sum task (Task 3) which reads the values from the FIFO channels.
The sum task then sends the output to the print task (Task 4) to publish the result. The FIFO
channels provide asynchronous buffering between these independent threads of execution.

Section II: HLS Programmers Guide
Chapter 1: Design Principles

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=23

Figure 4: Streaming/Dataflow Network

Task 1

Task 2

Task 3 Task 4

X25608-073021

The streams that connect each “task” are usually implemented as FIFO queues. The FIFO
abstracts away the parallel behavior from the programmer, leaving them to reason about a
“snapshot” of time when the task is active (scheduled). FIFOs make parallelization easier to
implement. This largely results from the reduced variable space that programmers must contend
with when implementing parallelization frameworks or fault-tolerant solutions. The FIFO
between two independent kernels (see example above) exhibits classic queueing behavior. With
purely streaming systems, these can be modeled using queueing or network flow models.
Another big advantage of this dataflow type network and streaming optimization is that it can be
applied at different levels of granularity. A programmer can design such a network inside each
task as well as for a system of tasks or kernel. In fact, you can have a streaming network that
instantiates and connects multiple streaming networks or tasks, hierarchically. Another
optimization that allows for finer-grained parallelism is pipelining.

Pipelining Paradigm
Pipelining is a commonly used concept that you will encounter in everyday life. A good example
is the production line of a car factory, where each specific task such as installing the engine,
installing the doors, and installing the wheels, is often done by a separate and unique
workstation. The stations carry out their tasks in parallel, each on a different car. Once a car has
had one task performed, it moves to the next station. Variations in the time needed to complete
the tasks can be accommodated by buffering (holding one or more cars in a space between the
stations) and/or by stalling (temporarily halting the upstream stations) until the next station
becomes available.

Suppose that assembling one car requires three tasks A, B, and C that takes 20, 10, and 30
minutes, respectively. Then, if all three tasks were performed by a single station, the factory
would output one car every 60 minutes. By using a pipeline of three stations, the factory would
output the first car in 60 minutes, and then a new one every 30 minutes. As this example shows,
pipelining does not decrease the latency, that is, the total time for one item to go through the
whole system. It does however increase the system's throughput, that is, the rate at which new
items are processed after the first one.

Section II: HLS Programmers Guide
Chapter 1: Design Principles

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=24

Since the throughput of a pipeline cannot be better than that of its slowest element, the
programmer should try to divide the work and resources among the stages so that they all take
the same time to complete their tasks. In the car assembly example above, if the three tasks A. B
and C took 20 minutes each, instead of 20, 10, and 30 minutes, the latency would still be 60
minutes, but a new car would then be finished every 20 minutes, instead of 30. The diagram
below shows a hypothetical manufacturing line tasked with the production of three cars.
Assuming each of the tasks A, B and C takes 20 minutes, a sequential production line would take
180 minutes to produce three cars. A pipelined production line would take only 100 minutes to
produce three cars.

The time taken to produce the first car is 60 minutes and is called the iteration latency of the
pipeline. After the first car is produced, the next two cars only take 20 minutes each and this is
known as the initiation interval (II) of the pipeline. The overall time taken to produce the three
cars is 100 minutes and is referred to as the total latency of the pipeline, i.e. total latency =
iteration latency + II * (number of items - 1). Therefore, improving II improves total latency, but
not the iteration latency. From the programmer's point of view, the pipelining paradigm can be
applied to functions and loops in the design. After an initial setup cost, the ideal throughput goal
will be to achieve an II of 1 - i.e., after the initial setup delay, the output will be available at every
cycle of the pipeline. In the example above, after an initial setup delay of 60 minutes, a car is then
available every 20 minutes.

Figure 5: Pipelining

Pipelining is a classical micro-level architectural optimization that can be applied to multiple
levels of abstraction. Task-level pipelining with the producer-consumer paradigm was covered
earlier. This same concept applies to the instruction-level. This is in fact key to keeping the
producer-consumer pipelines (and streams) filled and busy. The producer-consumer pipeline will
only be efficient if each task produces/consumes data at a high rate, and hence the need for the
instruction-level pipelining (ILP).

Section II: HLS Programmers Guide
Chapter 1: Design Principles

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=25

Due to the way pipelining uses the same resources to execute the same function over time, it is
considered a static optimization since it requires complete knowledge about the latency of each
task. Due to this, the low level instruction pipelining technique cannot be applied to dataflow
type networks where the latency of the tasks can be unknown as it is a function of the input
data. The next section details how to leverage the three basic paradigms that have been
introduced to model different types of task parallelism.

Combining the Three Paradigms
Functions and loops are the main focus of most optimizations in the user's program. Today's
optimization tools typically operate at the function/procedure level. Each function can be
converted into a specific hardware component. Each such hardware component is like a class
definition and many objects (or instances) of this component can be created and instantiated in
the eventual hardware design. Each hardware component will in turn be composed of many
smaller predefined components that typically implement basic functions such as add, sub, and
multiply. Functions may call other functions although recursion is not supported. Functions that
are small and called less often can be also inlined into their callers just like how software
functions can be inlined. In this case, the resources needed to implement the function are
subsumed into the caller function's component which can potentially allow for better sharing of
common resources. Constructing your design as a set of communicating functions lends to
inferring parallelism when executing these functions.

Loops are one of the most important constructs in your program. Since the body of a loop is
iterated over a number of times, this property can be easily exploited to achieve better
parallelism. There are several transformations (such as pipelining and unrolling) that can be made
to loops and loop nests in order to achieve efficient parallel execution. These transformations
enable both memory-system optimizations as well as mapping to multi-core and SIMD execution
resources. Many programs in science and engineering applications are expressed as operations
over large data structures. These may be simple element-wise operations on arrays or matrices or
more complex loop nests with loop-carried dependencies - i.e. data dependencies across the
iterations of the loop. Such data dependencies impact the parallelism achievable in the loop. In
many such cases, the code must be restructured such that loop iterations can be executed
efficiently and in parallel on modern parallel platforms.

Section II: HLS Programmers Guide
Chapter 1: Design Principles

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 26Send Feedback

https://www.xilinx.com/html_docs/xilinx2022_1/vitis_doc/vitis_hls_optimization_techniques.html?hl=unroll#kcq1539734224846
https://www.xilinx.com/html_docs/xilinx2022_1/vitis_doc/vitis_hls_optimization_techniques.html?hl=unroll#tta1539734225808
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=26

The following diagrams illustrate different overlapping executions for a simple example of 4
consecutive tasks (i.e., C/C++ functions) A, B, C, and D, where A produces data for B and C, in
two different arrays, and D consumes data from two different arrays produced by B and C. Let us
assume that this “diamond” communication pattern is to be run twice (two invocations) and that
these two runs are independent.

void diamond(data_t vecIn[N], data_t vecOut[N])
{
 data_t c1[N], c2[N], c3[N], c4[N];
 #pragma HLS dataflow
 A(vecIn, c1, c2);
 B(c1, c3);
 C(c2, c4);
 D(c3, c4, vecOut);
}

The code example above shows the C/C++ source snippet for how these functions are invoked.
Note that tasks B and C have no mutual data dependencies. A fully-sequential execution
corresponds to the figure below where the black circles represent some form of synchronization
used to implement the serialization.

Figure 6: Sequential Execution - Two Runs

In the diamond example, B and C are fully-independent. They do not communicate nor do they
access any shared memory resource, and so if no sharing of computation resource is required,
they can be executed in parallel. This leads to the diagram in the figure below, with a form of
fork-join parallelism within a run. B and C are executed in parallel after A ends while D waits for
both B and C, but the next run is still executed in series.

Figure 7: Task Parallelism within a Run

Section II: HLS Programmers Guide
Chapter 1: Design Principles

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=27

Such an execution can be summarized as (A; (B || C); D); (A; (B || C); D) where “;” represents
serialization and “||” represents full parallelism. This form of nested fork-join parallelism
corresponds to a subclass of dependent tasks, namely series-parallel task graphs. More generally,
any DAG (directed acyclic graph) of dependent tasks can be implemented with separate fork-and-
join-type synchronization. Also, it is important to note that this is exactly like how a
multithreaded program would run on a CPU with multiple threads and using shared memory.

On FPGAs, you can explore what other forms of parallelism are available. The previous execution
pattern exploited task-level parallelism within an invocation. What about overlapping successive
runs? If they are truly independent, but if each function (i.e., A, B, C, or D) reuses the same
computation hardware as for its previous run, you may still want to execute, for example, the
second invocation of A in parallel with the first invocations of B and C. This is a form of task-level
pipelining across invocations, leading to a diagram as depicted in the following figure. The
throughput is now improved because it is limited by the maximum latency among all tasks, rather
than by the sum of their latencies. The latency of each run is unchanged but the overall latency
for multiple runs is reduced.

Figure 8: Task Parallelism with Pipelining

Now, however, when the first run of B reads from the memory where A placed its first result, the
second run of A is possibly already writing in the same memory. To avoid overwriting the data
before it is consumed, you can rely on a form of memory expansion, namely double buffering or
PIPOs to allow for this interleaving. This is represented by the black circles between the tasks.

An efficient technique to improve throughput and reuse computational resources is to pipeline
operators, loops, and/or functions. If each task can now overlap with itself, you can achieve
simultaneously task parallelism within a run and task pipelining across runs, both of which are
examples of macro-level parallelism. Pipelining within the tasks is an example of micro-level
parallelism. The overall throughput of a run is further improved because it now depends on the
minimum throughput among the tasks, rather than their maximum latency. Finally, depending on
how the communicated data are synchronized, only after all are produced (PIPOs) or in a more
element-wise manner (FIFOs), some additional overlapping within a run can be expected. For
example, in the following figure, both B and C start earlier and are executed in a pipelined fashion
with respect to A, while D is assumed to still have to wait for the completion of B and C. This last

Section II: HLS Programmers Guide
Chapter 1: Design Principles

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=28

type of overlap within a run can be achieved if A communicates to B and C through FIFO
streaming accesses (represented as lines without circles). Similarily, D can also be overlapped
with B and C, if the channels are FIFOs instead of PIPOs. However, unlike all previous execution
patterns, using FIFOs can lead to deadlocks and so these streaming FIFOs need to be sized
correctly.

Figure 9: Task Parallelism and Pipelining within a Run, Pipelining of Runs, and
Pipelining within a Task

In summary, the three paradigms presented in the earlier section show how parallelism can be
achieved in your design without needing the complexities of multi-threading and/or parallel
programming languages. The producer-consumer paradigm coupled with streaming channels
allows for the composition of small to large scale systems easily. As mentioned before, streaming
interfaces allow for easy coupling of parallel tasks or even hierarchical dataflow networks. This is
in part due to the flexibility in the programming language (C/C++) to support such specifications
and the tools to implement them on the heterogeneous computing platform available on today's
FPGA devices.

Section II: HLS Programmers Guide
Chapter 1: Design Principles

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=29

Conclusion - A Prescription for Performance
The design concepts presented in this document have one main central principle - a model of
parallel computation that favors encapsulation of state and sequential execution within modular
units or tasks to facilitate a simpler programming model for parallel programming. Tasks are then
connected together with streams (for synchronization and communication). A stream can be
different types of channels such as FIFOs or PIPOs. The state/logic compartmentalization makes
it much easier for tools (such as a compiler and a scheduler) to figure out where to run which
pieces of an application and when. The second reason why stream-based processing is becoming
popular is that it breaks the traditional multi-threading based “fork/join” view on parallel
execution. By enabling task-level pipelining and instruction-level pipelining, the run-time can do
many more concurrent actions than what is possible today with the fork/join model. This extra
parallelism is critical to taking advantage of the hardware available on today's FPGA devices. In
the same vein as enabling pipeline parallelism, streaming also enables designers to build parallel
applications without having to worry about locks, race conditions, etc. that make parallel
programming hard in the first place.

Finally, the following checklist of high-level actions is recommended as a prescription for
achieving performance on reconfigurable FPGA platforms:

• Software written for CPUs and software written for FPGAs is fundamentally different. You
cannot write code that is portable between CPU and FPGA platforms without sacrificing
performance. Therefore, embrace and do not resist the fact that you will have to write
significantly different software for FPGAs.

• Right from the start of your project, establish a flow that can functionally verify the source
code changes that are being made. Testing the software against a reference model or using
golden vectors are common practices.

• Focus first on the macro-architecture of your design. Consider modeling your solution using
the producer-consumer paradigm.

• Once you have identified the macro-architecture of your design, draw the desired activity
timeline where the horizontal axis represents time, and show when you expect each function
to execute relative to each other over multiple iterations (or invocations). This will give you a
sense of the expected parallelism in the design and can then be used to compare with the final
achieved results. Often the HLS GUIs can be used to visualize this achieved parallelism.

• Only start coding or refactoring your program once you have the macro-architecture and the
activity timeline well established

• As a general rule, the HLS compiler will only infer task-level parallelism from function calls.
Therefore, sequential code blocks (such as loops) which need to run concurrently in hardware
should be put into dedicated functions.

Section II: HLS Programmers Guide
Chapter 1: Design Principles

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=30

• Decompose/partition the original algorithm into smaller components that talk to each other
via streams. This will give you some ideas of how the data flows in your design.

○ Smaller modular components have the advantage that they can be replicated when needed
to improve parallelism.

○ Avoid having communication channels with very wide bit-widths. Decomposing such wide
channels into several smaller ones will help implementation on FPGA devices.

○ Large functions (written by hand or generated by inlining smaller functions) can have non-
trivial control paths that can be hard for tools to process. Smaller functions with simpler
control paths will aid implementation on FPGA devices.

○ Aim to have a single loop nest (with either fixed loop bounds that can be inferred by HLS
tool, or by providing loop trip count information by hand to the HLS tool) within each
function. This greatly facilitates the measurement and optimization of throughput. While
this may not be applicable for all designs, it is a good approach for a large majority of cases.

• Throughput - Having an overall vision about what rates of processing will be required during
each phase of your design is important. Knowing this will influence how you write your
application for FPGAs.

○ Think about the critical path (i.e., critical task level paths such as ABD or ACD) in your
design and study what part of this critical path is potentially a bottleneck. Look at how
individual tasks are pipelined and if different branches of a path are unaligned in terms of
throughput by simulating the design. HLS GUI tools and/or the simulation waveform
viewer can then be used to visualize such throughput issues.

○ Stream-based communication allows consumers to start processing as soon as producers
start producing which allows for overlapped execution (which in turn increases parallelism
and throughput).

○ In order to keep the producer and consumer tasks running constantly without any hiccups,
optimize the execution of each task to run as fast as possible using techniques such as
pipelining and the appropriate sizing of streams.

• Think about the granularity (and overhead) of the streaming channels with respect to
synchronization. The usage of PIPO channels allows you to overlap task execution without the
fear of deadlock while explicit manual streaming FIFO channels allow you to start the
overlapped execution sooner (than PIPOs) but require careful adjustment of FIFO sizes to
avoid deadlocks.

• Learn about synthesizable C/C++ coding styles.

• Use the reports generated by the HLS compiler to guide the optimization process.

Keep the above checklist nearby so that you can refer to it from time to time. It summarizes the
whole design activity needed to build a design that meets your performance goals.

Section II: HLS Programmers Guide
Chapter 1: Design Principles

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 31Send Feedback

https://www.xilinx.com/html_docs/xilinx2022_1/vitis_doc/vitis_hls_coding_styles.html#iyg1582649282811
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=31

Another important aspect of your design to consider next is the interface of your accelerated
function or kernel. The interface of your kernel to the outside world is an important element of
your eventual system design. Your kernel may need to plug into a bigger design, or to
communicate with other kernels in a large system of kernels, or to communicate with memory or
devices outside of the system. Creating Efficient HLS Designs provides another checklist of items
to consider when designing the external interfaces of your acceleration kernel.

Section II: HLS Programmers Guide
Chapter 1: Design Principles

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=32

Chapter 2

Abstract Parallel Programming
Model for HLS

In order to achieve high performance hardware, the HLS tool must infer parallelism from
sequential code and exploit it to achieve greater performance. This is not an easy problem to
solve. In addition, good software design often uses well-defined rules and practices such as run-
time type information (RTTI), recursion, and dynamic memory allocation. Many of these
techniques have no direct equivalency in hardware and present challenges for the HLS tool. This
generally means that off-the-shelf software cannot be efficiently converted into hardware. At a
bare minimum, such software needs to be examined for non-synthesizable constructs and the
code needs to be refactored to make it synthesizable. Even if a software program can be
automatically converted (or synthesized) into hardware, to assist the tool you need to understand
the best practices for writing good software for execution on the FPGA device.

The Design Principles section introduced the three main paradigms that need to be understood
for writing good software for FPGA platforms. The underlying parallel programming model that
these paradigms work on is as follows:

• The design/program needs to be constructed as a collection of tasks that communicate by
sending messages to each other through communication links (aka channels).

• Tasks can be structured as control-driven, waiting for some signal to start execution, or data-
driven in which the presence of data on the channel drives the execution of the task.

• A task consists of an executable unit that has some local storage/memory and a collection of
input/output (I/O) ports.

• The local memory contains private data, i.e., the data to which the task has exclusive access.

• Access to this private memory is called local data access - like data stored in BRAM/URAM.
This type of access is fast. The only way that a task can send copies of its local data to other
tasks is through its output ports, and conversely, it can only receive data through its input
ports.

• An I/O port is an abstraction; it corresponds to a channel that the task will use for sending or
receiving data and it is connected by the caller of the module, or at the system integration
level if it is a top port

• Data sent or received through a channel is called non-local data access. A channel is a data
queue that connects one task's output port to another task's input port.

Section II: HLS Programmers Guide
Chapter 2: Abstract Parallel Programming Model for HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 33Send Feedback

https://docs.microsoft.com/en-us/cpp/cpp/run-time-type-information?view=msvc-160
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=33

• A channel is assumed to be reliable and has the following behaviors:

○ Data written at the output of the producer are read at the input port of the consumer in
the same order (for FIFOs). Data can be read/written in random order for PIPOs.

○ No data values are lost.

• Both blocking and non-blocking read and write semantics are supported for channels

Figure 10: Blocking/Non-Blocking Semantics

When blocking semantics are used in the model, a read to an empty channel results in the
blocking of the reading process. Similarly, a write to a full channel results in the blocking of the
writing process. The resulting process/channel network exhibits deterministic behavior that does
not depend on the timing of computation nor on communication delays. These style of models
have proven convenient for modeling embedded systems, high-performance computing systems,
signal processing systems, stream processing systems, dataflow programming languages, and
other computational tasks.

Section II: HLS Programmers Guide
Chapter 2: Abstract Parallel Programming Model for HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 34Send Feedback

https://en.wikipedia.org/wiki/Deterministic_algorithm
https://en.wikipedia.org/wiki/Network_delay
https://en.wikipedia.org/wiki/Embedded_systems
https://en.wikipedia.org/wiki/High-performance_computing
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Stream_processing
https://en.wikipedia.org/wiki/Dataflow_programming
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=34

The blocking style of modeling can result in deadlocks due to insufficient sizing of the channel
queue (when the channels are FIFOs) and/or due to differing rates of production between
producers and consumers. If non-blocking semantics are used in the model, a read to an empty
channel results in the reading of uninitialized data or in the re-reading of the last data item.
Similarly, a write to a full queue can result in that data being lost. To avoid such loss of data, the
design must first check the status of the queue before performing the read/write. But this will
cause the simulation of such models to be non-deterministic since it relies on decisions made
based on the run-time status of the channel. This will make verifying the results of this model
much more challenging.

Both blocking and non-blocking semantics are supported by theVitis HLS abstract parallel
programming model.

Control and Data Driven Tasks
Using this abstract model as the basis, two types of task-level parallelism (TLP) models can be
used to structure and design your application. TLP can be data-driven or control-driven, or can
mix control-driven and data-driven tasks in a single design. The main differences between these
two models are:

• If your application is purely data-driven, does not require any interaction with external
memory and the functions can execute in parallel with no data dependencies, then the data-
driven TLP model is the best fit. You can design a purely data-driven model that is always
running, requires no control, and reacts only to data. For additional details refer to Data-driven
Task-level Parallelism.

• If your application requires some interaction with external memory, and there are data
dependencies between the tasks that execute in parallel, then the control-driven TLP model is
the best fit. Vitis HLS will infer the parallelism between tasks and create the right channels (as
defined by you) such that these functions can be overlapped during execution. The control-
driven TLP model is also known as the dataflow optimization in Vitis HLS as described in
Control-driven Task-level Parallelism.

The next few sections describe these major modeling options that are available to use. You can
use any of these models to write your source code using C++ in order to optimize the execution
of the program on parallel hardware.

Section II: HLS Programmers Guide
Chapter 2: Abstract Parallel Programming Model for HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=35

Data-driven Task-level Parallelism
Data-driven task-level parallelism uses a task-channel modeling style that requires you to
statically instantiate and connect tasks and channels explicitly. Tasks in this modeling style only
have stream type inputs and outputs. The tasks are not controlled by any function call/return
semantics but rather are always running waiting for data on their input stream.

Data-driven TLP models are tasks that execute when there is data to be processed. In Vitis HLS
C-simulation used to be limited to seeing only the sequential semantics and behavior. With the
data-driven model it is possible during simulation to see the concurrent nature of parallel tasks
and their interactions via the FIFO channels.

Implementing data-driven TLP in the Vitis HLS tool uses simple classes for modeling tasks
(hls::task) and channels (hls::stream/hls::stream_of_blocks)

IMPORTANT! While Vitis HLS supports hls::tasks  for a top-level function, you cannot use
hls::stream_of_blocks  for interfaces in top-level functions.

Consider the simple task-channel example shown below:

#include "test.h"

void splitter(hls::stream<int> &in, hls::stream<int> &odds_buf,
hls::stream<int> &evens_buf) {
 int data = in.read();
 if (data % 2 == 0)
 evens_buf.write(data);
 else
 odds_buf.write(data);
}

void odds(hls::stream<int> &in, hls::stream<int> &out) {
 out.write(in.read() + 1);
}

void evens(hls::stream<int> &in, hls::stream<int> &out) {
 out.write(in.read() + 2);
}

void odds_and_evens(hls::stream<int> &in, hls::stream<int> &out1,
hls::stream<int> &out2) {
 hls_thread_local hls::stream<int> s1; // channel connecting t1 and
t2
 hls_thread_local hls::stream<int> s2; // channel connecting t1 and t3

 // t1 infinitely runs function splitter, with input in and outputs s1
and s2
 hls_thread_local hls::task t1(splitter, in, s1, s2);
 // t2 infinitely runs function odds, with input s1 and output out1
 hls_thread_local hls::task t2(odds, s1, out1);
 // t3 infinitely runs function evens, with input s2 and output out2
 hls_thread_local hls::task t3(evens, s2, out2);
}

Section II: HLS Programmers Guide
Chapter 2: Abstract Parallel Programming Model for HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 36Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Task_Channel/simple_task_channel
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=36

The special hls::task C++ class is:

• A new object declaration in your source code that requires a special qualifier. The
hls_thread_local qualifier is required in order to keep the object (and the underlying
thread) alive across multiple calls of the instantiating function (odds_and_evens in the
example).

The hls_thread_local qualifier is only required to ensure that the C simulation of the
data-driven TLP model exhibits the same behavior as the RTL simulation. In the RTL, these
functions are already in always running mode once started. In order to ensure the same
behavior during C Simulation, the hls_thread_local qualifier is required to ensure that
each task is started only once and keeps the same state even when called multiple times.
Without the hls_thread_local qualifier, each new invocation of the function would result
in a new state.

• Task objects implicitly manage a thread that runs a function infinitely, passing to it a set of
arguments that must be either hls::stream or hls::stream_of_blocks

TIP: No other types of arguments are supported. In particular, even constant values cannot be passed
as function arguments. If constants need to be passed to the task's body, define the function as a
templated function and pass the constant as a template argument to this templated function.

• The supplied function (splitter/odds/evens in the example above) is called the task
body, and it has an implicit infinite loop wrapped around it to ensure that the task keeps
running and waiting on input.

• The supplied function can contain pipelined loops but they need to be flushable pipelines
(FLP) in order to prevent deadlock. The tool will automatically select the right pipeline style to
use for a given pipelined loop or function.

IMPORTANT! An hls:task  should not be treated as a function call - instead a hls::task  needs to
be thought of as a persistent instance statically bound to channels. Due to this, it will be the your
responsibility to ensure that multiple invocations to any function that contains hls::tasks  be
uniquified or these calls will use the same hls::tasks  and channels.

Channels are modeled by the special templatized hls::stream (or
hls::stream_of_blocks) C++ class. Such channels have the following attributes:

• In the data-driven TLP model, an hls::stream<type,depth> object behaves like a FIFO
with a specified depth. Such streams have a default depth of 2 which can be overridden by the
user.

• The streams are read from and written to sequentially. That implies that once a data item is
read from an hls::stream<> that same data item cannot be read again.

TIP: Accesses to different streams are not ordered, i.e. the order of a write to a stream and a read from
a different stream can be changed by the scheduler.

• Streams may be defined either locally or globally. Streams defined in the global scope follow
the same rules as any other global variables.

Section II: HLS Programmers Guide
Chapter 2: Abstract Parallel Programming Model for HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=37

• The hls_thread_local qualifier is also required for streams (s1 and s2 in the example
below) in order to keep the same streams alive across multiple calls of the instantiating
function (odds_and_evens in the code example below).

• This model allows for the modeling of feedback loops where you can have cyclic
communication between the tasks.

The following diagram shows the graphical representation in Vitis HLS of the code example
above. In this diagram, the green colored arrows are FIFO channels while the blue arrows
indicate the inputs and outputs of the instantiating function (odds_and_evens). Tasks are
shown as blue rectangular boxes.

Figure 11: Dataflow Diagram of hls::task Example

Due to the fact that a read of an empty stream is a blocking read, deadlocks can occur due to:

• The design itself, where the production and consumption rates by processes are unbalanced.

○ During C simulation, deadlocks can occur only due to a cycle of processes, or a chain of
processes starting from a top-level input, that are attempting to read from empty channels.

Section II: HLS Programmers Guide
Chapter 2: Abstract Parallel Programming Model for HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=38

○ Deadlocks can occur during both C/RTL Co-simulation and when running in hardware
(HW) due to cycles of processes trying to write to full channels and/or reading from empty
channels.

• The test bench, which is providing less data than those that are needed to produce all the
outputs that the test bench is expecting when checking the computation results.

Due to this, a deadlock detector is automatically instantiated when the design contains an
hls::task. The deadlock detector detects deadlocks and stops the C simulation. Further
debugging is performed using a C debugger such as gdb and looking at where the simulated
hls::tasks are all blocked trying to read from an empty channel. Note that this is easy to do
using the Vitis HLS GUI as shown in the handling_deadlock example for debugging deadlocks.

In summary, the hls::task model is recommended if your design requires a completely data-
driven, pure streaming type of behavior, with no sort of control. This type of model is also useful
in modeling feedback and dynamic multi-rate designs. Feedback in the design is when there is a
cyclical path between tasks. Dynamic multi-rate models, where the producer writes data or
consumer reads data at a rate that is data dependent, can only be handled by the data-driven
TLP. The simple_data_driven example design on GitHub shows this.

Note: Static multi-rate designs, in which the producer writes data or consumer reads data at rates that are
data-independent, can be managed by both data-driven and control-driven TLP. For example, the producer
writes two values in a stream for each call, the consumer reads one value per call.

Control-driven Task-level Parallelism
Control-driven TLP is useful to model parallelism while relying on the sequential semantics of C+
+, rather than on continuously running threads. Examples include functions that can be executed
in a concurrent pipelined fashion, possibly within loops, or with arguments that are not channels
but C++ scalar and array variables, both referring to on-chip and to off-chip memories. For this
kind of model, Vitis HLS introduces parallelism where possible while preserving the behavior
obtained from the original C++ sequential execution. The control-driven TLP (or dataflow) model
provides:

• A subsequent function can start before the previous finishes

• A function can be restarted before it finishes

• Two or more sequential functions can be started simultaneously

While using the dataflow model, Vitis HLS implements the sequential semantics of the C++ code
by automatically inserting synchronization and communication mechanisms between the tasks.

Section II: HLS Programmers Guide
Chapter 2: Abstract Parallel Programming Model for HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 39Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Task_level_Parallelism/Data_driven/handling_deadlock
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Task_level_Parallelism/Data_driven/simple_data_driven
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=39

The dataflow model takes this series of sequential functions and creates a task-level pipeline
architecture of concurrent processes. The tool does this by inferring the parallel tasks and
channels. The designer specifies the region to model in the dataflow style (i.e., a function body or
a loop body) by specifying the DATAFLOW pragma or directive as shown below. The tool scans
the loop/function body, extracts the parallel tasks as parallel processes, and establishes
communication channels between these processes. The designer can additionally guide the tool
to select the type of channels - i.e., FIFO (hls::stream or #pragma HLS STREAM) or PIPO or
hls::stream_of_blocks. The dataflow model is a powerful method for improving design
throughput and latency.

In order to understand how Vitis HLS transforms your C++ code into the dataflow model, refer to
the simple_fifos example shown below. The example applies the dataflow model to the top-level
diamond function using the DATAFLOW pragma as shown.

#include "diamond.h"

void diamond(data_t vecIn[N], data_t vecOut[N])
{
 data_t c1[N], c2[N], c3[N], c4[N];
#pragma HLS dataflow
 funcA(vecIn, c1, c2);
 funcB(c1, c3);
 funcC(c2, c4);
 funcD(c3, c4, vecOut);
}

In the above example, there are four functions: funcA, funcB, funcC and funcD. funcB
and funcC do not have any data dependencies between them and therefore can be executed in
parallel. funcA reads from the non-local memory (vecIn) and needs to be executed first.
Similarly, funcD writes to the non-local memory (vecOut) and therefore has to be executed last.

The following waveform shows the execution profile of this design without the dataflow model.
There are three calls to the function diamond from the test bench. funcA, (funcB, funcC)
and funcD are executed in sequential order. Each call to diamond, therefore, takes 475 cycles
in total as shown in the figure below.

Figure 12: Diamond Example without Dataflow

Section II: HLS Programmers Guide
Chapter 2: Abstract Parallel Programming Model for HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 40Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Task_level_Parallelism/Control_driven/Channels/simple_fifos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=40

In the following figure, when the dataflow model is applied and the designer selected to use
FIFOs for channels, all the functions are started immediately by the controller and are stalled
waiting on input. As soon as the input arrives, it is processed and sent out. Due to this type of
overlap, each call to diamond now only takes 275 cycles in total as shown below. Refer to
Combining the Three Paradigms for a more detailed discussion of the types of parallelism that
can be achieved for this example.

Figure 13: Diamond Example with Dataflow

This type of parallelism cannot be achieved without incurring some overhead in hardware. When
a particular region, such as a function body or a loop body, is identified as a region to apply the
dataflow model, Vitis HLS analyzes the function or loop body and creates individual channels
from C++ variables (such as scalars, arrays, or user-defined channels such as hls::streams or
hls::stream_of_blocks) that model the flow of data in the dataflow region. These channels
can be simple FIFOs for scalar variables, or ping-pong (PIPO) buffers for non-scalar variables like
arrays (or stream of blocks when you need a combination of FIFO and PIPO behavior with
explicit locking of the blocks).

Each of these channels can contain additional signals to indicate when the channel is full or
empty. By having individual FIFOs and/or PIPO buffers, Vitis HLS frees each task to execute
independently and the throughput is only limited by the availability of the input and output
buffers. This allows for better overlapping of task execution than a normal pipelined
implementation, but does so at the cost of additional FIFO or block RAM registers for the ping-
pong buffer.

TIP: This overlapped execution optimization is only visible after you run the cosimulation of the design - it
is not observable statically (and not observable at the end of C Synthesis).

The dataflow model is not limited to a chain of processes but can be used on any directed acyclic
graph (DAG) structure. It can produce two different forms of overlapping: within an iteration if
processes are connected with FIFOs, and across different iterations through PIPOs and FIFOs.
This potentially improves performance over a statically pipelined solution. It replaces the strict,
centrally-controlled pipeline stall philosophy with a more flexible and distributed handshaking
architecture using FIFOs and/or PIPOs. The replacement of the centralized control structure with
a distributed one also benefits the fanout of control signals, for example register enables, which
is distributed among the control structures of individual processes. Refer to the Task Level
Parallelism/Control-Driven examples on Github for more examples of these concepts.

Section II: HLS Programmers Guide
Chapter 2: Abstract Parallel Programming Model for HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 41Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Task_level_Parallelism/Control_driven
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Task_level_Parallelism/Control_driven
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=41

Canonical Forms
Vitis HLS transforms the region to apply the DATAFLOW optimization. Xilinx recommends
writing the code inside this region (referred to as the canonical region) using canonical forms.
There are two main canonical forms for the dataflow optimization:

1. The canonical form for a function where sub-functions are not inlined. Note that these
subfunctions can themselves be dataflow in function regions or dataflow inside loop regions.
Note also that variable initialization (including those performed automatically by
constructors) or passing expressions by value to processes are not part of canonical form.
Vitis HLS does its best to implement the resulting dataflow, but you should always check the
GUI dataflow viewer and the cosimulation timeline trace to ensure that the dataflow happens
as expected and the achieved performance is as expected.

void dataflow(Input0, Input1, Output0, Output1)
{
 #pragma HLS dataflow
 UserDataType C0, C1, C2; // UserDataType can be scalars or arrays
 func1(Input0, Input1, C0, C1); // read Input0, read Input1, write C0,
write C1
 func2(C0, C1, C2); // read C0, read C1, write C2
 func3(C2, Output0, Output1); // read C2, write Output0, write Output1
}

2. Dataflow inside a loop body enclosed in a function without any other code but the loop. For
the for loop (where no function inside is inlined), the integral loop variable should have:

a. The initial value is declared in the loop header and set to 0.

b. The loop bound is a non-negative numerical constant or scalar argument of the function
that encloses the loop.

c. Increment by 1.

d. Dataflow pragma needs to be inside the loop as shown below.

void dataflow(Input0, Input1, Output0, Output1)
{
 for (int i = 0; i < N; i++)
 {
 #pragma HLS dataflow
 UserDataType C0, C1, C2; // UserDataType can be scalars or
arrays
 func1(Input0, Input1, C0, C1); // read Input0, read Input1,
write C0, write C1
 func2(C0, C0, read C1, C2); // read C0, read C0, read C1,
write C2
 func3(C2, Output0, Output1); // read C2, write Output0, write
Output1
 }
}

Canonical Body
Inside the canonical region, the canonical body should follow these guidelines:

Section II: HLS Programmers Guide
Chapter 2: Abstract Parallel Programming Model for HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=42

1. Use a local, non-static scalar or an array variable. A local variable is declared inside the
function body (for dataflow in a function) or loop body (for dataflow inside a loop). Refer to
Limitations of Control-Driven Task-Level Parallelism for additional limitations on arrays.

2. A sequence of function calls that pass data forward (with no feedback unless using
hls::stream/hls::stream_of_blocks), from a function to one that is lexically later,
under the following conditions:

a. Variables (except scalar) can have only one reading process and one writing process.

b. Use write before read (producer before consumer) if you are using local non-scalar
variables, which then become channels. For scalar variables, both write before read or
read before write are allowed.

c. Use read before write (consumer before producer) if you are using function arguments.
Any intra-body anti-dependencies must be preserved by the design.

d. Function return type must be void.

e. No loop-carried dependencies are allowed among different processes via variables except
when FIFOs are used. Forward loop-carried dependencies are supported for arrays
transformed to streams and both forward and backward dependencies are supported for
hls::streams.

• Except when these dependencies exist across successive calls to the top function (i.e.,
inout argument written by one iteration and read by the following iteration).

f. No control whatsoever is supported inside a dataflow region, except inside function calls
(that define processes).

• For canonical dataflow, there should be no conditionals, no loops, no return or goto
statements, and no C++ exceptions such as throw.

• The only control supported around dataflow is:

○ Simple for loop, with unsigned integer induction variable initialized to 0,
incremented by 1, and compared either with a non-negative constant or with an
unsigned input of the function containing the dataflow-in-loop without any other
statement in the function containing dataflow in loop, except for variable
declarations. Typically only streams used in the loop body can be declared at that
level.

Dataflow Checking
Vitis HLS has a dataflow checker which, when enabled, checks the code to see if it is in the
recommended canonical form. Otherwise, it will emit an error/warning message to the user. By
default, this checker is set to warning. You can set the checker to error or disable it by
selecting off in the strict mode of the config_dataflow TCL command:

config_dataflow -strict_mode (off | error | warning)

Section II: HLS Programmers Guide
Chapter 2: Abstract Parallel Programming Model for HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=43

Configuring Dataflow Memory Channels
Vitis HLS implements channels between the tasks as either PIPO or FIFO buffers, depending on
the user's choice:

• For scalars, Vitis HLS will automatically infer FIFOs as the channel type.

• If the parameter (of a producer or consumer) is an array, the user has a choice of implementing
the channel as a PIPO or a FIFO based on the following considerations:

○ If the data is always accessed in sequential order, the user can choose to implement this
memory channel as PIPO/FIFO. Choosing PIPOs comes with the advantage that PIPOs can
never deadlock but they require more memory to use. Choosing FIFOs offers the
advantage of lesser memory requirements but this comes with the risk of deadlock if the
FIFO sizes are not correct.

○ If the data is accessed in an arbitrary manner, the memory channel must be implemented as
a PIPO (with a default size that is twice the size of the original array).

TIP: A PIPO ensures that the channel always has the capacity to hold all samples produced in one
iteration, without a loss.

Specifying the size of the FIFO channels overrides the default value that is computed by the tool
to attempt to optimize the throughput. If any function in the design can produce or consume
samples at a greater rate than the specified size of the FIFO, the FIFOs might become empty (or
full). In this case, the design halts operation, because it is unable to read (or write). This might
lead to a stalled, deadlock state.

TIP: If a deadlocked situation is created, you will only see this when executing C/RTL co-simulation or
when the block is used in a complete system.

When setting the depth of the FIFOs, AMD recommends initially setting the depth as the
maximum number of data values transferred (for example, the size of the array passed between
tasks), confirming the design passes C/RTL co-simulation, and then reducing the size of the
FIFOs and confirming C/RTL co-simulation still completes without issues. If RTL co-simulation
fails, the size of the FIFO is likely too small to prevent stalling or a deadlock situation. The Vitis
HLS GUI now supports an automatic way of determining the right FIFO size to use. Additionally,
the Vitis HLS IDE can display a histogram of the size of each FIFO/PIPO buffer over time, after
RTL co-simulation has been run. This can be useful to help determine the best depth for each
buffer.

Section II: HLS Programmers Guide
Chapter 2: Abstract Parallel Programming Model for HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=44

Specifying Arrays as PIPOs or FIFOs
All arrays are implemented by default as ping-pong to enable random access. These buffers can
also be re-sized if needed. For example, in some circumstances, such as when a task is being
bypassed, performance degradation is possible. To mitigate this effect on performance, you can
give more slack to the producer and consumer by increasing the size of these buffers by using
the STREAM pragma or directive as shown below.

void top (...) {
#pragma HLS dataflow
 int A[1024];
#pragma HLS stream type=pipo variable=A depth=3

 producer(A, B, …); // producer writes A and B
 middle(B, C, ...); // middle reads B and writes C
 consumer(A, C, …); // consumer reads A and C

In the interface, arrays are automatically specified as streaming if an array on the top-level
function interface is set the following interface types: ap_fifo/axis.

Inside the design, an array must be specified as streaming using the STREAM pragma/directive if
a FIFO is desired for the implementation.

TIP: When the STREAM directive is applied to an array, the resulting FIFO implemented in the hardware
contains as many elements as the array. The -depth  option can be used to specify the size of the FIFO.

The STREAM directive is also used to change any arrays in a DATAFLOW region from the default
implementation specified by the config_dataflow configuration.

• If the config_dataflow default_channel is set as ping-pong, any array can still be
implemented as a FIFO by applying the STREAM directive to the array.

TIP: To use a FIFO implementation, the array must be accessed in sequential order (and not in random
access order).

• If the config_dataflow default_channel is set to FIFO, any array can still be
implemented as a ping-pong implementation by applying the STREAM directive to the array
with the type=pipo option.

IMPORTANT! To preserve sequential accesses, and thus the correctness of streaming, it might be
necessary to prevent compiler optimizations (dead code elimination particularly) by using the volatile 
qualifier. In this case the HLS tool generates a warning if it cannot determine that access to the array is
sequential.

When an array in a DATAFLOW region is specified as streaming and implemented as a FIFO, the
FIFO is typically not required to hold the same number of elements as the original array. The
tasks in a DATAFLOW region consume each data sample as soon as it becomes available. The
depth of the FIFO can be specified using the config_dataflow -fof_depth option or the
STREAM pragma or directive with the -depth option. This can be used to set the size of the
FIFO to ensure the flow of data never stalls.

Section II: HLS Programmers Guide
Chapter 2: Abstract Parallel Programming Model for HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=45

If the -type=pipo option is selected, the -depth option sets the depth (number of blocks) of
the PIPO. The depth should be at least 2.

Specifying Arrays as Stream-of-Blocks
The hls::stream_of_blocks type provides a user-synchronized stream that supports
streaming blocks of data for process-level interfaces in a dataflow context, where each block is
an array or multidimensional array. The intended use of stream-of-blocks is to replace array-
based communication between a pair of processes within a dataflow region. Refer to the
using_stream_of_blocks example on Github.

Currently, Vitis HLS implements arrays written by a producer process and read by a consumer
process in a dataflow region by mapping them to ping pong buffers (PIPOs). The buffer exchange
for a PIPO buffer occurs at the return of the producer function and the calling of the consumer
function in C++.

Stream-of-Blocks Modeling Style

On the other hand, for a stream-of-blocks the communication between the producer and the
consumer is modeled as a stream of array-like objects, providing several advantages over array
transfer through PIPO.

The use of stream-of-blocks in your code requires the following include file:

#include "hls_streamofblocks.h"

The stream-of-blocks object template is:

hls::stream_of_blocks<block_type, depth> v

Where:

• <block_type> specifies the datatype of the array or multidimensional array held by the
stream-of-blocks

• <depth> is an optional argument that provides depth control just like hls::stream or
PIPOs, and specifies the total number of blocks, including the one acquired by the producer
and the one acquired by the consumer at any given time. The default value is 2

• v specifies the variable name for the stream-of-blocks object

Use the following steps to access a block in a stream of blocks:

1. The producer or consumer process that wants to access the stream first needs to acquire
access to it, using a hls::write_lock or hls::read_lock object.

2. After the producer has acquired the lock it can start writing (or reading) the acquired block.
Once the block has been fully initialized, it can be released by the producer, when the
write_lock object goes out of scope.

Section II: HLS Programmers Guide
Chapter 2: Abstract Parallel Programming Model for HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 46Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Task_level_Parallelism/Control_driven/Channels/using_stream_of_blocks
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=46

Note: The producer process with a write_lock can also read the block as long as it only
reads from already written locations, because the newly acquired buffer must be assumed to
contain uninitialized data. The ability to write and read the block is unique to the producer
process, and is not supported for the consumer.

3. Then the block is queued in the stream-of-blocks in a FIFO fashion, and when the consumer
acquires a read_lock object, the block can be read by the consumer process.

The main difference between hls::stream_of_blocks and the PIPO mechanism seen in the
prior examples is that the block becomes available to the consumer as soon as the write_lock
goes out of scope, rather than only at the return of the producer process. Hence the size of
storage required to manage the original example (without the dataflow loop) is much less with
stream-of-blocks than with just PIPOs: namely 2N instead of 2xMxN in the example.

Rewriting the prior example to use hls::stream_of_blocks is shown in the example below.
The producer acquires the block by constructing an hls::write_lock object called b, and
passing it the reference to the stream-of-blocks object, called s. The write_lock object
provides an overloaded array access operator, letting it be accessed as an array to access
underlying storage in random order as shown in the example below.

The acquisition of the lock is performed by constructing the write_lock/read_lock object,
and the release occurs automatically when that object is destructed as it goes out of scope. This
approach uses the common Resource Acquisition Is Initialization (RAII) style of locking and
unlocking.

#include "hls_streamofblocks.h"
typedef int buf[N];
void producer (hls::stream_of_blocks<buf> &s, ...) {
 for (int i = 0; i < M; i++) {
 // Allocation of hls::write_lock acquires the block for the producer
 hls::write_lock<buf> b(s);
 for (int j = 0; j < N; j++)
 b[f(j)] = ...;
 // Deallocation of hls::write_lock releases the block for the consumer
 }
}

void consumer(hls::stream_of_blocks<buf> &s, ...) {
 for (int i = 0; i < M; i++) {
 // Allocation of hls::read_lock acquires the block for the consumer
 hls::read_lock<buf> b(s);
 for (int j = 0; j < N; j++)
 ... = b[g(j)] ...;
 // Deallocation of hls::write_lock releases the block to be reused by
the producer
 }
}

void top(...) {
#pragma HLS dataflow

Section II: HLS Programmers Guide
Chapter 2: Abstract Parallel Programming Model for HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=47

 hls::stream_of_blocks<buf> s;

 producer(b, ...);
 consumer(b, ...);
}

The key features of this approach include:

• The expected performance of the outer loop in the producer above is to achieve an overall
Initiation Interval (II) of 1

• A locked block can be used as though it were private to the producer or the consumer process
until it is released.

• The initial state of the array object for the producer is undefined, whereas it contains the
values written by the producer for the consumer.

• The principal advantage of stream-of-blocks is to provide overlapped execution of multiple
iterations of the consumer and the producer to increase throughput.

Resource Usage

The resource cost when increasing the depth beyond the default value of 2 is similar to the
resource cost of PIPOs. Namely, each increment of 1 will require enough memory for a block,
e.g., in the example above N * 32-bit words.

The stream of blocks object can be bound to a specific RAM type, by placing the
BIND_STORAGE pragma where the stream-of-blocks is declared, for example in the top-level
function. The stream of blocks uses 2-port BRAM (type=RAM_2P) by default.

Specifying Compiler-Created FIFO Depth
Start Propagation FIFOs

The compiler might automatically create a start FIFO to propagate the ap_start/ap_ready
handshake to an internal process. Such FIFOs can sometimes be a bottleneck for performance, in
which case you can increase the default size (which can be incorrectly estimated by the tool) with
the following command:

config_dataflow -start_fifo_depth <value>

If an unbounded slack between producer and consumer is needed, and internal processes can run
forever, fully and safely driven by their inputs or outputs (FIFOs or PIPOs), these start FIFOs can
be removed, at user's risk, locally for a given dataflow region with the pragma:

#pragma HLS DATAFLOW disable_start_propagation

Section II: HLS Programmers Guide
Chapter 2: Abstract Parallel Programming Model for HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=48

Scalar Propagation FIFOs

The compiler automatically propagates some scalars from C/C++ code through scalar FIFOs
between processes. Such FIFOs can sometimes be a bottleneck for performance or cause
deadlocks, in which case you can set the size (the default value is set to -fifo_depth) with the
following command:

config_dataflow -scalar_fifo_depth <value>

Stable Arrays
The stable pragma can be used to mark input or output variables of a dataflow region. Its
effect is to remove their corresponding task-level synchronizations, assuming that the user
guarantees this removal is indeed correct.

void dataflow_region(int A[...], ...
#pragma HLS stable variable=A
#pragma HLS dataflow
 proc1(...);
 proc2(A, ...);

Without the stable pragma, and assuming that A is read by proc2, then proc2 would be part
of the initial synchronization for the dataflow region where it is located. This means that proc1
would not restart until proc2 is also ready to start again, which would prevent dataflow
iterations to be overlapped and induce a possible loss of performance. The stable pragma
indicates that this synchronization is not necessary to preserve correctness.

With the stable pragma, the compiler assumes that:

• If A is read by proc2, then the memory locations that are read are still accessible and will not
be overwritten by any other process or calling context, while the dataflow_region is being
executed.

• If A is written by proc2, then the memory locations written will not be read, before their
definition, by any other process or calling context, while dataflow_region is being
executed.

A typical scenario is when the caller updates or reads these variables only when the dataflow
region has not started yet or has completed execution.

In summary, the Dataflow optimization is a powerful optimization that can significantly improve
the throughput of your design. As there is reliance on the HLS tool to do the inference of the
available parallelism in your design, it requires the designer's help to ensure that the code is
written in such a way that the inference is straightforward for the HLS tool. Finally, there will be
situations where the designer might see the need to deploy both the Dataflow model and the
Task-Channel model in the same design. The next section describes this hybrid combination
model that can lead to some interesting designs.

Section II: HLS Programmers Guide
Chapter 2: Abstract Parallel Programming Model for HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=49

Mixing Data-Driven and Control-Driven
Models

Sometimes it is not possible to design an entire application that is purely data-driven TLP, yet
some portion of the design can be constructed as a purely streaming design. In this case a mixed
control-driven/data-driven modeling can be useful to create the application. Consider the
following mixed_control_and_data_driven example from GitHub.

void dut(int in[N], int out[N], int n) {
#pragma HLS dataflow
 hls_thread_local hls::split::round_robin<int, NP> split1;
 hls_thread_local hls::merge::round_robin<int, NP> merge1;

 read_in(in, n, split1.in);

 // Task-Channels
 hls_thread_local hls::task t[NP];
 for (int i=0; i<NP; i++) {
#pragma HLS unroll
 t[i](worker, split1.out[i], merge1.in[i]);
 }

 write_out(merge1.out, out, n);
}

In the above example, there are two distinct regions - a dataflow region that has the functions
read_in/write_out in which the sequential semantics is preserved - i.e. read_in will be executed
before write_out and a task-channel region that contains the dynamic instantiation of 4 (since
NP = 4 in this example) tasks along with some special type of channels called a split or a
merge channel. A split channel is one that has a single input but has multiple outputs - in this
case, the split channel has 4 outputs. Similarly, a merge channel has multiple inputs but only one
output. In addition, to the ports, these channels also support an internal job scheduler. In the
above example, both the merge and the split channels have selected a round-robin scheduler that
assigns the incoming data to each of the 4 tasks, one by one starting with worker_U0. If a load
balancing scheduler had been chosen then the incoming data will have been assigned to the first
available worker task (and this would lead to a non-deterministic simulation since this order
might be different each time you run the simulation). Since this is a pure task-channel region, the
4 tasks are executed in parallel as soon as there is data in their incoming stream. Refer to the
merge_split example on Github for more examples of these concepts.

It is important to note that, although the code above may give the impression that each task is
"called" in the loop, and connected to a potentially different pair of channels every time the loop
body is executed, in reality, this usage implies a static instantiation, i.e.:

• each t[i](...) call must be executed exactly once per execution of dut().

• the loop over i must be fully unrolled, to infer a corresponding set of 4 instances in RTL.

• The dut() function must be called exactly once by the testbench.

Section II: HLS Programmers Guide
Chapter 2: Abstract Parallel Programming Model for HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 50Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Task_level_Parallelism/Data_driven/mixed_control_and_data_driven
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Task_level_Parallelism/Control_driven/Channels/merge_split
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=50

• Each split output or merge input must be bound to exactly one hls::task instance.

While it is true that for hls::task objects the order of specification does not matter, for the
control-driven dataflow network, Vitis HLS must be able to see that there is a chain of processes,
such as from read_in to write_out. To define this chain of processes, Vitis HLS uses the
calling order, which for hls::tasks is also the declaration order. This means that the model
must define an explicit order from the read_in function to the hls::task region and then
finally to the write_out function in the dataflow region as shown in the example above.

Generally:

• If a control-based process (i.e. regular dataflow) produces a stream for an hls::task, then it
must be called before the declaration of the tasks in the code

• If a control-based process consumes a stream from an hls::task, then it must be called
after the declaration of the tasks in the code

Violation of the above rules can cause unexpected outcomes since each of the NP hls::task
instances is statically bound to the channels that are used in the first invocation of t[i](...).

The following diagram shows the graph of this mixed task-channel and dataflow example:

Section II: HLS Programmers Guide
Chapter 2: Abstract Parallel Programming Model for HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=51

Figure 14: Mixed Task-Channel and Dataflow

Summary
HLS designs that are purely data-driven and that do not require any interaction with the software
application can be modeled using data-driven TLP models. Examples of such designs are:

• Simple rule-based “firewall” with “rules” compiled into the kernel

• Fast-Fourier Transforms with configuration data compiled into the kernel

• FIR filters with coefficients compiled into the kernel

If the design requires data transfer to/from external memory, then the control-driven TLP model
can used. Examples of such designs include:

• Network router where the routing table must be updated entirely for kernel execution

Section II: HLS Programmers Guide
Chapter 2: Abstract Parallel Programming Model for HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=52

• Load-balancer that uses a hash map to send data to a server, that must update server list,
server map, and corresponding IP addresses simultaneously

However, most designs will be a mixed control-driven and data-driven model, requiring some
access to external memory, and enabling streaming between parallel and pipelined tasks within
the HLS design.

In summary, this chapter described some modeling choices to consider when designing your
application written in C/C++. So far, this discussion talked about structuring your algorithm at a
high level to make use of these special models such as the task-channel or dataflow
optimizations. Another key aspect to achieving good throughput is to also consider instruction-
level parallelism. Instruction-level parallelism in HLS refers to the ability to efficiently parallelize
the operations inside loops, functions, and even arrays. The next few sections will walk you
through these lower-level optimizations that work hand-in-hand with the macro-level
optimizations.

Section II: HLS Programmers Guide
Chapter 2: Abstract Parallel Programming Model for HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=53

Chapter 3

Loops Primer
When writing code intended for high-level synthesis (HLS), there is a frequent need to implement
repetitive algorithms that process blocks of data — for example, signal or image processing.
Typically, the C/C++ source code tends to include several loops or several nested loops.

When it comes to optimizing performance, loops are one of the best places to start exploring
optimization. Each iteration of the loop takes at least one clock cycle to execute in hardware.
Thinking from the hardware perspective, there is an implicit wait until clock for the loop body. The
next iteration of a loop only starts when the previous iteration is finished. To improve
performance loops can generally be either pipelined or unrolled to take advantage of the highly
distributed and parallel FPGA architecture, as explained in the following sections.

Pipelining Loops
Pipelining loops permits starting the next iteration of a loop before the previous iteration
finishes, enabling portions of the loop to overlap in execution. By default, every iteration of a
loop only starts when the previous iteration has finished. In the loop example below, a single
iteration of the loop adds two variables and stores the result in a third variable. Assume that in
hardware this loop takes three cycles to finish one iteration. Also, assume that the loop variable
len is 20, that is, the vadd loop runs for 20 iterations in the kernel. Therefore, it requires a total
of 60 clock cycles (20 iterations * 3 cycles) to complete all the operations of this loop.

vadd: for(int i = 0; i < len; i++) {
 c[i] = a[i] + b[i];
}

TIP: It is good practice to always label a loop as shown in the example above (vadd:…). This practice helps
with debugging the design in Vitis HLS. Sometimes the unused labels generate warnings during
compilation, which can be safely ignored.

Pipelining the loop allows subsequent iterations of the loop to overlap and run concurrently.
Pipelining a loop can be enabled by adding the pragma HLS pipeline inside the body of the loop
as shown below:

vadd: for(int i = 0; i < len; i++) {
#pragma HLS PIPELINE
c[i] = a[i] + b[i];
}

Section II: HLS Programmers Guide
Chapter 3: Loops Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=54

TIP: Vitis HLS automatically pipelines loops with 64 iterations or more. This feature can be changed or
disabled using the config_compile -pipeline_loops command.

The number of cycles it takes to start the next iteration of a loop is called the Initiation Interval
(II) of the pipelined loop. So II = 2 means the next iteration of a loop starts two cycles after the
current iteration. An II = 1 is the ideal case, where each iteration of the loop starts in the very
next cycle. When you use pragma HLS pipeline, you can specify the II for the compiler to
achieve. If a target II is not specified, the compiler will try to achieve II=1 by default.

The following figure illustrates the difference in execution between pipelined and non-pipelined
loops. In this figure, (A) shows the default sequential operation where there are three clock cycles
between each input read (II = 3), and it requires eight clock cycles before the last output write is
performed.

Figure 15: Loop Pipelining

void func(m,n,o) {
 for (i=2;i>=0;i--) {
 op_Read;
 op_Compute;
 op_Write;

 }
}

4 cycles

RD

3 cycles

8 cycles

1 cycle
RD CMP WR

RD CMP WR

RD CMP WR

(A) Without Loop Pipelining (B) With Loop Pipelining X14277-100620

CMP WR RD CMP WR RD CMP WR

In the pipelined version of the loop shown in (B), a new input sample is read every cycle (II = 1)
and the final output is written after only four clock cycles: substantially improving both the II and
latency while using the same hardware resources.

IMPORTANT! Pipelining a loop causes any loops nested inside the pipelined loop to get automatically
unrolled.

Section II: HLS Programmers Guide
Chapter 3: Loops Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=55

If there are data dependencies inside a loop, it might not be possible to achieve II = 1, and a
larger initiation interval might be the result. Loop dependencies are data dependencies that may
constrain the optimization of loops, typically pipelining. They can be within a single iteration of a
loop and or between different iterations of a loop. The easiest way to understand loop
dependencies is to examine an extreme example. In the following example, the result of the loop
is used as the loop continuation or exit condition. Each iteration of the loop must finish before
the next can start.

Minim_Loop: while (a != b) {
if (a > b)a -= b;
else b -= a;
}

The Minim_Loop loop in the example above cannot be pipelined because the next iteration of
the loop cannot begin until the previous iteration ends. Not all loop dependencies are as extreme
as this, but the example highlights that some operations cannot begin until some other operation
has been completed. The solution is to try to ensure that the initial operation is performed as
early as possible.

Loop dependencies can occur with any and all types of data. They are particularly common when
using arrays.

Automatic Loop Pipelining
The config_compile -pipeline_loops command enables loops to be pipelined
automatically based on the iteration count. All loops with an iteration count below the specified
limit are automatically pipelined. The default is 64.

Given the following example code:

for (y = 0; y < 480; y++) {
 for (x = 0; x < 640; x++) {
 for (i = 0; i < 5; i++) {
 // do something 5 times ...
 }
 }
}

If the pipeline_loops option is set to 6, the innermost for loop in the above code snippet
will be automatically pipelined. This is equivalent to the following code snippet:

for (y = 0; y < 480; y++) {
 for (x = 0; x < 640; x++) {
 for (i = 0; i < 5; i++) {
 #pragma HLS PIPELINE II=1
 // do something 5 times ...
 }
 }
}

Section II: HLS Programmers Guide
Chapter 3: Loops Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=56

If there are loops in the design for which you do not want to use automatic pipelining, apply the
PIPELINE directive with the off option to that loop. The off option prevents automatic loop
pipelining.

IMPORTANT! Vitis HLS applies the config_compile -pipeline_loops  command after
performing all user-specified directives. For example, if Vitis HLS applies a user-specified UNROLL directive
to a loop, the loop is first unrolled, and automatic loop pipelining cannot be applied.

Rewinding Pipelined Loops for Performance
The PIPELINE pragma has an option called rewind. This option enables overlap of the execution
of successive calls to the pipelined loop when this loop is the outermost construct of the top
function, or of a dataflow region and the dataflow region is executed multiple times.

The following figure shows the operation when the rewind option is used when pipelining a
loop. At the end of the loop iteration count, the loop starts to execute again. While it generally
re-executes immediately, a delay is possible and is shown and described in the GUI.

Figure 16: Loop Pipelining with Rewind Option

RD0 CMP WR0
RD1 CMP WR1

RD2 CMP WR2

Execute Loop

RDN CMP WRN

RD0 CMP WR0
RD1 CMP WR1

RD2 CMP WR2
RDN CMP WRN

Execute Next Loop

Loop:for(i=1;i<N;i++){
 op_Read;
 op_Compute;
 op_Write;
}

RD
CMP
WR

X14303-100620

Note: If a loop is used around a DATAFLOW region, Vitis HLS automatically implements it to allow
successive executions to overlap.

Flushing Pipelines and Pipeline Types
Flushing Pipelines

Pipelines continue to execute as long as data is available at the input of the pipeline. If there is no
data available to process, the pipeline will stall. This is shown in the following figure, where the
Input Data Valid signal goes low to indicate there is no more valid input data. Once the
signal goes high, indicating there is new data available to process, the pipeline will continue
operation.

Section II: HLS Programmers Guide
Chapter 3: Loops Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=57

Figure 17: Loop Pipelining with Stall

RD0 CMP WR0
Input Data Valid

RD1 CMP
RD2

RDN CMP WRN
CMP
WR1

WR2

X14305-100620

In some cases, it is desirable to have a pipeline that can be “emptied” or “flushed.” The flush
option is provided to perform this. When a pipeline is “flushed” the pipeline stops reading new
inputs when none are available (as determined by a data valid signal at the start of the pipeline)
but continues processing, shutting down each successive pipeline stage, until the final input has
been processed through to the output of the pipeline.

As described below, Vitis HLS will automatically select the right pipeline style to use for a given
pipelined loop or function. However, you can override this default behavior by using the
config_compile -pipeline_style command to specify the default pipeline style. You can
also specify stalling pipelines (stp), or a flushable pipeline (flp) with the PIPELINE pragma or
directive, using the enable_flush option. This option applies to the specific scope of the
pragma or directive and does not change the global default assigned by config_compile.

Both stp and flp types of pipelines use the standard pipeline logic where the hardware pipeline
created use various kinds of blocking signals to stall the pipeline. These blocking signals often
become the driver of a high-fanout net, especially on pipelines that are deep in the number of
physical stages and work on significant data sizes. Such high fanout nets, when they are created,
are the prime cause of timing closure issues which cannot be fixed in RTL/Logic Synthesis or
during Place-and-Route. To solve this issue, a new type of pipeline implementation called free-
running pipeline (or frp) was created. The free-running pipeline is the most efficient architecture
for handling a pipeline that operates with blocking signals. This is because

• It completely eliminates the blocking signal connections to the register enables

• It is a fully flushable pipeline, which allows bubbling invalid transactions

• Unlike the previous architectures which distribute fanouts (across flops), this reduces the
fanouts

• It does not rely on the synthesis and/or place and route optimizations such as flop cloning

• This helps PnR by creating a structure where the wire length is reduced along with the
reduction of the high fanouts

But there is a cost associated with this fanout reduction:

• the size of the FIFO buffers required for the blocking output ports causes additional resource
usage.

• the mux delay at those blocking output ports

Section II: HLS Programmers Guide
Chapter 3: Loops Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=58

• the potential performance hit due to early validation of forward-pressure triggers

IMPORTANT! The free-running pipeline (frp ) can only be called from within a DATAFLOW region. The
frp  style cannot be applied to a loop that is called in a sequential or a pipelined region.

Pipeline Types

The three types of pipelines available in the tool are summarized in the following table. Vitis HLS
will automatically select the right pipeline style to use for a given pipelined loop or function. If
the pipeline is used with hls::tasks, the flushing pipeline (FLP) style is automatically selected
to avoid deadlocks. If the pipeline control requires high fanout, and meets other free-running
requirements, the tool will select the free-running pipeline (FRP) style to limit the high fanout.
Finally, if neither of the above cases apply, then the standard pipeline (STP) style is selected.

Name Stalled Pipeline Free-Running/
Flushable Pipeline Flushable Pipeline

Use cases
• When there is no timing

issue due to high fanout
on pipeline control

• When flushable is not
required (such as no
performance or deadlock
issue due to stall)

• When you need better
timing due to fanout to
register enables from
pipeline control

• When flushable is
required for better
performance or avoiding
deadlock

• Can only be called from a
dataflow region.

• When flushable is
required for better
performance or avoiding
deadlock

Pragma/Directive #pragma HLS pipeline
style=stp

#pragma HLS pipeline
style=frp

#pragma HLS pipeline
style=flp

Global Setting config_compile -
pipeline_style stp
(default)

config_compile -
pipeline_style frp

config_compile -
pipeline_style flp

Disadvantages
• Not flushable, hence it

can:

○ Cause more
deadlocks in dataflow

○ Prevent already
computed outputs
from being delivered,
if the inputs to the
next iterations are
missing

• Timing issues due to high
fanout on pipeline
controls

• Moderate resource
increase due to FIFOs
added on outputs

• Requires at least one
blocking I/O (stream or
ap_hs).

• Not all pipelining
scenarios and I/O types
are supported.

• Can have larger II

• Greater resource usage
due to less sharing when
II>1

Section II: HLS Programmers Guide
Chapter 3: Loops Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=59

Name Stalled Pipeline Free-Running/
Flushable Pipeline Flushable Pipeline

Advantages
• Default pipeline. No

usage constraints.

• Typically the lowest
overall resource usage.

• Better timing due to

○ Less fanout

○ Simpler pipeline
control logic

• Flushable

• Flushable

Managing Pipeline Dependencies
Vitis HLS constructs a hardware datapath that corresponds to the C/C++ source code. When
there is no pipeline directive, the execution is always sequential and so there are no
dependencies that the tool needs to take into account. But when features of the design has been
pipelined, the tool needs to ensure that any possible dependencies are respected in the hardware
that Vitis HLS generates.

Typical cases of data dependencies or memory dependencies are when a read or a write occurs
after a previous read or write.

• A read-after-write (RAW), also called a true dependency, is when an instruction (and data it
reads/uses) depends on the result of a previous operation.

○ I1: t = a * b;

○ I2: c = t + 1;

The read in statement I2 depends on the write of t in statement I1. If the instructions are
reordered, it uses the previous value of t.

• A write-after-read (WAR), also called an anti-dependence, is when an instruction cannot
update a register or memory (by a write) before a previous instruction has read the data.

○ I1: b = t + a;

○ I2: t = 3;

The write in statement I2 cannot execute before statement I1, otherwise the result of b is
invalid.

• A write-after-write (WAW) is a dependence when a register or memory must be written in
specific order otherwise other instructions might be corrupted.

○ I1: t = a * b;

○ I2: c = t + 1;

○ I3: t = 1;

Section II: HLS Programmers Guide
Chapter 3: Loops Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=60

The write in statement I3 must happen after the write in statement I1. Otherwise, the
statement I2 result is incorrect.

• A read-after-read has no dependency as instructions can be freely reordered if the variable is
not declared as volatile. If it is, then the order of instructions has to be maintained.

For example, when a pipeline is generated, the tool needs to take care that a register or memory
location read at a later stage has not been modified by a previous write. This is a true
dependency or read-after-write (RAW) dependency. A specific example is:

int top(int a, int b) {
 int t,c;
I1: t = a * b;
I2: c = t + 1;
 return c;
}

Statement I2 cannot be evaluated before statement I1 completes because there is a
dependency on variable t. In hardware, if the multiplication takes 3 clock cycles, then I2 is
delayed for that amount of time. If the above function is pipelined, then Vitis HLS detects this as
a true dependency and schedules the operations accordingly. It uses data forwarding
optimization to remove the RAW dependency, so that the function can operate at II =1.

Memory dependencies arise when the example applies to an array and not just variables.

int top(int a) {
 int r=1,rnext,m,i,out;
 static int mem[256];
L1: for(i=0;i<=254;i++) {
#pragma HLS PIPELINE II=1
I1: m = r * a; mem[i+1] = m; // line 7
I2: rnext = mem[i]; r = rnext; // line 8
 }
 return r;
}

In the above example, scheduling of loop L1 leads to a scheduling warning message:

WARNING: [SCHED 204-68] Unable to enforce a carried dependency constraint
(II = 1, distance = 1) between 'store' operation (top.cpp:7) of variable
'm', top.cpp:7
on array 'mem' and 'load' operation ('rnext', top.cpp:8) on array 'mem'.
INFO: [SCHED 204-61] Pipelining result: Target II: 1, Final II: 2, Depth: 3.

Section II: HLS Programmers Guide
Chapter 3: Loops Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=61

There are no issues within the same iteration of the loop as you write an index and read another
one. The two instructions could execute at the same time, concurrently. However, observe the
read and writes over a few iterations:

// Iteration for i=0
I1: m = r * a; mem[1] = m; // line 7
I2: rnext = mem[0]; r = rnext; // line 8
// Iteration for i=1
I1: m = r * a; mem[2] = m; // line 7
I2: rnext = mem[1]; r = rnext; // line 8
// Iteration for i=2
I1: m = r * a; mem[3] = m; // line 7
I2: rnext = mem[2]; r = rnext; // line 8

When considering two successive iterations, the multiplication result m (with a latency = 2) from
statement I1 is written to a location that is read by statement I2 of the next iteration of the
loop into rnext. In this situation, there is a RAW dependence as the next loop iteration cannot
start reading mem[i] before the previous computation's write completes.

Figure 18: Dependency Example

m = r * a

read
rnext = mem[0]

write
mem[0 + 1] = mi = 0

m = r * a

read
rnext = mem[1]

write
mem[1 + 1] = mi = 1

X24685-100620

Note that if the clock frequency is increased, then the multiplier needs more pipeline stages and
increased latency. This will force II to increase as well.

Consider the following code, where the operations have been swapped, changing the
functionality:

int top(int a) {
 int r,m,i;
 static int mem[256];
L1: for(i=0;i<=254;i++) {
#pragma HLS PIPELINE II=1

Section II: HLS Programmers Guide
Chapter 3: Loops Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=62

I1: r = mem[i]; // line 7
I2: m = r * a , mem[i+1]=m; // line 8
 }
 return r;
}

The scheduling warning is:

INFO: [SCHED 204-61] Pipelining loop 'L1'.
WARNING: [SCHED 204-68] Unable to enforce a carried dependency constraint
(II = 1,
distance = 1)
 between 'store' operation (top.cpp:8) of variable 'm', top.cpp:8 on array
'mem'
and 'load' operation ('r', top.cpp:7) on array 'mem'.
WARNING: [SCHED 204-68] Unable to enforce a carried dependency constraint
(II = 2,
distance = 1)
 between 'store' operation (top.cpp:8) of variable 'm', top.cpp:8 on array
'mem'
and 'load' operation ('r', top.cpp:7) on array 'mem'.
WARNING: [SCHED 204-68] Unable to enforce a carried dependency constraint
(II = 3,
distance = 1)
 between 'store' operation (top.cpp:8) of variable 'm', top.cpp:8 on array
'mem'
and 'load' operation ('r', top.cpp:7) on array 'mem'.
INFO: [SCHED 204-61] Pipelining result: Target II: 1, Final II: 4, Depth: 4.

Observe the continued read and writes over a few iterations:

Iteration with i=0
I1: r = mem[0]; // line 7
I2: m = r * a , mem[1]=m; // line 8
Iteration with i=1
I1: r = mem[1]; // line 7
I2: m = r * a , mem[2]=m; // line 8
Iteration with i=2
I1: r = mem[2]; // line 7
I2: m = r * a , mem[3]=m; // line 8

A longer II is needed because the RAW dependence is via reading r from mem[i], performing
multiplication, and writing to mem[i+1].

Removing False Dependencies to Improve Loop Pipelining

False dependencies are dependencies that arise when the compiler is too conservative. These
dependencies do not exist in the real code, but cannot be determined by the compiler. These
dependencies can prevent loop pipelining.

Section II: HLS Programmers Guide
Chapter 3: Loops Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=63

The following example illustrates false dependencies. In this example, the read and write
accesses are to two different addresses in the same loop iteration. Both of these addresses are
dependent on the input data, and can point to any individual element of the hist array. Because
of this, Vitis HLS assumes that both of these accesses can access the same location. As a result, it
schedules the read and write operations to the array in alternating cycles, resulting in a loop II of
2. However, the code shows that hist[old] and hist[val] can never access the same
location because they are in the else branch of the conditional if(old == val).

void histogram(int in[INPUT SIZE], int hist[VALUE SIZE]) f
 int acc = 0;
 int i, val;
 int old = in[0];
 for(i = 0; i < INPUT SIZE; i++)
 {
 #pragma HLS PIPELINE II=1
 val = in[i];
 if(old == val)
 {
 acc = acc + 1;
 }
 else
 {
 hist[old] = acc;
 acc = hist[val] + 1;
 }

 old = val;
 }

 hist[old] = acc;

To overcome this deficiency, you can use the DEPENDENCE directive to provide Vitis HLS with
additional information about the dependencies.

void histogram(int in[INPUT SIZE], int hist[VALUE SIZE]) {
 int acc = 0;
 int i, val;
 int old = in[0];
 #pragma HLS DEPENDENCE variable=hist type=intra direction=RAW
dependent=false
 for(i = 0; i < INPUT SIZE; i++)
 {
 #pragma HLS PIPELINE II=1
 val = in[i];
 if(old == val)
 {
 acc = acc + 1;
 }
 else
 {
 hist[old] = acc;
 acc = hist[val] + 1;
 }

 old = val;
 }

 hist[old] = acc;

Section II: HLS Programmers Guide
Chapter 3: Loops Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=64

IMPORTANT! Specifying a FALSE dependency, when in fact the dependency is not FALSE, can result in
incorrect hardware. Be sure dependencies are correct (TRUE or FALSE) before specifying them.

When specifying dependencies there are two main types:

• Inter - Specifies the dependency is between different iterations of the same loop.If this is
specified as FALSE it allows Vitis HLS to perform operations in parallel if the pipelined or loop
is unrolled or partially unrolled and prevents such concurrent operation when specified as
TRUE.

• Intra - Specifies dependence within the same iteration of a loop, for example an array being
accessed at the start and end of the same iteration. When intra dependencies are specified as
FALSE, Vitis HLS may move operations freely within the loop, increasing their mobility and
potentially improving performance or area. When the dependency is specified as TRUE, the
operations must be performed in the order specified.

Scalar Dependencies

Some scalar dependencies are much harder to resolve and often require changes to the source
code. A scalar data dependency could look like the following:

while (a != b) {
 if (a > b) a -= b;
 else b -= a;
 }

The next iteration of this loop cannot start until the current iteration has calculated the updated
the values of a and b, as shown in the following figure.

Figure 19: Scalar Dependency

!= > - != > -

X14288-100620

If the result of the previous loop iteration must be available before the current iteration can
begin, loop pipelining is not possible. If Vitis HLS cannot pipeline with the specified initiation
interval, it increases the initiation internal. If it cannot pipeline at all, as shown by the above
example, it halts pipelining and proceeds to output a non-pipelined design.

Section II: HLS Programmers Guide
Chapter 3: Loops Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=65

Unrolling Loops
A loop is executed for the number of iterations specified by the loop induction variable. The
number of iterations might also be impacted by logic inside the loop body (for example, break
conditions or modifications to a loop exit variable). You can unroll loops to create multiple copies
of the loop body in the RTL design, which allows some or all loop iterations to occur in parallel.
Using the UNROLL pragma you can unroll loops to increase data access and throughput.

By default, HLS loops are kept rolled. This means that each iteration of the loop uses the same
hardware. Unrolling the loop means that each iteration of the loop has its own hardware to
perform the loop function. This means that the performance for unrolled loops can be
significantly beter than for rolled loops. However, the added performance comes at the expense
of added area and resource utilization.

Consider the basic_loops_primer example from GitHub, as shown below:

#include "test.h"

dout_t test(din_t A[N]) {
 dout_t out_accum=0;
 dsel_t x;

 LOOP_1:for (x=0; x<N; x++) {
 out_accum += A[x];
 }
 return out_accum;
}

With no optimization, the Synthesis Summary report in the figure below shows that the
implementation is sequential. This can be confirmed by looking at the trip count for LOOP_1,
which reports the number of iterations as 10 and the Latency as 200. The latency is the time
before the loop can accept new input values.

To get optimal throughput, the latency needs to be as short as possible. To increase performance,
assuming the loop bounds are static, the loop can be fully unrolled using the UNROLL pragma to
create parallel implementations of the loop body. After the LOOP_1 is fully unrolled a significant
reduction in the latency (50ns) is shown in the figure below. Unrolling loops implies a trade-off by
achieving higher performance but at the cost of using extra resources (as seen below in the
increase of FFs and LUTs). Fully unrolling the loop will also cause the loop itself to disappear and
be replaced by the parallel implementations of the loop body which will use up the extra
resources as shown below.

Section II: HLS Programmers Guide
Chapter 3: Loops Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 66Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Modeling/basic_loops_primer
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=66

Of course, there will be cases where it is not possible to unroll the loop completely due to the
increase in resources and the available resources of the platform. In this situation, partially
unrolled loops can be the preferred solution offering some improvement of performance while
not requiring as many resources. To partially unroll a loop you will define an unroll factor for the
pragma or directive. Unrolling the same loop with a factor of 2 (which implies that the loop body
is duplicated and the trip count is reduced by half to 5) can be an acceptable solution for this
constrained case as shown below.

Additionally, when you partially unroll the loop, the HLS tool will implement an exit check in the
loop in case the trip count is not perfectly divisible by the unroll factor. The exit check is skipped
if the trip count is perfectly divisible by the unroll factor.

Merging Loops
All rolled loops imply and create at least one state in the design FSM. When there are multiple
sequential loops it can create additional unnecessary clock cycles and prevent further
optimizations.

The following figure shows a simple example where a seemingly intuitive coding style has a
negative impact on the performance of the RTL design.

Section II: HLS Programmers Guide
Chapter 3: Loops Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=67

Figure 20: Loop Directives

void top (a[4],b[4],c[4],d[4]...) {

 ... Add: for (i=3;i>=0;i--) {

 if (d[i])

 a[i] = b[i] + c[i];

 }

 Sub: for (i=3;i>=0;i--) {

 if (!d[i])

 a[i] = b[i] - c[i];

 }

 ...

}

(A) Without Loop
Merging

1

2

1 cycle

4 cycles

1 cycle

4 cycles

1 cycle

1 cycle

4 cycle

1 cycle

A

(B) With Loop
Merging

X14276-100620

In the preceding figure, (A) shows how, by default, each rolled loop in the design creates at least
one state in the FSM. Moving between those states costs clock cycles: assuming each loop
iteration requires one clock cycle, it takes a total of 11 cycles to execute both loops:

• 1 clock cycle to enter the ADD loop.

• 4 clock cycles to execute the add loop.

• 1 clock cycle to exit ADD and enter SUB.

• 4 clock cycles to execute the SUB loop.

• 1 clock cycle to exit the SUB loop.

• For a total of 11 clock cycles.

In this simple example, it is obvious that an else branch in the ADD loop would also solve the
issue but in a more complex example it may be less obvious and the more intuitive coding style
may have greater advantages.

The LOOP_MERGE optimization directive is used to automatically merge loops. The loop merge
optimization directive will seek to merge all loops within the scope it is placed. In the above
example, merging the loops creates a control structure similar to that shown in (B) in the
preceding figure, which requires only 6 clocks to complete.

Merging loops allows the logic within the loops to be optimized together. The loop merging
transformation has limitations and may not always succeed. However, it is still possible to
manually merge the loops by refactoring the code. In the example above, using a dual-port block
RAM allows the add and subtraction operations to be performed in parallel.

Section II: HLS Programmers Guide
Chapter 3: Loops Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=68

Working with Nested Loops
To get the best performance (lowest latency) when working with nested loops, it becomes crucial
to create perfectly nested loops. In a perfect nested loop, the loop bounds are constant and only
the innermost loop contains any functionality (as shown below)

Perfect_nested_loop_1: for (int i = 0; i < N; ++i) {
 Perfect_nested_loop_2: for (int j = 0; j < M; ++j) {
 // Perfect Nested Loop Code goes here and no where else
 }
}

Imperfect_nested_loop_1: for (int i = 0; i < N; ++i) {
 // Imperfect Nested Loop Code contains code here
 Imperfect_nested_loop_2: for (int j = 0; j < M; ++j) {
 // Imperfect Nested Loop Code goes here
 }
 // Imperfect Nested Loop Code may contain code here as well
}

• Perfect loop nest: Only the innermost loop has loop body content, there is no logic specified
between the loop statements and all the loop bounds are constant

• Semi-perfect loop nest: Only the innermost loop has loop body content, there is no logic
specified between the loop statements but the outermost loop bound can be a variable.

• Imperfect loop nest: The inner loop has variable bounds or the loop body is not exclusively
inside the inner loop. In this case designers should try to restructure the code or unroll the
loops in the loop body to create a perfect loop nest.

It also requires additional clock cycles to move between rolled nested loops. It requires one clock
cycle to move from an outer loop to an inner loop or from an inner loop to an outer loop. In the
small example shown here, this implies 200 extra clock cycles to execute the loop Outer.

void foo_top { a, b, c, d} {
 ...
 Outer: while(j<100)
 Inner: while(i<6) // 1 cycle to enter inner
 ...
 LOOP_BODY
 ...
 } // 1 cycle to exit inner
 }
 ...
}

Section II: HLS Programmers Guide
Chapter 3: Loops Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=69

The LOOP_FLATTEN pragma or directive is used to allow labeled perfect and semi-perfect
nested loops to be flattened, removing the need to re-code for optimal hardware performance
and reducing the number of cycles it takes to perform the operations in the loop. When the
LOOP_FLATTEN optimization is applied to a set of nested loops, it should be applied to the
innermost loop that contains the loop body. Loop flattening can also be performed either by
applying it to individual loops or applying it to all loops in a function by applying the directive at
the function level.

When pipelining nested loops, the optimal balance between area and performance is typically
found by pipelining the innermost loop. This also results in the fastest runtime. The following
code example, pipelined_loop available on GitHub, demonstrates the trade-offs when pipelining
loops and functions.

#include "loop_pipeline.h"

dout_t loop_pipeline(din_t A[N]) {
 int i,j;
 static dout_t acc;

 LOOP_I:for(i=0; i < 20; i++){
 LOOP_J: for(j=0; j < 20; j++){
 acc += A[j] * i;
 }
 }
 return acc;
}

In the above example, if the innermost (LOOP_J) is pipelined, there is one copy of LOOP_J in
hardware (a single multiplier). Vitis HLS automatically flattens the loops when possible, as in this
case, and effectively creates a new single loop (now called LOOP_I_LOOP_J) with 20*20
iterations. Only one multiplier operation and one array access need to be scheduled, then the
loop iterations can be scheduled as a single loop-body entity (20x20 loop iterations).

TIP: When a loop or function is pipelined, any loop in the hierarchy below the loop or function being
pipelined must be unrolled.

If the outer loop (LOOP_I) is pipelined, inner-loop (LOOP_J) is unrolled creating 20 copies of the
loop body: 20 multipliers and 1 array accesses must now be scheduled. Then each iteration of
LOOP_I can be scheduled as a single entity.

If the top-level function is pipelined, both loops must be unrolled: 400 multipliers and 20 array
accesses must now be scheduled. It is very unlikely that Vitis HLS will produce a design with 400
multiplications because, in most designs, data dependencies often prevent maximal parallelism,
for example, even if a dual-port RAM is used for A, the design can only access two values of A in
any clock cycle. Otherwise, the array must be partitioned into 400 registers, which then can all
be read in one clock cycle, with a very significant HW cost.

Section II: HLS Programmers Guide
Chapter 3: Loops Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 70Send Feedback

https://gitenterprise.xilinx.com/ramananr/Vitis-HLS-Introductory-Examples/tree/master/Pipelining/Loops/pipelined_loop
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=70

The concept to appreciate when selecting at which level of the hierarchy to pipeline is to
understand that pipelining the innermost loop gives the smallest hardware with generally
acceptable throughput for most applications. Pipelining the upper levels of the hierarchy unrolls
all sub-loops and can create many more operations to schedule (which could impact compile time
and memory capacity), but typically gives the highest performance design in terms of throughput
and latency. The data access bandwidth must be matched to the requirements of the operations
that are expected to be executed in parallel. This implies that we might need to partition array A
in order to make this work.

To summarize the above options:

• Pipeline LOOP_J: Latency is approximately 400 cycles (20x20) and requires less than 250
LUTs and registers (the I/O control and FSM are always present).

• Pipeline LOOP_I: Latency is 13 cycles but requires a few hundred LUTs and registers. About
twice the logic as the first option, minus any logic optimizations that can be made.

• Pipeline function loop_pipeline: Latency is now only 3 cycles (due to 20 parallel register
accesses) but requires almost twice the logic as the second option (and about 4 times the logic
of the first option), minus any optimizations that can be made.

Vitis HLS cannot flatten imperfect loop nests. This will result in additional clock cycles to enter
and exit the loops. When the design contains nested loops, analyze the results to ensure that as
many nested loops as possible have been flattened: review the log file or look in the synthesis
report for cases (as shown above) where the loop labels have been merged (LOOP_I and LOOP_J
are now reported as LOOP_I_LOOP_J).

Section II: HLS Programmers Guide
Chapter 3: Loops Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=71

Working with Variable Loop Bounds
Some of the optimizations that Vitis HLS can apply are prevented when the loop has variable
bounds. In the following code example, variable_bound_loops on GitHub, the loop bounds are
determined by the variable width, which is driven from a top-level input. In this case, the loop is
considered to have a variable bound, because Vitis HLS cannot know when the loop will
complete.

#include "ap_int.h"
#define N 32

typedef ap_int<8> din_t;
typedef ap_int<13> dout_t;
typedef ap_uint<5> dsel_t;

dout_t code028(din_t A[N], dsel_t width) {

 dout_t out_accum=0;
 dsel_t x;

 LOOP_X:for (x=0;x<width; x++) {
 out_accum += A[x];
 }

 return out_accum;
}

Attempting to optimize the design in the example above reveals the issues created by variable
loop bounds. The first issue with variable loop bounds is that they prevent Vitis HLS from
determining the latency of the loop. Vitis HLS can determine the latency to complete one
iteration of the loop, but because it cannot statically determine the exact variable width, it does
not know how many iterations are performed and thus cannot report the loop latency (the
number of cycles to completely execute all iterations of the loop).

When variable loop bounds are present, Vitis HLS reports the latency as a question mark (?)
instead of using exact values. The following shows the result after the synthesis of the previous
example:

+ Summary of overall latency (clock cycles):
 * Best-case latency: ?
 * Worst-case latency: ?
+ Summary of loop latency (clock cycles):
 + LOOP_X:
 * Trip count: ?
 * Latency: ?

Section II: HLS Programmers Guide
Chapter 3: Loops Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 72Send Feedback

https://gitenterprise.xilinx.com/ramananr/Vitis-HLS-Introductory-Examples/tree/master/Modeling/variable_bound_loops
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=72

The way to overcome this issue is to use the LOOP_TRIPCOUNT pragma or directive to specify a
minimum and/or maximum iteration count for the loop. The tripcount is the number of loop
iterations. If a maximum tripcount of 32 is applied to LOOP_X in the first example, the report is
updated to the following:

+ Summary of overall latency (clock cycles):
 * Best-case latency: 2
 * Worst-case latency: 34
+ Summary of loop latency (clock cycles):
 + LOOP_X:
 * Trip count: 0 ~ 32
 * Latency: 0 ~ 32

The user-provided values for the LOOP_TRIPCOUNT directive are used only for reporting, or to
support the PERFORMANCE pragma or directive. The specified tripcount value allows Vitis HLS
to determine latency values in the report, allowing values from different solutions to be
compared. To have this same loop-bound information used for synthesis, the C/C++ code must
be updated by using asserts, which impact synthesis (however, they must be used carefully since
the assert condition is assumed to be true).

The next steps in optimizing the first example for a lower initiation interval are:

• Unroll the loop and allow the accumulations to occur in parallel.

• Partition the array input, or the parallel accumulations are limited by a single memory port.

If these code transformations are applied, the output from Vitis HLS highlights the most
significant issue with variable bound loops:

WARNING: [HLS 200-936] Cannot unroll loop 'LOOP_X' (loop_var.cpp:22) in
function 'loop_var': cannot completely unroll a loop with a variable trip
count.

Because variable bounds loops cannot be fully unrolled, they not only prevent the unroll directive
from being applied, they also prevent pipelining the levels above the loop.

IMPORTANT! When a loop or function is pipelined, Vitis HLS unrolls all loops in the hierarchy below the
function or loop. If there is a loop with variable bounds in this hierarchy, it prevents pipelining.

The solution to loops with variable bounds is to make the number of loop iteration a fixed value
with conditional executions inside the loop. The code from the variable loop bounds example can
be rewritten as shown in the following code example. Here, the loop bounds are explicitly set to
the maximum value of variable width and the loop body is conditionally executed:

#include "ap_int.h"
#define N 32

typedef ap_int<8> din_t;
typedef ap_int<13> dout_t;
typedef ap_uint<5> dsel_t;

dout_t loop_max_bounds(din_t A[N], dsel_t width) {

Section II: HLS Programmers Guide
Chapter 3: Loops Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=73

 dout_t out_accum=0;
 dsel_t x;

 LOOP_X:for (x=0; x<N; x++) {
 if (x<width) {
 out_accum += A[x];
 }
 }

 return out_accum;
}

The for-loop (LOOP_X) in the example above can be fully unrolled. Because the loop has fixed
upper bounds, Vitis HLS knows how much hardware to create. There are N(32) copies of the
loop body in the RTL design. Each copy of the loop body has conditional logic associated with it
and is executed depending on the value of variable width. Refer to Vitis-HLS-Introductory-
Examples/Modeling/variable_bound_loops for an example.

Section II: HLS Programmers Guide
Chapter 3: Loops Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 74Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Modeling/variable_bound_loops
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Modeling/variable_bound_loops
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=74

Chapter 4

Arrays Primer

Mapping Software Arrays to Hardware
Memory

Arrays are a fundamental data structure in any C++ software program. Software programmers
view arrays as simply a container and allocate/deallocate arrays on demand - often dynamically.
This type of dynamic memory allocation for arrays is not supported when the same program
needs to be synthesized for hardware. For synthesizing arrays to hardware, knowing the exact
amount of memory (statically) required for your algorithm becomes necessary. In addition, the
memory architecture on FPGAs (also called "local memory") has very different trade-offs when
compared to global memory which is often the DDR or HBM memory banks. Access to global
memory has high latency costs and can take many cycles while access to local memory is often
quick and only takes one or more cycles.

When an HLS design has been suitably pipelined and/or unrolled, the memory access pattern
becomes established. Vitis HLS allows users to map arrays to various types of resources - where
the array elements are available in parallel with or without handshaking signals. Both internal
arrays and arrays in the top-level function's interface can be mapped to registers or memories. If
the array is in the top-level interface, Vitis HLS automatically creates the address, data, and
control signals required to interface to external memory. If the array is internal to the design,
Vitis HLS not only creates the necessary address, data, and control signals to access the memory
but also instantiates the memory model (which is then inferred as memory by the downstream
RTL synthesis tool).

Arrays are typically implemented as memory (RAM, ROM, or shift registers) after synthesis.
Arrays can also be fully partitioned into individual registers to create a fully parallel
implementation provided the platform has enough registers to support this step. The
initialization_and_reset example available on GitHub demonstrates different implementations of
memory.

Arrays on the top-level function interface are synthesized as RTL ports that access external
memory. Internal to the design, arrays sized less than 1024 will be synthesized as a shift register.
Arrays sized greater than 1024 will be synthesized into block RAM (BRAM), LUTRAM, or
UltraRAM (URAM) depending on the optimization settings (see BIND_STORAGE directive/pragma).

Section II: HLS Programmers Guide
Chapter 4: Arrays Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 75Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Misc/initialization_and_reset
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=75

Consider the following example in which Vitis HLS infers a shift register when encountering the
following code:

int A[N]; // This will be replaced by a shift register

for(...) {
 // The loop below is the shift operation
 for (int i = 0; i < N-1; ++i)
 A[i] = A[i+1];
 A[N] = ...;

 // This is an access to the shift register
 ... A[x] ...
}

Shift registers can perform a one-shift operation per cycle, and also allows random read access
per cycle anywhere in the shift register, and thus is more flexible than a FIFO.

Cases in which arrays can create issues in the RTL include:

• When implemented as a memory (BRAM/LUTRAM/URAM), the number of memory ports can
limit access to the data leading to II violations in pipelined loops

• Mutually exclusive accesses may not be correctly inferred by Vitis HLS

• Some care must be taken to ensure arrays that only require read accesses are implemented as
ROMs in the RTL.

Vitis HLS supports arrays of pointers. Each pointer can point only to a scalar or an array of
scalars.

TIP: Arrays must be sized. This is required even for function arguments (the size is ignored by the C++
compiler, but it is used by Vitis HLS), for example: Array[10];. However, unsized arrays are not
supported, for example: Array[];.

Array Accesses and Performance
In a previous section, we introduced optimization concepts such as loop unrolling and pipelining
as a means for exploring parallelism. However, this was done without considering how array
access patterns may prevent such optimizations when the arrays are mapped to memories
instead of registers. Arrays mapped to memories can become the bottleneck in a design’s
performance. Vitis HLS provides a number of optimizations, such as array reshaping and array
partitioning, that can remove these memory bottlenecks. Whenever possible, these automatic
memory optimizations should be used, minimizing the number of code modifications. However,
there may be situations where explicitly coding the memory architecture is either required to
meet performance or may allow designers to achieve an even better quality of results. In these
cases, it is essential that array accesses are coded in such a way as to not limit performance. This
means analyzing array access patterns and organizing the memories in a design so that the

Section II: HLS Programmers Guide
Chapter 4: Arrays Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=76

desired throughput and area can be achieved. The following code example shows a case in which
access to an array can limit performance in the final RTL design. In this example, there are three
accesses to the array mem[N] to create a summed result. Refer to Vitis-HLS-
Introductory-Examples/Interface/Memory/memory_bottleneck for the full version
of this example.

#include "array_mem_bottleneck.h"

dout_t array_mem_bottleneck(din_t mem[N]) {

 dout_t sum=0;
 int i;

 SUM_LOOP:for(i=2;i<N;++i)
 sum += mem[i] + mem[i-1] + mem[i-2];

 return sum;
}

During synthesis, the array is implemented as a RAM. If the RAM is specified as a single-port
RAM it is impossible to pipeline loop SUM_LOOP to process a new loop iteration every clock
cycle.

Trying to pipeline SUM_LOOP with an initiation interval of 1 results in the following message
(after failing to achieve a throughput of 1, Vitis HLS relaxes the constraint):

INFO: [SCHED 61] Pipelining loop 'SUM_LOOP'.
WARNING: [SCHED 69] Unable to schedule 'load' operation ('mem_load_2',
bottleneck.c:62) on array 'mem' due to limited memory ports.
INFO: [SCHED 61] Pipelining result: Target II: 1, Final II: 2, Depth: 3.

The issue here is that the single-port RAM has only a single data port: only one read (or one
write) can be performed in each clock cycle.

• SUM_LOOP Cycle1: read mem[i];

• SUM_LOOP Cycle2: read mem[i-1], sum values;

• SUM_LOOP Cycle3: read mem[i-2], sum values;

A dual-port RAM could be used, but this allows only two accesses per clock cycle. Three reads
are required to calculate the value of sum, and so three accesses per clock cycle are required to
pipeline the loop with an new iteration every clock cycle.

Section II: HLS Programmers Guide
Chapter 4: Arrays Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 77Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Memory/memory_bottleneck
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Memory/memory_bottleneck
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=77

The code in the example above can be rewritten as shown in the following code example to allow
the code to be pipelined with a throughput of 1. In the following code example, by performing
pre-reads and manually pipelining the data accesses, there is only one array read specified in
each iteration of the loop. This ensures that only a single-port RAM is required to achieve the
performance.

#include "array_mem_perform.h"

dout_t array_mem_perform(din_t mem[N]) {

 din_t tmp0, tmp1, tmp2;
 dout_t sum=0;
 int i;

 tmp0 = mem[0];
 tmp1 = mem[1];
 SUM_LOOP:for (i = 2; i < N; i++) {
 tmp2 = mem[i];
 sum += tmp2 + tmp1 + tmp0;
 tmp0 = tmp1;
 tmp1 = tmp2;
 }

 return sum;
}

Such changes to the source code as shown above are not always required. The more typical case
is to use optimization directives/pragmas to achieve the same result. Vitis HLS includes
optimization directives for changing how arrays are implemented and accessed. There are two
main classes of optimization:

• Array Partition splits apart the original array into smaller arrays or into individual registers.

• Array Reshape reorganizes the array into a different memory arrangement to increase
parallelism but without splitting apart the original array.

Array Partitioning
Arrays can be partitioned into blocks or into their individual elements. In some cases, Vitis HLS
partitions arrays into individual elements. This is controllable using the configuration settings for
auto-partitioning. When an array is partitioned into multiple blocks, the single array is
implemented as multiple RTL RAM blocks. When partitioned into elements, each element is
implemented as a register in the RTL. In both cases, partitioning allows more elements to be
accessed in parallel and can help with performance; the design trade-off is between performance
and the number of RAMs or registers required to achieve it.

A common issue when pipelining functions is the following message:

INFO: [SCHED 204-61] Pipelining loop 'SUM_LOOP'.
WARNING: [SCHED 204-69] Unable to schedule 'load' operation ('mem_load_2',
bottleneck.c:62) on array 'mem' due to limited memory ports.
WARNING: [SCHED 204-69] The resource limit of core:RAM:mem:p0 is 1, current
assignments:

Section II: HLS Programmers Guide
Chapter 4: Arrays Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=78

WARNING: [SCHED 204-69] 'load' operation ('mem_load', bottleneck.c:62)
on array
'mem',
WARNING: [SCHED 204-69] The resource limit of core:RAM:mem:p1 is 1, current
assignments:
WARNING: [SCHED 204-69] 'load' operation ('mem_load_1',
bottleneck.c:62) on array
'mem',
INFO: [SCHED 204-61] Pipelining result: Target II: 1, Final II: 2, Depth: 3.

In this example, Vitis HLS states it cannot reach the specified initiation interval (II) of 1 because it
cannot schedule a load (read) operation (mem_load_2) onto the memory because of limited
memory ports. The above message notes that the resource limit for "core:RAM:mem:p0 is 1"
which is used by the operation mem_load on line 62. The second port of the block RAM also
only has 1 resource, which is also used by operation mem_load_1. Due to this memory port
contention, Vitis HLS reports a final II of 2 instead of the desired 1.

This issue is typically caused by arrays. Arrays that are not interfaces to the top-level function are
implemented as block RAM which has a maximum of two data ports. This can limit the
throughput of a read/write (or load/store) intensive algorithm. The bandwidth can be improved
by splitting the array (a single block RAM resource) into multiple smaller arrays (multiple block
RAMs), effectively increasing the number of ports.

Arrays are partitioned using the ARRAY_PARTITION directive. Vitis HLS provides three types of
array partitioning, as shown in the following figure. The three styles of partitioning are:

• block: The original array is split into equally sized blocks of consecutive elements of the
original array.

• cyclic: The original array is split into equally sized blocks interleaving the elements of the
original array.

• complete: The default operation is to split the array into its individual elements. This
corresponds to resolving a memory into registers.

Figure 21: Array Partitioning

0 1 2 ... N-3 N-2 N-1

0 1 ... (N/2-1)

N/2 ... N-2 N-1

0 2 ... N-2

1 ... N-3 N-1

0
N-3

N-11
N-2

... 2

block

cyclic

complete

X14251-100620

Section II: HLS Programmers Guide
Chapter 4: Arrays Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=79

For block and cyclic partitioning the factor option specifies the number of arrays that are
created. In the preceding figure, a factor of 2 is used, that is, the array is divided into two smaller
arrays. If the number of elements in the array is not an integer multiple of the factor, the final
array has fewer elements.

When partitioning multi-dimensional arrays, the dimension option is used to specify which
dimension is partitioned. The following figure shows how the dimension option is used to
partition the following example code:

void foo (...) {
 int my_array[10][6][4];
 ...
}

The examples in the figure demonstrate how partitioning dimension 3 results in 4 separate
arrays and partitioning dimension 1 results in 10 separate arrays. If zero is specified as the
dimension, all dimensions are partitioned.

Figure 22: Partitioning Array Dimensions

my_array_0[10][6]
my_array_1[10][6]
my_array_2[10][6]
my_array_3[10][6]

my_array_0[6][4]
my_array_1[6][4]
my_array_2[6][4]
my_array_3[6][4]
my_array_4[6][4]
my_array_5[6][4]
my_array_6[6][4]
my_array_7[6][4]
my_array_8[6][4]
my_array_9[6][4]

my_array[10][6][4] partition dimension 3

my_array[10][6][4] partition dimension 1

my_array[10][6][4] partition dimension 0 10x6x4 = 240 registers
X14304-100620

Automatic Array Partitioning

The config_array_partition command determines how arrays are automatically
partitioned based on the number of elements.

Array Reshaping
The ARRAY_RESHAPE directive reforms the array with a vertical mode of remapping, and is used
to reduce the number of block RAM consumed while providing parallel access to the data.

Section II: HLS Programmers Guide
Chapter 4: Arrays Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=80

Given the following example code:

void foo (...) {
int array1[N];
int array2[N];
int array3[N];
#pragma HLS ARRAY_RESHAPE variable=array1 type=block factor=2 dim=1
#pragma HLS ARRAY_RESHAPE variable=array2 type=cycle factor=2 dim=1
#pragma HLS ARRAY_RESHAPE variable=array3 type=complete dim=1
...
}

The ARRAY_RESHAPE directive transforms the arrays into the form shown in the following
figure.

Figure 23: Array Reshaping

0 1 2 ... N-3 N-2 N-1

N/2 ... N-2 N-1
0 1 ... (N/2-1)

1 ... N-3 N-1
0 2 ... N-2

X14307-100620

0 1 2 ... N-3 N-2 N-1

0 1 2 ... N-3 N-2 N-1

array1[N]

array2[N]

array3[N] N-1
N-2
...
1
0

MSB
LSB

MSB
LSB

MSB

LSB

array4[N/2]

array5[N/2]

array6[1]

block

cyclic

complete

The ARRAY_RESHAPE directive allows more data to be accessed in a single clock cycle. In cases
where more data can be accessed in a single clock cycle, Vitis HLS might automatically unroll any
loops consuming this data, if doing so will improve the throughput. The loop can be fully or
partially unrolled to create enough hardware to consume the additional data in a single clock
cycle. This feature is controlled using the config_unroll command and the option
tripcount_threshold. In the following example, any loops with a tripcount of less than 16
will be automatically unrolled if doing so improves the throughput.

config_unroll -tripcount_threshold 16

Arrays on the Interface
When you use an array as an argument to the top-level function, Vitis HLS assumes one of the
following:

• Memory is off-chip and Vitis HLS synthesizes M_AXI ports on the interface to access the
memory as the default for the Vitis Kernel flow.

Section II: HLS Programmers Guide
Chapter 4: Arrays Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=81

• Memory is standard block RAM with a latency of 1 as the default behavior in the Vivado IP
flow. The data is ready one clock cycle after the address is supplied.

To configure how Vitis HLS creates these ports:

• Specify the interface as a M_AXI, BRAM, or FIFO interface using the INTERFACE pragma or
directive.

• Specify the RAM as a single or dual-port RAM using the storage_type option of the
INTERFACE pragma or directive.

• Specify the RAM latency using the latency option of the INTERFACE pragma or directive.

• Use array optimization directives, ARRAY_PARTITION, or ARRAY_RESHAPE, to reconfigure
the structure of the array and therefore, the number of I/O ports.

TIP: Because access to the data is limited through a memory (RAM or FIFO) port, arrays on the interface
can create a performance bottleneck. Typically, you can overcome these bottlenecks using optimization
directives.

Arrays must be sized when used in synthesizable code. If, for example, the declaration d_i[4] in
Array Interfaces is changed to d_i[], Vitis HLS issues a message that the design cannot be
synthesized:

@E [SYNCHK-61] array_RAM.c:52: unsupported memory access on variable 'd_i'
which is (or contains) an array with unknown size at compile time.

Array Interfaces
The INTERFACE pragma or directive lets you explicitly define which type of RAM or ROM is
used with the storage_type=<value> option. This defines which ports are created (single-
port or dual-port). If no storage_type is specified, Vitis HLS uses:

• A single-port RAM by default.

• A dual-port RAM if it reduces the initiation interval or reduces latency.

The ARRAY_PARTITION and ARRAY_RESHAPE pragmas can re-configure arrays on the
interface. Arrays can be partitioned into multiple smaller arrays, each implemented with its own
interface. This includes the ability to completely partition the array into a set of scalars. On the
function interface, this results in a unique port for every element in the array. This provides
maximum parallel access, but creates many more ports and might introduce routing issues during
hardware implementation.

Section II: HLS Programmers Guide
Chapter 4: Arrays Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=82

By default, the array arguments in the function shown in the following code example are
synthesized into a single-port RAM interface.

#include "array_RAM.h"

void array_RAM (dout_t d_o[4], din_t d_i[4], didx_t idx[4]) {
 int i;

 For_Loop: for (i=0;i<4;i++) {
 d_o[i] = d_i[idx[i]];
 }

}

A single-port RAM interface is used because the for-loop ensures that only one element can
be read and written in each clock cycle. There is no advantage in using a dual-port RAM
interface. If the for-loop is unrolled, Vitis HLS uses a dual-port RAM. Doing so allows multiple
elements to be read at the same time and improves the initiation interval. The type of RAM
interface can be explicitly set by applying the INTERFACE pragma or directive, and setting the
storage_type.

Issues related to arrays on the interface are typically related to throughput. For example, if the
arrays in the example above are partitioned into individual elements, and the for-loop is
unrolled, all four elements in each array are accessed simultaneously.

You can also use the INTERFACE pragma or directive to specify the latency of the RAM, using
the latency=<value> option. This lets Vitis HLS model external SRAMs with a latency greater
than 1 at the interface.

FIFO Interfaces
Vitis HLS allows array arguments to be implemented as FIFO ports in the RTL. If a FIFO ports is
to be used, you must ensure that the accesses to and from the array are sequential.

Note: If the accesses at the interface are not sequential, there is an RTL simulation mismatch.

The following code example shows a case in which the tool cannot determine whether the
accesses are sequential. In this example, both d_i and d_o are specified to be implemented with
a FIFO interface during synthesis. In this case, you must ensure the access is sequential or you
will be introducing errors into your system.

#include "array_FIFO.h"

void array_FIFO (dout_t d_o[4], din_t d_i[4], didx_t idx[4]) {
 int i;
#pragma HLS INTERFACE mode=ap_fifo port=d_i
#pragma HLS INTERFACE mode=ap_fifo port=d_o
 For_Loop: for (i=0;i<4;i++) {
 d_o[i] = d_i[idx[i]];
 }
}

Section II: HLS Programmers Guide
Chapter 4: Arrays Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=83

In this case, the values of variable idx would determine whether or not a FIFO interface can be
successfully created for argument d_i[].

• If the values of the elements of idx are sequential, then a FIFO interface could be created

• If random values are used for idx, a FIFO interface fails in Co-simulation when implemented
in RTL, and may also fail during runtime

However, because these conditions cannot be validated at compile time, Vitis HLS issues a
message during synthesis and creates a FIFO interface:

@W [XFORM-124] Array 'd_i': may have improper streaming access(es).

In addition, the idx array is never read, because its elements are assumed to have sequential
values starting from 0, due to the presence of the ap_fifo INTERFACE pragma.

Note: FIFO ports cannot be synthesized for arrays that are both read from and written to in the same loop
or function. Separate input and output arrays (as in the example above) must be created.

The following general rules apply to arrays that are implemented with a FIFO interface:

• The array must be only read or written in the loop or function. This can be transformed into a
point-to-point connection that matches the characteristics of FIFO links.

• The array reads must be in the same order as the array writes. Because random access is not
supported for FIFO channels, the array must be used in the program following first in, first out
semantics.

The following conditions apply when the data type of an array is a struct, and the array is
sequentially accessed (i.e. the array is specified with the axis or ap_fifo interface or is marked
with STREAM pragma or directive:

• You cannot access struct members directly from I/O arguments that use array-to-stream, or
are as streaming interfaces. You can make a local copy of the struct in order to read/write
member elements.

• You must ensure sequential order access, as shown below

struct A {
 short foo;
 int bar;
};

void dut(A in[N], A out[out], bool flag) {
 #pragma HLS interface ap_fifo port=in,out
 for (unsigned i=0; i<N; i++) {
 A tmp = in[i];
 if (flag)
 tmp.bar += 5;
 out[i] = tmp;
 }
}

Bad example 1:

Section II: HLS Programmers Guide
Chapter 4: Arrays Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=84

void dut(A in[N], A out[out], bool flag) {
 #pragma HLS interface ap_fifo port=in,out
 for (unsigned i=0; i<N; i++) {
 out[i] = in[i];
 if (flag)
 out[i].bar += 5;
 }
}

Bad example 2:
void dut(A in[N], A out[out], bool flag) {
 #pragma HLS interface ap_fifo port=in,out
 for (unsigned i=0; i<N; i++) {
 out[i].foo = in[i].foo;
 if (flag)
 out[i].bar = in[i].bar + 5;
 else
 out[i].bar = in[i].bar;
 }
}

Memory Mapped Interfaces
As mentioned earlier, Vitis HLS allows the user to specify M_AXI interfaces for arrays in the
interface. Since this memory is off-chip and not local, access to these memories can be expensive
in terms of cycles. To optimize how these accesses are made, Vitis HLS performs an automatic
burst optimization, to efficiently read/write to these external memories. Bursting is an
optimization that tries to intelligently aggregate the memory accesses to the DDR to maximize
the throughput bandwidth and/or minimize the latency. Bursting is one of many possible
optimizations to the kernel. Bursting typically gives you a 4-5x improvement. Bursting is useful
when you have contention on the DDR ports from multiple competing kernels.

For more information on this bursting optimization and details on how to write code to infer
more bursts, please review the Optimizing AXI System Performance section.

Initializing and Resetting Arrays
RECOMMENDED: Although not a requirement, Xilinx recommends specifying arrays that are to be
implemented as memories with the static  qualifier. This not only ensures that Vitis HLS implements the
array with a memory in the RTL; it also allows the default initialization behavior of the static types to be
used.

Section II: HLS Programmers Guide
Chapter 4: Arrays Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 85Send Feedback

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Optimizing-AXI-System-Performance
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=85

In the following code, an array is initialized with a set of values. Each time the function is
executed, array coeff is assigned these values. After synthesis, each time the design executes
the RAM that implements coeff is loaded with these values. For a single-port RAM this would
take eight clock cycles. For an array of 1024, it would of course take 1024 clock cycles, during
which time no operations depending on coeff could occur.

int coeff[8] = {-2, 8, -4, 10, 14, 10, -4, 8, -2};

The following code uses the static qualifier to define array coeff. The array is initialized with
the specified values at start of execution. Each time the function is executed, array coeff
remembers its values from the previous execution. A static array behaves in C/C++ code as a
memory does in RTL.

static int coeff[8] = {-2, 8, -4, 10, 14, 10, -4, 8, -2};

In addition, if the variable has the static qualifier, Vitis HLS initializes the variable in the RTL
design and in the FPGA bitstream. This removes the need for multiple clock cycles to initialize
the memory and ensures that initializing large memories is not an operational overhead. Refer to
the initialization_and_reset example available on GitHub for examples.

The RTL configuration command config_rtl -reset can specify if static variables return to
their initial state after a reset is applied. This is not the default. When reset state or all are
used, it forces all arrays implemented as block RAM to be returned to their initialized state after
reset. This can result in two very undesirable conditions in the RTL design:

• Unlike a power-up initialization (or power-on reset), an explicit reset requires the RTL design
to iterate through each address in the block RAM to set the value: this can take many clock
cycles if N is large, and requires more area resources to implement the reset.

• A reset is added to every array in the design.

To prevent adding reset logic onto every such block RAM, and incurring the cycle overhead to
reset all elements in the RAM, specify the default control reset mode and use the RESET
pragma or directive to identify individual static or global variables to be reset.

Alternatively, you can use the state reset mode, and use the RESET directive off option to
select which individual static or global variables to not reset.

Finally, depending on the hardware device or platform of your choice (UltraScale+ or Versal, etc),
there can be differences in how BRAMs and URAMs are initialized and/or reset. In general, Vitis
HLS supports two types of reset: one is when the device is powered on (and also termed as
power-up initialization or power-on reset), and the second is when a hardware RESET signal is
asserted during device execution. The following shows the differences in behavior for the
different memory resources:

Section II: HLS Programmers Guide
Chapter 4: Arrays Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 86Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Misc/initialization_and_reset
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=86

• Initialization Behavior: Applies to all BRAMs on all platforms and only to Versal URAMs. This is
the behavior during power-on initialization (or power-on reset).

• Maintaining an “initial value array” and “run time array” if the array is read/written. This
applies to both BRAMs and URAMs and this corresponds to the hardware “RESET” signal
during device execution.

Implementing ROMs
The const qualifier is recommended when arrays are only read, because Vitis HLS cannot
always infer that a ROM should be used by analysis of the design. The general rule for the
automatic inference of a ROM is that a local (non-global), static array is fully written to before
being read, and never written again. The following practices in the code can help infer a ROM:

• Initialize the array as early as possible in the function that uses it.

• Group writes together.

• Do not interleave array(ROM) initialization writes with non-initialization code.

• Do not store different values to the same array element (group all writes together in the code).

• Element value computation must not depend on any non-constant (at compile-time) design
variables, other than the initialization loop counter variable.

If complex assignments are used to initialize a ROM (for example, functions from the math.h
library), placing the array initialization into a separate function allows a ROM to be inferred. In
the following example, array sin_table[256] is inferred as a memory and implemented as a
ROM after RTL synthesis.

#include "array_ROM_math_init.h"
#include <math.h>

void init_sin_table(din1_t sin_table[256])
{
 int i;
 for (i = 0; i < 256; i++) {
 dint_t real_val = sin(M_PI * (dint_t)(i - 128) / 256.0);
 sin_table[i] = (din1_t)(32768.0 * real_val);
 }
}

dout_t array_ROM_math_init(din1_t inval, din2_t idx)
{
 short sin_table[256];
 init_sin_table(sin_table);
 return (int)inval * (int)sin_table[idx];
}

TIP: Because the sin()  function results in constant values, no core is required in the RTL design to
implement the sin()  function.

Section II: HLS Programmers Guide
Chapter 4: Arrays Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=87

C Simulation with Arrays
Arrays can introduce issues during C/C++ simulation, even before the synthesis step is
performed. If you specify a very large array, it might cause the C/C++ simulation to run out of
memory and fail, as shown in the following example:

#include "ap_int.h"

 int i, acc;
 // Use an arbitrary precision type
 ap_int<32> la0[10000000], la1[10000000];

 for (i=0 ; i < 10000000; i++) {
 acc = acc + la0[i] + la1[i];
 }

The simulation might fail by running out of memory, because the array is placed on the stack that
exists in memory rather than the heap that is managed by the OS and can use local disk space to
grow. Certain issues might make this issue more likely:

• On PCs, the available memory is often less than large Linux boxes and there might be less
memory available.

• Using arbitrary precision types as shown in the example above could make this issue worse as
they require more memory to model than standard C/C++ types.

• Using the more complex fixed-point arbitrary precision types found in C++ might make the
issue of designs running out of memory even more likely as types require even more memory.

The standard way to improve memory resources in C/C++ code development is to increase the
size of the stack using the linker options such as the following option which explicitly sets the
stack size -z stack-size=10485760. This can be applied in Vitis HLS GUI by using the
Project Settings → Simulation → Linker command, or using the following Tcl commands:

csim_design -ldflags {-z stack-size=10485760}
cosim_design -ldflags {-z stack-size=10485760}

In some cases, the machine may not have enough available memory, and increasing the stack size
will not help. In this case a solution is to use dynamic memory allocation for simulation but a
fixed-sized array for synthesis, as shown in the next example. This means that the memory
required for this is allocated on the heap, managed by the OS, and can use local disk space to
grow.

#include "ap_int.h"

 int i, acc;
#ifdef __SYNTHESIS__
 // Use an arbitrary precision type & array for synthesis
 ap_int<32> la0[10000000], la1[10000000];
#else
 // Use an arbitrary precision type & dynamic memory for simulation

Section II: HLS Programmers Guide
Chapter 4: Arrays Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=88

 ap_int<int32> *la0 = malloc(10000000 * sizeof(ap_int<32>));
 ap_int<int32> *la1 = malloc(10000000 * sizeof(ap_int<32>));
#endif
 for (i=0 ; i < 10000000; i++) {
 acc = acc + la0[i] + la1[i];
 }

However, this is not an ideal solution because the simulated code and the synthesized code are
not the same. But this might be the only way to complete simulation. If you take this approach be
sure that the C/C++ test bench covers all aspects of accessing the array. The RTL simulation
performed by cosim_design will verify that the memory accesses are correct in the
synthesized code.

Note: Only use the __SYNTHESIS__ macro on the code to be synthesized. Do not use this macro in the
test bench, because it has no significance in the C/C++ simulation or C/C++ RTL co-simulation. Refer to
Vitis-HLS-Introductory-Examples/Pipelining/Functions/hier_func for the full version
of this example.

Section II: HLS Programmers Guide
Chapter 4: Arrays Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 89Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Pipelining/Functions/hier_func
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=89

Chapter 5

Functions Primer
The top-level function becomes the top-level module of the RTL design after synthesis. All sub-
functions that are not in-lined are synthesized into separate modules in the RTL design.
Arguments of the top-level function are implemented as interface ports in the hardware as
described in Interfaces of the HLS Design. Global variables used by the kernel cannot be
accessed from the outside. Any variable that is accessed by both the test bench (or other
compiled kernels or host) and the kernel itself should be defined as an argument of the top-level
function.

IMPORTANT! The top-level function cannot be a static function.

After synthesis, each function in the design has its own synthesis report and HDL file (Verilog
and VHDL).

Function Inlining
Function inlining removes the function hierarchy. A function is inlined using the INLINE directive.
Inlining a function may improve the area by allowing the components within the function to be
better shared or optimized with the logic in the calling function. This type of function inlining is
also performed automatically by Vitis HLS for small functions.

Inlining allows function sharing to be better controlled. For functions to be shared they must be
used within the same level of hierarchy. In this code example, function foo_top calls foo twice
and function foo_sub.

foo_sub (p, q) {
 int q1 = q + 10;
 foo(p1,q); // foo_3
 ...
}
void foo_top { a, b, c, d} {
 ...
 foo(a,b); //foo_1
 foo(a,c); //foo_2
 foo_sub(a,d);
 ...
}

Section II: HLS Programmers Guide
Chapter 5: Functions Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=90

Inlining function foo_sub and using the ALLOCATION directive to specify that only one
instance of the function foo is used, results in a design that only has one instance of function
foo: one-third the area of the example above. Using this strategy allows for more fine-grained
control of what user-defined resources can be shared and is a useful feature to when area
utilization is a consideration.

foo_sub (p, q) {
#pragma HLS INLINE
 int q1 = q + 10;
 foo(p1,q); // foo_3
 ...
}
void foo_top { a, b, c, d} {
#pragma HLS ALLOCATION instances=foo limit=1 function
 ...
 foo(a,b); //foo_1
 foo(a,c); //foo_2
 foo_sub(a,d);
 ...
}

The INLINE directive optionally allows all functions below the specified function to be
recursively inlined by using the recursive option. If the recursive option is used on the top-
level function, all function hierarchy in the design is removed.

The INLINE off option can optionally be applied to functions to prevent them from being
inlined. This option may be used to prevent Vitis HLS from automatically inlining a function.

The INLINE directive is a powerful way to substantially modify the structure of the code without
actually performing any modifications to the source code and provides a very powerful method
for architectural exploration.

Function Pipelining
Function pipelining is handled similarly to loop pipelining as described in Pipelining Loops. Vitis
HLS treats the function body as if it were the same as a loop body being called multiple times -
except in this case, it is the function that is called multiple times and the tools pipelines the
execution of these calls. So similar to loops, when a function is pipelined, all the loops in the
function body and in the hierarchy below are automatically unrolled. This is a requirement for
pipelining to proceed. If a loop has variable bounds and it cannot be unrolled then this will
prevent the function from being pipelined.

Section II: HLS Programmers Guide
Chapter 5: Functions Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=91

Function Instantiation
Function instantiation is an optimization technique that has the area benefits of maintaining the
function hierarchy but provides an additional powerful option: performing targeted local
optimizations on specific instances of a function. This can simplify the control logic around the
function call and potentially improve latency and throughput.

The FUNCTION_INSTANTIATE pragma or directive exploits the fact that some inputs to a
function may be a constant value when the function is called and uses this to both simplify the
surrounding control structures and produce smaller more optimized function blocks. This is best
explained by example as shown in the following code.

char func(char inval, char incr) {
#pragma HLS INLINE OFF
#pragma HLS FUNCTION_INSTANTIATE variable=incr
 return inval + incr;
}

void top(char inval1, char inval2, char inval3,
 char *outval1, char *outval2, char *outval3)
{
 *outval1 = func(inval1, 0);
 *outval2 = func(inval2, 1);
 *outval3 = func(inval3, 100);
}

TIP: The Vitis HLS tool automatically decomposes (or inlines) small functions into higher-level calling
functions. Using the INLINE pragma with the OFF  option can be used to prevent this automatic inlining.

It is clear that function func has been written to perform three exclusive operations (depending
on the value of incr). Each instance of function func is implemented in an identical manner.
While this is great for function reuse and area optimization, it also means that the control logic
inside the function must be more complex to account for the two exclusive operations. Refer to
Vitis-HLS-Introductory-Examples/Pipelining/Functions/
function_instantiate for the full version of this example.

The FUNCTION_INSTANTIATE optimization allows each instance to be independently
optimized, reducing the functionality and area. After FUNCTION_INSTANTIATE optimization,
the code above can effectively be transformed to have two separate functions, each optimized
for different possible values of mode, as shown:

void func1() {
 // code segment 1
}

void func2() {
 // code segment 2
}

Section II: HLS Programmers Guide
Chapter 5: Functions Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 92Send Feedback

https://docs.xilinx.com/r/u1ha7A~FnJAUGn1TvNNmSQ/M8aXu1LCbpUP3i0WEuSubQ
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Pipelining/Functions/function_instantiate
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Pipelining/Functions/function_instantiate
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=92

If the function is used at different levels of hierarchy such that function sharing is difficult
without extensive inlining or code modifications, function instantiation can provide the best
means of improving area: many small locally optimized copies are better than many large copies
that cannot be shared.

Section II: HLS Programmers Guide
Chapter 5: Functions Primer

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=93

Chapter 6

Data Types
The data types used in a C/C++ function compiled into an executable impact the accuracy of the
result and the memory requirements, and can impact the performance.

• A 32-bit integer int data type can hold more data and therefore provide more precision than
an 8-bit char type, but it requires more storage.

• If 64-bit long long types are used on a 32-bit system, the runtime is impacted because it
typically requires multiple accesses to read and write those values.

Similarly, when the C/C++ function is to be synthesized to an RTL implementation, the types
impact the precision, the area, and the performance of the RTL design. The data types used for
variables determine the size of the operators required and therefore the area and performance of
the RTL.

Vitis HLS supports the synthesis of all standard C/C++ types, including exact-width integer
types.

• (unsigned) char, (unsigned) short, (unsigned) int

• (unsigned) long, (unsigned) long long

• (unsigned) intN_t (where N is 8, 16, 32, and 64, as defined in stdint.h)

• float, double

Exact-width integers types are useful for ensuring designs are portable across all types of system.

The C/C++ standard dictates that type (unsigned)long is implemented as 64 bits on 64-bit
operating systems and as 32 bits on 32-bit operating systems. Synthesis matches this behavior
and produces different sized operators, and therefore different RTL designs, depending on the
type of operating system on which Vitis HLS is run. On Windows OS, Microsoft defines type long
as 32-bit, regardless of the OS.

• Use data type (unsigned)int or (unsigned)int32_t instead of type
(unsigned)long for 32-bit.

• Use data type (unsigned)long long or (unsigned)int64_t instead of type
(unsigned)long for 64-bit.

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=94

Note: The C/C++ compile option -m32 may be used to specify that the code is compiled for C/C++
simulation and synthesized to the specification of a 32-bit architecture. This ensures the long data type is
implemented as a 32-bit value. This option is applied using the -CFLAGS option to the add_files
command.

Xilinx highly recommends defining the data types for all variables in a common header file, which
can be included in all source files.

• During the course of a typical Vitis HLS project, some of the data types might be refined, for
example to reduce their size and allow a more efficient hardware implementation.

• One of the benefits of working at a higher level of abstraction is the ability to quickly create
new design implementations. The same files typically are used in later projects but might use
different (smaller or larger or more accurate) data types.

Both of these tasks are more easily achieved when the data types can be changed in a single
location: the alternative is to edit multiple files.

IMPORTANT! When using macros in header files, always use unique names. For example, if a macro
named _TYPES_H  is defined in your header file, it is likely that such a common name might be defined in
other system files, and it might enable or disable some other code causing unforeseen side effects.

TIP: The std::complex<long double>  data type is not supported in Vitis HLS and should not be
used.

Standard Types
The following code example shows some basic arithmetic operations being performed.

#include "types_standard.h"

void types_standard(din_A inA, din_B inB, din_C inC, din_D inD,
 dout_1 *out1, dout_2 *out2, dout_3 *out3, dout_4 *out4
) {

 // Basic arithmetic operations
 *out1 = inA * inB;
 *out2 = inB + inA;
 *out3 = inC / inA;
 *out4 = inD % inA;

}

The data types in the example above are defined in the header file types_standard.h shown
in the following code example. They show how the following types can be used:

• Standard signed types

• Unsigned types

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=95

• Exact-width integer types (with the inclusion of header file stdint.h)

#include <stdio.h>
#include <stdint.h>

#define N 9

typedef char din_A;
typedef short din_B;
typedef int din_C;
typedef long long din_D;

typedef int dout_1;
typedef unsigned char dout_2;
typedef int32_t dout_3;
typedef int64_t dout_4;

void types_standard(din_A inA,din_B inB,din_C inC,din_D inD,dout_1

*out1,dout_2 *out2,dout_3 *out3,dout_4 *out4);

These different types result in the following operator and port sizes after synthesis:

• The multiplier used to calculate result out1 is a 24-bit multiplier. An 8-bit char type
multiplied by a 16-bit short type requires a 24-bit multiplier. The result is sign-extended to
32-bit to match the output port width.

• The adder used for out2 is 8-bit. Because the output is an 8-bit unsigned char type, only
the bottom 8-bits of inB (a 16-bit short) are added to 8-bit char type inA.

• For output out3 (32-bit exact width type), 8-bit char type inA is sign-extended to 32-bit
value and a 32-bit division operation is performed with the 32-bit (int type) inC input.

• A 64-bit modulus operation is performed using the 64-bit long long type inD and 8-bit
char type inA sign-extended to 64-bit, to create a 64-bit output result out4.

As the result of out1 indicates, Vitis HLS uses the smallest operator it can and extends the result
to match the required output bit-width. For result out2, even though one of the inputs is 16-bit,
an 8-bit adder can be used because only an 8-bit output is required. As the results for out3 and
out4 show, if all bits are required, a full sized operator is synthesized.

Floats and Doubles
Vitis HLS supports float and double types for synthesis. Both data types are synthesized with
IEEE-754 standard partial compliance (see Floating-Point Operator LogiCORE IP Product Guide
(PG060)).

• Single-precision 32-bit

○ 24-bit fraction

○ 8-bit exponent

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 96Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=latest;d=pg060-floating-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=96

• Double-precision 64-bit

○ 53-bit fraction

○ 11-bit exponent

RECOMMENDED: When using floating-point data types, Xilinx highly recommends that you review
Floating-Point Design with Vivado HLS (XAPP599). Also refer to Vitis-HLS-Introductory-Examples/
Modeling/using_float_and_double on Github for an example of using floating and double data types.

In addition to using floats and doubles for standard arithmetic operations (such as +, -, *) floats
and doubles are commonly used with the math.h (and cmath.h for C++). This section discusses
support for standard operators.

The following code example shows the header file used with Standard Types updated to define
the data types to be double and float types.

#include <stdio.h>
#include <stdint.h>
#include <math.h>

#define N 9

typedef double din_A;
typedef double din_B;
typedef double din_C;
typedef float din_D;

typedef double dout_1;
typedef double dout_2;
typedef double dout_3;
typedef float dout_4;

void types_float_double(din_A inA,din_B inB,din_C inC,din_D inD,dout_1
*out1,dout_2 *out2,dout_3 *out3,dout_4 *out4);

This updated header file is used with the following code example where a sqrtf() function is
used.

#include "types_float_double.h"

void types_float_double(
 din_A inA,
 din_B inB,
 din_C inC,
 din_D inD,
 dout_1 *out1,
 dout_2 *out2,
 dout_3 *out3,
 dout_4 *out4
) {

 // Basic arithmetic & math.h sqrtf()
 *out1 = inA * inB;

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 97Send Feedback

https://docs.xilinx.com/access/sources/ud/document?url=xapp599-floating-point-vivado-hls&ft:locale=en-US
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Modeling/using_float_and_double
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Modeling/using_float_and_double
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=97

 *out2 = inB + inA;
 *out3 = inC / inA;
 *out4 = sqrtf(inD);

}

When the example above is synthesized, it results in 64-bit double-precision multiplier, adder,
and divider operators. These operators are implemented by the appropriate floating-point Xilinx
IP catalog cores.

The square-root function used sqrtf() is implemented using a 32-bit single-precision floating-
point core.

If the double-precision square-root function sqrt() was used, it would result in additional logic
to cast to and from the 32-bit single-precision float types used for inD and out4: sqrt() is a
double-precision (double) function, while sqrtf() is a single precision (float) function.

In C functions, be careful when mixing float and double types as float-to-double and double-to-
float conversion units are inferred in the hardware.

float foo_f = 3.1459;
float var_f = sqrt(foo_f);

The above code results in the following hardware:

wire(foo_t)
-> Float-to-Double Converter unit
-> Double-Precision Square Root unit
-> Double-to-Float Converter unit
-> wire (var_f)

Using a sqrtf() function:

• Removes the need for the type converters in hardware

• Saves area

• Improves timing

When synthesizing float and double types, Vitis HLS maintains the order of operations
performed in the C code to ensure that the results are the same as the C simulation. Due to
saturation and truncation, the following are not guaranteed to be the same in single and double
precision operations:

 A=B*C; A=B*F;
 D=E*F; D=E*C;
 O1=A*D O2=A*D;

With float and double types, O1 and O2 are not guaranteed to be the same.

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=98

TIP: In some cases (design dependent), optimizations such as unrolling or partial unrolling of loops, might
not be able to take full advantage of parallel computations as Vitis HLS maintains the strict order of the
operations when synthesizing float and double types. This restriction can be overridden using
config_compile -unsafe_math_optimizations.

For C++ designs, Vitis HLS provides a bit-approximate implementation of the most commonly
used math functions.

Floating-Point Accumulator and MAC

Floating point accumulators (facc), multiply and accumulate (fmacc), and multiply and add
(fmadd) can be enabled using the config_op command shown below:

config_op <facc|fmacc|fmadd> -impl <none|auto> -precision <low|standard|
high>

Vitis HLS supports different levels of precision for these operators that tradeoff between
performance, area, and precision on both Versal and non-Versal devices.

• Low-precision accumulation is suitable for high-throughput low-precision floating point
accumulation and multiply-accumulation, this mode is only available in non-Versal devices.

○ It uses an integer accumulator with a pre-scaler and a post-scaler (to convert input and
output to single-precision or double-precision floating point).

- It uses a 60 bit and 100 bit accumulator for single and double precision inputs
respectively.

- It can cause cosim mismatches due to insufficient precision with respect to C++
simulation

○ It can always be pipelined with an II=1 without source code changes

○ It uses approximately 3X the resources of standard-precision floating point accumulation,
which achieves an II that is typically between 3 and 5, depending on clock frequency and
target device.

Using low-precision, accumulation for floats and doubles is supported with an initiation
interval (II) of 1 on all devices. This means that the following code can be pipelined with an II
of 1 without any additional coding:

float foo(float A[10], float B[10]) {
 float sum = 0.0;
 for (int i = 0; i < 10; i++) {
 sum += A[i] * B[i];
 }
 return sum;
}

• Standard-precision accumulation and multiply-add is suitable for most uses of floating-point,
and is available on Versal and non-Versal devices.

○ It always uses a true floating-point accumulator

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=99

○ It can be pipelined with an II=1 on Versal devices.

○ It can be pipelined with an II that is typically between 3 and 5 (depending on clock
frequency and target device) on non-Versal devices. The standard precision mode is more
efficient on Versal devices than on non-Versal devices.

• High-precision fused multiply-add is suitable for high-precision applications and is available on
Versal devices.

○ It uses one extra bit of precision

○ It always uses a single fused multiply-add, with a single rounding at the end, although it
uses more resources than the unfused multiply-add

○ It can cause cosim mismatches due to the extra precision with respect to C++ simulation

Composite Data Types
HLS supports composite data types for synthesis:

• Structs

• Enumerated Types

• Unions

Structs
Structs in the code, for instance internal and global variables, are disaggregated by default. They
are decomposed into separate objects for each of their member elements. The number and type
of elements created are determined by the contents of the struct itself. Arrays of structs are
implemented as multiple arrays, with a separate array for each member of the struct.

IMPORTANT! Structs used as arguments to the top-level function are aggregated by default as described
in Structs in the Interface.

Alternatively, you can use the AGGREGATE pragma or directive to collect all the elements of a
struct into a single wide vector. This allows all members of the struct to be read and written to
simultaneously. The aggregated struct will be padded as needed to align the elements on a 4-
byte boundary, as discussed in Struct Padding and Alignment. The member elements of the struct
are placed into the vector in the order they appear in the C/C++ code: the first element of the
struct is aligned on the LSB of the vector and the final element of the struct is aligned with the
MSB of the vector. Any arrays in the struct are partitioned into individual array elements and
placed in the vector from lowest to highest, in order.

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=100

TIP: You should take care when using the AGGREGATE pragma on structs with large arrays. If an array has
4096 elements of type int , this will result in a vector (and port) of width 4096 * 32 = 131072 bits. While
Vitis HLS can create this RTL design, it is unlikely that the Vivado tool will be able to route this during
implementation.

The single wide-vector created by using the AGGREGATE directive allows more data to be
accessed in a single clock cycle. When data can be accessed in a single clock cycle, Vitis HLS
automatically unrolls any loops consuming this data, if doing so improves the throughput. The
loop can be fully or partially unrolled to create enough hardware to consume the additional data
in a single clock cycle. This feature is controlled using the config_unroll command and the
option tripcount_threshold. In the following example, any loops with a tripcount of less
than 16 will be automatically unrolled if doing so improves the throughput.

config_unroll -tripcount_threshold 16

If a struct contains arrays, the AGGREGATE directive performs a similar operation as
ARRAY_RESHAPE and combines the reshaped array with the other elements in the struct.
However, a struct cannot be optimized with AGGREGATE and then partitioned or reshaped. The
AGGREGATE, ARRAY_PARTITION, and ARRAY_RESHAPE directives are mutually exclusive.

Structs in the Interface

Structs in the interface are kept aggregated by Vitis HLS by default; combining all of the elements
of a struct into a single wide vector. This allows all members of the struct to be read and written-
to simultaneously. You can disaggregate structs in the interface by using the DISAGGREGATE
pragma or directive. When a struct contains one or more hls::stream objects Vitis HLS will
automatically disaggregate the struct as described below in Structs in the Interface with
hls::stream Elements.

IMPORTANT! Disaggregating a struct in the interface is not supported in the Vitis kernel flow because the
Vitis tool cannot map a single C-argument to multiple RTL ports. When disaggregating a struct in the
interface, either manually or automatically, Vitis HLS will build and export the Vitis kernel output (.xo ),
but that output will result in an error when used with the v++  command. To support the Vitis Kernel flow
you must manually break the struct into its constituent elements, and define any hls::stream  objects
as using an AXIS interface.

As part of aggregation, the elements of the struct are also aligned on a 4 byte alignment for the
Vitis kernel flow, and on 1 byte alignment for the Vivado IP flow. This alignment might require
the addition of bit padding to keep or make things aligned, as discussed in Struct Padding and
Alignment. By default the aggregated struct is padded rather than packed, but in the Vivado IP
flow you can pack it using the compact=bit option of the AGGREGATE pragma or directive.
However, any port that gets defined as an AXI4 interface (m_axi, s_axilite, or axis) cannot
use compact=bit.

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=101

The member elements of the struct are placed into the vector in the order they appear in the C/C
++ code: the first element of the struct is aligned on the LSB of the vector and the final element
of the struct is aligned with the MSB of the vector. This allows more data to be accessed in a
single clock cycle. Any arrays in the struct are partitioned into individual array elements and
placed in the vector from lowest to highest, in order.

In the following example, struct data_t is defined in the header file shown. The struct has
two data members:

• An unsigned vector varA of type short (16-bit).

• An array varB of four unsigned char types (8-bit).

typedef struct {
 unsigned short varA;
 unsigned char varB[4];
 } data_t;

data_t struct_port(data_t i_val, data_t *i_pt, data_t *o_pt);

Aggregating the struct on the interface results in a single 48-bit port containing 16 bits of varA,
and 4x8 bits of varB.

TIP: The maximum bit-width of any port or bus created by data packing is 8192 bits, or 4096 bits for
axis  streaming interfaces.

There are no limitations in the size or complexity of structs that can be synthesized by Vitis HLS.
There can be as many array dimensions and as many members in a struct as required. The only
limitation with the implementation of structs occurs when arrays are to be implemented as
streaming (such as a FIFO interface). In this case, follow the same general rules that apply to
arrays on the interface (FIFO Interfaces).

Structs on the Interface with hls::stream Elements

User-defined structs on the interface containing hls::stream elements are automatically
disaggregated by Vitis HLS. This disaggregated struct is supported in the Vivado IP flow, and the
exported IP will work as expected. However, this disaggregated struct is not supported for the
Vitis Kernel flow, and the exported kernel (.xo) will cause an error when used with the v++ --
link command. To support the Vitis Kernel flow you must manually break the struct into its
constituent elements, and define the hls::stream object as using an AXIS interface.

If you have a struct that is disaggregated automatically, Vitis HLS applies any INTERFACE
pragmas to the individual elements of the disaggregated struct. If there is only one INTERFACE
pragma specified for the struct, it is applied to each element of the struct. If you provide an
INTERFACE pragma for each element of the disaggregated struct, it is applied as expected.

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=102

Struct Padding and Alignment

Structs in Vitis HLS can have different types of padding and alignment depending on the use of
__attributes__ or #pragmas. These features are described below.

• Disaggregate: By default, structs in the code as internal variables are disaggregated into
individual elements. The number and type of elements created are determined by the
contents of the struct itself. Vitis HLS will decide whether a struct will be disaggregated or not
based on certain optimization criteria.

TIP: You can use the AGGREGATE pragma or directive to prevent the default disaggregation of structs
in the code.

Figure 24: Disaggregated Struct

struct example {
ap_int<5> a;
unsigned short int b;
unsigned short int c;
int d;
};
void foo()
{
example s0;
#pragma HLS disaggregate variable=s0
}

a

b

8 bits

16 bits

c

d

16 bits

32 bits
X24681-100520

• Aggregate: Aggregating structs on the interface is the default behavior of the tool, as
discussed in Structs in the Interface. Vitis HLS joins the elements of the struct, aggregating
the struct into a single data unit. This is done in accordance with the AGGREGATE pragma or
directive, although you do not need to specify the pragma as this is the default for structs on
the interface. The aggregate process may also involve bit padding for elements of the struct,
to align the byte structures on a default 4-byte alignment, or specified alignment.

TIP: The tool can issue a warning when bits are added to pad the struct, by specifying -Wpadded  as a
compiler flag.

• Aligned: By default, Vitis HLS will align struct on a 4-byte alignment, padding elements of the
struct to align it to a 32-bit width. However, you can use the
__attribute__((aligned(X))) to add padding between elements of the struct, to align
it on "X" byte boundaries.

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=103

IMPORTANT! Note that "X" can only be defined as a power of 2.

The __attribute__((aligned)) does not change the sizes of variables it is applied to,
but may change the memory layout of structures by inserting padding between elements of
the struct. As a result the size of the structure will change.

Data types in struct with custom data widths, such as ap_int, are allocated with sizes which
are powers of 2. Vitis HLS adds padding bits for aligning the size of the data type to a power
of 2.

Vitis HLS will also pad the bool data type to align it to 8 bits.

In the following example, the size of varA in the struct will be padded to 8 bits instead of 5.

struct example {
ap_int<5> varA;
unsigned short int varB;
unsigned short int varC;
int d;
};

Figure 25: Aligned Struct Implementation

struct _attribute_((aligned(2))) example {
ap_int<5> a;
unsigned short int b;
unsigned short int c;
int d;
};

a b

8 bits 16 bits

c d

16 bits 32 bits

MSB

8 bits

LSB

0

X24682-102220

The padding used depends on the order and size of elements of your struct. In the following
code example, the struct alignment is 4 bytes, and Vitis HLS will add 2 bytes of padding after
the first element, varA, and another 2 bytes of padding after the third element, varC. The
total size of the struct will be 96-bits.

struct data_t {
 short varA;
 int varB;
 short varC;
};

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=104

However, if you rewrite the struct as follows, there will be no need for padding, and the total
size of the struct will be 64-bits.

struct data_t {
 short varA;
 short varC;
 int varB;
};

• Packed: Specified with __attribute__(packed(X)), Vitis HLS packs the elements of the
struct so that the size of the struct is based on the actual size of each element of the struct. In
the following example, this means the size of the struct is 72 bits:

Figure 26: Packed Struct Implementation

struct _attribute_((packed)) example {
ap_int<5> a;
unsigned short int b;
unsigned short int c;
int d;
};

a b

8 bits 16 bits

c d

16 bits 32 bits

MSB LSB

X24680-102220

TIP: This can also be achieved using the compact=bit  option of the AGGREGATE pragma or
directive.

C++ Classes and Templates
C++ classes are fully supported for synthesis with Vitis HLS. The top-level for synthesis must be
a function. A class cannot be the top-level for synthesis. To synthesize a class member function,
instantiate the class itself into function. Do not simply instantiate the top-level class into the test
bench. The following code example shows how class CFir (defined in the header file discussed
next) is instantiated in the top-level function cpp_FIR and used to implement an FIR filter.

#include "cpp_FIR.h"

// Top-level function with class instantiated
data_t cpp_FIR(data_t x)
 {
 static CFir<coef_t, data_t, acc_t> fir1;

 cout << fir1;

 return fir1(x);
 }

IMPORTANT! Classes and class member functions cannot be the top-level for synthesis. Instantiate the
class in a top-level function.

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=105

Before examining the class used to implement the design in the C++ FIR Filter example above, it
is worth noting Vitis HLS ignores the standard output stream cout during synthesis. When
synthesized, Vitis HLS issues the following warnings:

INFO [SYNCHK-101] Discarding unsynthesizable system call:
'std::ostream::operator<<' (cpp_FIR.h:108)
INFO [SYNCHK-101] Discarding unsynthesizable system call:
'std::ostream::operator<<' (cpp_FIR.h:108)
INFO [SYNCHK-101] Discarding unsynthesizable system call: 'std::operator<<
<std::char_traits<char> >' (cpp_FIR.h:110)

The following code example shows the header file cpp_FIR.h, including the definition of class
CFir and its associated member functions. In this example the operator member functions ()
and << are overloaded operators, which are respectively used to execute the main algorithm and
used with cout to format the data for display during C/C++ simulation.

#include <fstream>
#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;

#define N 85

typedef int coef_t;
typedef int data_t;
typedef int acc_t;

// Class CFir definition
template<class coef_T, class data_T, class acc_T>
class CFir {
 protected:
 static const coef_T c[N];
 data_T shift_reg[N-1];
 private:
 public:
 data_T operator()(data_T x);
 template<class coef_TT, class data_TT, class acc_TT>
 friend ostream&
 operator<<(ostream& o, const CFir<coef_TT, data_TT, acc_TT> &f);
};

// Load FIR coefficients
template<class coef_T, class data_T, class acc_T>
const coef_T CFir<coef_T, data_T, acc_T>::c[N] = {
 #include "cpp_FIR.h"
};

// FIR main algorithm
template<class coef_T, class data_T, class acc_T>
data_T CFir<coef_T, data_T, acc_T>::operator()(data_T x) {
 int i;
 acc_t acc = 0;
 data_t m;

 loop: for (i = N-1; i >= 0; i--) {
 if (i == 0) {
 m = x;
 shift_reg[0] = x;

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=106

 } else {
 m = shift_reg[i-1];
 if (i != (N-1))
 shift_reg[i] = shift_reg[i - 1];
 }
 acc += m * c[i];
 }
 return acc;
}

// Operator for displaying results
template<class coef_T, class data_T, class acc_T>
ostream& operator<<(ostream& o, const CFir<coef_T, data_T, acc_T> &f) {
 for (int i = 0; i < (sizeof(f.shift_reg)/sizeof(data_T)); i++) {
 o << shift_reg[<< i <<]= << f.shift_reg[i] << endl;
 }
 o << ______________ << endl;
 return o;
}

data_t cpp_FIR(data_t x);

The test bench in the C++ FIR Filter example is shown in the following code example and
demonstrates how top-level function cpp_FIR is called and validated. This example highlights
some of the important attributes of a good test bench for Vitis HLS synthesis:

• The output results are checked against known good values.

• The test bench returns 0 if the results are confirmed to be correct.

#include "cpp_FIR.h"

int main() {
 ofstream result;
 data_t output;
 int retval=0;

 // Open a file to saves the results
 result.open(result.dat);

 // Apply stimuli, call the top-level function and saves the results
 for (int i = 0; i <= 250; i++)
 {
 output = cpp_FIR(i);

 result << setw(10) << i;
 result << setw(20) << output;
 result << endl;

 }
 result.close();

 // Compare the results file with the golden results
 retval = system(diff --brief -w result.dat result.golden.dat);
 if (retval != 0) {
 printf(Test failed !!!\n);
 retval=1;
 } else {
 printf(Test passed !\n);

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=107

 }

 // Return 0 if the test
 return retval;
}

C++ Test Bench for cpp_FIR

To apply directives to objects defined in a class:

1. Open the file where the class is defined (typically a header file).

2. Apply the directive using the Directives tab.

As with functions, all instances of a class have the same optimizations applied to them.

Global Variables and Classes

Xilinx does not recommend using global variables in classes. They can prevent some
optimizations from occurring. In the following code example, a class is used to create the
component for a filter (class polyd_cell is used as a component that performs shift, multiply
and accumulate operations).

typedef long long acc_t;
typedef int mult_t;
typedef char data_t;
typedef char coef_t;

#define TAPS 3
#define PHASES 4
#define DATA_SAMPLES 256
#define CELL_SAMPLES 12

// Use k on line 73 static int k;

template <typename T0, typename T1, typename T2, typename T3, int N>
class polyd_cell {
private:
public:
 T0 areg;
 T0 breg;
 T2 mreg;
 T1 preg;
 T0 shift[N];
 int k; //line 73
 T0 shift_output;
 void exec(T1 *pcout, T0 *dataOut, T1 pcin, T3 coeff, T0 data, int col)
 {
 Function_label0:;

 if (col==0) {
 SHIFT:for (k = N-1; k >= 0; --k) {
 if (k > 0)
 shift[k] = shift[k-1];
 else
 shift[k] = data;
 }
 *dataOut = shift_output;

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=108

 shift_output = shift[N-1];
 }
 *pcout = (shift[4*col]* coeff) + pcin;

 }
};

// Top-level function with class instantiated
void cpp_class_data (
 acc_t *dataOut,
 coef_t coeff1[PHASES][TAPS],
 coef_t coeff2[PHASES][TAPS],
 data_t dataIn[DATA_SAMPLES],
 int row
) {

 acc_t pcin0 = 0;
 acc_t pcout0, pcout1;
 data_t dout0, dout1;
 int col;
 static acc_t accum=0;
 static int sample_count = 0;
 static polyd_cell<data_t, acc_t, mult_t, coef_t, CELL_SAMPLES>
polyd_cell0;
 static polyd_cell<data_t, acc_t, mult_t, coef_t, CELL_SAMPLES>
polyd_cell1;

 COL:for (col = 0; col <= TAPS-1; ++col) {

 polyd_cell0.exec(&pcout0,&dout0,pcin0,coeff1[row]
[col],dataIn[sample_count],

col);

 polyd_cell1.exec(&pcout1,&dout1,pcout0,coeff2[row][col],dout0,col);

 if ((row==0) && (col==2)) {
 *dataOut = accum;
 accum = pcout1;
 } else {
 accum = pcout1 + accum;
 }

 }
 sample_count++;
}

Within class polyd_cell there is a loop SHIFT used to shift data. If the loop index k used in
loop SHIFT was removed and replaced with the global index for k (shown earlier in the example,
but commented static int k), Vitis HLS is unable to pipeline any loop or function in which
class polyd_cell was used. Vitis HLS would issue the following message:

@W [XFORM-503] Cannot unroll loop 'SHIFT' in function 'polyd_cell<char,
long long,
int, char, 12>::exec' completely: variable loop bound.

Using local non-global variables for loop indexing ensures that Vitis HLS can perform all
optimizations.

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=109

Templates

Vitis HLS supports the use of templates in C++ for synthesis. Vitis HLS does not support
templates for the top-level function. Refer to Vitis-HLS-Introductory-Examples/Modeling/
using_C++_templates on Github for an example of these concepts.

IMPORTANT! The top-level function cannot be a template.

Using Templates to Create Unique Instances

A static variable in a template function is duplicated for each different value of the template
arguments.

Different C++ template values passed to a function creates unique instances of the function for
each template value. Vitis HLS synthesizes these copies independently within their own context.
This can be beneficial as the tool can provide specific optimizations for each unique instance,
producing a straightforward implementation of the function.

template<int NC, int K>
void startK(int* dout) {
 static int acc=0;
 acc += K;
 *dout = acc;
}

void foo(int* dout) {
 startK<0,1> (dout);
}

void goo(int* dout) {
 startK<1,1> (dout);
}

int main() {
 int dout0,dout1;
 for (int i=0;i<10;i++) {
 foo(&dout0);
 goo(&dout1);
 cout <<"dout0/1 = "<<dout0<<" / "<<dout1<<endl;
 }
 return 0;
}

Using Templates for Recursion

Templates can also be used to implement a form of recursion that is not supported in standard C
synthesis (Recursive Functions).

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 110Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Modeling/using_C%2B%2B_templates
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Modeling/using_C%2B%2B_templates
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=110

The following code example shows a case in which a templatized struct is used to implement a
tail-recursion Fibonacci algorithm. The key to performing synthesis is that a termination class is
used to implement the final call in the recursion, where a template size of one is used.

//Tail recursive call
template<data_t N> struct fibon_s {
 template<typename T>
 static T fibon_f(T a, T b) {
 return fibon_s<N-1>::fibon_f(b, (a+b));
 }
};

// Termination condition
template<> struct fibon_s<1> {
 template<typename T>
 static T fibon_f(T a, T b) {
 return b;
 }
};

void cpp_template(data_t a, data_t b, data_t &dout){
 dout = fibon_s<FIB_N>::fibon_f(a,b);
}

Enumerated Types
The header file in the following code example defines some enum types and uses them in a
struct. The struct is used in turn in another struct. This allows an intuitive description of a
complex type to be captured.

The following code example shows how a complex define (MAD_NSBSAMPLES) statement can be
specified and synthesized.

#include <stdio.h>

enum mad_layer {
 MAD_LAYER_I = 1,
 MAD_LAYER_II = 2,
 MAD_LAYER_III = 3
};

enum mad_mode {
 MAD_MODE_SINGLE_CHANNEL = 0,
 MAD_MODE_DUAL_CHANNEL = 1,
 MAD_MODE_JOINT_STEREO = 2,
 MAD_MODE_STEREO = 3
};

enum mad_emphasis {
 MAD_EMPHASIS_NONE = 0,
 MAD_EMPHASIS_50_15_US = 1,
 MAD_EMPHASIS_CCITT_J_17 = 3
};

typedef signed int mad_fixed_t;

typedef struct mad_header {

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 111Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=111

 enum mad_layer layer;
 enum mad_mode mode;
 int mode_extension;
 enum mad_emphasis emphasis;

 unsigned long long bitrate;
 unsigned int samplerate;

 unsigned short crc_check;
 unsigned short crc_target;

 int flags;
 int private_bits;

} header_t;

typedef struct mad_frame {
 header_t header;
 int options;
 mad_fixed_t sbsample[2][36][32];
} frame_t;

define MAD_NSBSAMPLES(header) \
 ((header)->layer == MAD_LAYER_I ? 12 : \
 (((header)->layer == MAD_LAYER_III && \
 ((header)->flags & 17)) ? 18 : 36))

void types_composite(frame_t *frame);

The struct and enum types defined in the previous example are used in the following example.
If the enum is used in an argument to the top-level function, it is synthesized as a 32-bit value to
comply with the standard C/C++ compilation behavior. If the enum types are internal to the
design, Vitis HLS optimizes them down to the only the required number of bits.

The following code example shows how printf statements are ignored during synthesis.

#include "types_composite.h"

void types_composite(frame_t *frame)
{
 if (frame->header.mode != MAD_MODE_SINGLE_CHANNEL) {
 unsigned int ns, s, sb;
 mad_fixed_t left, right;

 ns = MAD_NSBSAMPLES(&frame->header);
 printf("Samples from header %d \n", ns);

 for (s = 0; s < ns; ++s) {
 for (sb = 0; sb < 32; ++sb) {
 left = frame->sbsample[0][s][sb];
 right = frame->sbsample[1][s][sb];
 frame->sbsample[0][s][sb] = (left + right) / 2;
 }
 }
 frame->header.mode = MAD_MODE_SINGLE_CHANNEL;
 }
}

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=112

Unions
In the following code example, a union is created with a double and a struct. Unlike C/C++
compilation, synthesis does not guarantee using the same memory (in the case of synthesis,
registers) for all fields in the union. Vitis HLS perform the optimization that provides the most
optimal hardware.

#include "types_union.h"

dout_t types_union(din_t N, dinfp_t F)
{
 union {
 struct {int a; int b; } intval;
 double fpval;
 } intfp;
 unsigned long long one, exp;

 // Set a floating-point value in union intfp
 intfp.fpval = F;

 // Slice out lower bits and add to shifted input
 one = intfp.intval.a;
 exp = (N & 0x7FF);

 return ((exp << 52) + one) & (0x7fffffffffffffffLL);
}

Vitis HLS does not support the following:

• Unions on the top-level function interface.

• Pointer reinterpretation for synthesis. Therefore, a union cannot hold pointers to different
types or to arrays of different types.

• Access to a union through another variable. Using the same union as the previous example,
the following is not supported:

for (int i = 0; i < 6; ++i)
if (i<3)
 A[i] = intfp.intval.a + B[i];
 else
 A[i] = intfp.intval.b + B[i];
}

• However, it can be explicitly re-coded as:

 A[0] = intfp.intval.a + B[0];
 A[1] = intfp.intval.a + B[1];
 A[2] = intfp.intval.a + B[2];
 A[3] = intfp.intval.b + B[3];
 A[4] = intfp.intval.b + B[4];
 A[5] = intfp.intval.b + B[5];

The synthesis of unions does not support casting between native C/C++ types and user-defined
types.

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=113

Often with Vitis HLS designs, unions are used to convert the raw bits from one data type to
another data type. Generally, this raw bit conversion is needed when using floating point values
at the top-level port interface. For one example, see below:

typedef float T;
unsigned int value; // the "input" of the conversion
T myhalfvalue; // the "output" of the conversion
union
{
 unsigned int as_uint32;
 T as_floatingpoint;
} my_converter;
my_converter.as_uint32 = value;
myhalfvalue = my_converter. as_floatingpoint;

This type of code is fine for float C/C++ data types and with modification, it is also fine for
double data types. Changing the typedef and the int to short will not work for half data
types, however, because half is a class and cannot be used in a union. Instead, the following code
can be used:

typedef half T;
short value;
T myhalfvalue = static_cast<T>(value);

Similarly, the conversion the other way around uses value=static_cast<ap_uint<16>
>(myhalfvalue) or static_cast< unsigned short >(myhalfvalue).

ap_fixed<16,4> afix = 1.5;
ap_fixed<20,6> bfix = 1.25;
half ahlf = afix.to_half();
half bhlf = bfix.to_half();

Another method is to use the helper class fp_struct<half> to make conversions using the
methods data() or to_int(). Use the header file hls/utils/x_hls_utils.h.

Type Qualifiers
The type qualifiers can directly impact the hardware created by high-level synthesis. In general,
the qualifiers influence the synthesis results in a predictable manner, as discussed below. Vitis
HLS is limited only by the interpretation of the qualifier as it affects functional behavior and can
perform optimizations to create a more optimal hardware design. Examples of this are shown
after an overview of each qualifier.

Volatile

The volatile qualifier impacts how many reads or writes are performed in the RTL when
pointers are accessed multiple times on function interfaces. Although the volatile qualifier
impacts this behavior in all functions in the hierarchy, the impact of the volatile qualifier is
primarily discussed in the section on top-level interfaces.

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=114

Note: Accesses to/from volatile variables is preserved. This means:

• no burst access

• no port widening

• no dead code elimination

Tip: Arbitrary precision types do not support the volatile qualifier for arithmetic operations. Any
arbitrary precision data types using the volatile qualifier must be assigned to a non-volatile data
type before being used in arithmetic expression.

Statics

Static types in a function hold their value between function calls. The equivalent behavior in a
hardware design is a registered variable (a flip-flop or memory). If a variable is required to be a
static type for the C/C++ function to execute correctly, it will certainly be a register in the final
RTL design. The value must be maintained across invocations of the function and design.

It is not true that only static types result in a register after synthesis. Vitis HLS determines
which variables are required to be implemented as registers in the RTL design. For example, if a
variable assignment must be held over multiple cycles, Vitis HLS creates a register to hold the
value, even if the original variable in the C/C++ function was not a static type.

Vitis HLS obeys the initialization behavior of statics and assigns the value to zero (or any
explicitly initialized value) to the register during initialization. This means that the static
variable is initialized in the RTL code and in the FPGA bitstream. It does not mean that the
variable is re-initialized each time the reset signal is.

See the RTL configuration (config_rtl command) to determine how static initialization values
are implemented with regard to the system reset.

Const

A const type specifies that the value of the variable is never updated. The variable is read but
never written to and therefore must be initialized. For most const variables, this typically means
that they are reduced to constants in the RTL design. Vitis HLS performs constant propagation
and removes any unnecessary hardware).

In the case of arrays, the const variable is implemented as a ROM in the final RTL design (in the
absence of any auto-partitioning performed by Vitis HLS on small arrays). Arrays specified with
the const qualifier are (like statics) initialized in the RTL and in the FPGA bitstream. There is no
need to reset them, because they are never written to.

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=115

ROM Optimization

The following shows a code example in which Vitis HLS implements a ROM even though the
array is not specified with a static or const qualifier. This demonstrates how Vitis HLS
analyzes the design, and determines the most optimal implementation. The qualifiers guide the
tool, but do not dictate the final RTL.

#include "array_ROM.h"

dout_t array_ROM(din1_t inval, din2_t idx)
{
 din1_t lookup_table[256];
 dint_t i;

 for (i = 0; i < 256; i++) {
 lookup_table[i] = 256 * (i - 128);
 }

 return (dout_t)inval * (dout_t)lookup_table[idx];
}

In this example, the tool is able to determine that the implementation is best served by having
the variable lookup_table as a memory element in the final RTL.

Arbitrary Precision (AP) Data Types
C/C++-based native data types are based-on on 8-bit boundaries (8, 16, 32, 64 bits). However,
RTL buses (corresponding to hardware) support arbitrary data lengths. Using the standard C/C++
data types can result in inefficient hardware implementation. For example, the basic
multiplication unit in a Xilinx device is the DSP library cell. Multiplying "ints" (32-bit) would
require more than one DSP cell while using arbitrary precision types could use only one cell per
multiplication.

Arbitrary precision (AP) data types allow your code to use variables with smaller bit-widths, and
for the C/C++ simulation to validate the functionality remains identical or acceptable. The
smaller bit-widths result in hardware operators which are in turn smaller and run faster. This
allows more logic to be placed in the FPGA, and for the logic to execute at higher clock
frequencies.

AP data types are provided for C++ and allow you to model data types of any width from 1 to
1024-bit. You must specify the use of AP libraries by including them in your C++ source code as
explained in Arbitrary Precision Data Types Library.

TIP: Arbitrary precision types are only required on the function boundaries, because Vitis HLS optimizes
the internal logic and removes data bits and logic that do not fanout to the output ports.

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 116Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=116

AP Example

For example, a design with a filter function for a communications protocol requires 10-bit input
data and 18-bit output data to satisfy the data transmission requirements. Using standard C/C++
data types, the input data must be at least 16-bits and the output data must be at least 32-bits.
In the final hardware, this creates a datapath between the input and output that is wider than
necessary, uses more resources, has longer delays (for example, a 32-bit by 32-bit multiplication
takes longer than an 18-bit by 18-bit multiplication), and requires more clock cycles to complete.

Using arbitrary precision data types in this design, you can specify the exact bit-sizes needed in
your code prior to synthesis, simulate the updated code, and verify the results prior to synthesis.
Refer to Vitis-HLS-Introductory-Examples/Modeling on Github for examples of using arbitrary
precision and fixed point ap data types.

Advantages of AP Data Types
IMPORTANT! One disadvantage of AP data types is that arrays are not automatically initialized with a
value of 0. You must manually initialize the array if desired.

The following code performs some basic arithmetic operations:

#include "types.h"

void apint_arith(dinA_t inA, dinB_t inB, dinC_t inC, dinD_t inD,
 dout1_t *out1, dout2_t *out2, dout3_t *out3, dout4_t *out4
) {

 // Basic arithmetic operations
 *out1 = inA * inB;
 *out2 = inB + inA;
 *out3 = inC / inA;
 *out4 = inD % inA;
}

The data types dinA_t, dinB_t, etc. are defined in the header file types.h. It is highly
recommended to use a project wide header file such as types.h as this allows for the easy
migration from standard C/C++ types to arbitrary precision types and helps in refining the
arbitrary precision types to the optimal size.

If the data types in the above example are defined as:

typedef char dinA_t;
typedef short dinB_t;
typedef int dinC_t;
typedef long long dinD_t;
typedef int dout1_t;
typedef unsigned int dout2_t;
typedef int32_t dout3_t;
typedef int64_t dout4_t;

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 117Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Modeling
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=117

The design gives the following results after synthesis:

+ Timing (ns):
 * Summary:
 +---------+-------+----------+------------+
 | Clock | Target| Estimated| Uncertainty|
 +---------+-------+----------+------------+
 |default | 4.00| 3.85| 0.50|
 +---------+-------+----------+------------+

+ Latency (clock cycles):
 * Summary:
 +-----+-----+-----+-----+---------+
 | Latency | Interval | Pipeline|
 | min | max | min | max | Type |
 +-----+-----+-----+-----+---------+
 | 66| 66| 67| 67| none |
 +-----+-----+-----+-----+---------+
* Summary:
+-----------------+---------+-------+--------+--------+
| Name | BRAM_18K| DSP48E| FF | LUT |
+-----------------+---------+-------+--------+--------+
|Expression | -| -| 0| 17|
|FIFO | -| -| -| -|
|Instance | -| 1| 17920| 17152|
|Memory | -| -| -| -|
|Multiplexer | -| -| -| -|
|Register | -| -| 7| -|
+-----------------+---------+-------+--------+--------+
|Total | 0| 1| 17927| 17169|
+-----------------+---------+-------+--------+--------+
|Available | 650| 600| 202800| 101400|
+-----------------+---------+-------+--------+--------+
|Utilization (%) | 0| ~0 | 8| 16|
+-----------------+---------+-------+--------+--------+

However, if the width of the data is not required to be implemented using standard C/C++ types
but in some width which is smaller, but still greater than the next smallest standard C/C++ type,
such as the following:

typedef int6 dinA_t;
typedef int12 dinB_t;
typedef int22 dinC_t;
typedef int33 dinD_t;
typedef int18 dout1_t;
typedef uint13 dout2_t;
typedef int22 dout3_t;
typedef int6 dout4_t;

The synthesis results show an improvement to the maximum clock frequency, the latency and a
significant reduction in area of 75%.

+ Timing (ns):
 * Summary:
 +---------+-------+----------+------------+
 | Clock | Target| Estimated| Uncertainty|
 +---------+-------+----------+------------+
 |default | 4.00| 3.49| 0.50|
 +---------+-------+----------+------------+

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=118

+ Latency (clock cycles):
 * Summary:
 +-----+-----+-----+-----+---------+
 | Latency | Interval | Pipeline|
 | min | max | min | max | Type |
 +-----+-----+-----+-----+---------+
 | 35| 35| 36| 36| none |
 +-----+-----+-----+-----+---------+
* Summary:
+-----------------+---------+-------+--------+--------+
| Name | BRAM_18K| DSP48E| FF | LUT |
+-----------------+---------+-------+--------+--------+
|Expression | -| -| 0| 13|
|FIFO | -| -| -| -|
|Instance | -| 1| 4764| 4560|
|Memory | -| -| -| -|
|Multiplexer | -| -| -| -|
|Register | -| -| 6| -|
+-----------------+---------+-------+--------+--------+
|Total | 0| 1| 4770| 4573|
+-----------------+---------+-------+--------+--------+
|Available | 650| 600| 202800| 101400|
+-----------------+---------+-------+--------+--------+
|Utilization (%) | 0| ~0 | 2| 4|
+-----------------+---------+-------+--------+--------+

The large difference in latency between both design is due to the division and remainder
operations which take multiple cycles to complete. Using AP data types, rather than force fitting
the design into standard C/C++ data types, results in a higher quality hardware implementation:
the same accuracy with better performance with fewer resources.

Overview of Arbitrary Precision Integer Data Types
Vitis HLS provides integer and fixed-point arbitrary precision data types for C++.

Table 1: Arbitrary Precision Data Types

Language Integer Data Type Required Header
C++ ap_[u]int<W> (1024 bits)

Can be extended to 4K bits wide as
described below.

#include “ap_int.h”

C++ ap_[u]fixed<W,I,Q,O,N> #include “ap_fixed.h”

For the C++ language ap_[u]int data types the header file ap_int.h defines the arbitrary
precision integer data type. To use arbitrary precision integer data types in a C++ function:

• Add header file ap_int.h to the source code.

• Change the bit types to ap_int<N> or ap_uint<N>, where N is a bit-size from 1 to 1024.

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 119Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=119

The following example shows how the header file is added and two variables implemented to use
9-bit integer and 10-bit unsigned integer types:

#include "ap_int.h"

void foo_top () {

ap_int<9> var1; // 9-bit
ap_uint<10> var2; // 10-bit unsigned

The default maximum width allowed for ap_[u]int data types is 1024 bits. This default may be
overridden by defining the macro AP_INT_MAX_W with a positive integer value less than or
equal to 4096 before inclusion of the ap_int.h header file.

IMPORTANT! Setting the value of AP_INT_MAX_W  too high can cause slow software compile and
runtimes.

The following is an example of overriding AP_INT_MAX_W:

#define AP_INT_MAX_W 4096 // Must be defined before next line
#include "ap_int.h"

ap_int<4096> very_wide_var;

Overview of Arbitrary Precision Fixed-Point Data
Types
Fixed-point data types model the data as an integer and fraction bits with the format
ap_fixed<W,I,[Q,O,N]> as explained in the table below. In the following example, the Vitis
HLS ap_fixed type is used to define an 18-bit variable with 6 bits specified as representing the
numbers above the binary point, and 12 bits implied to represent the value after the decimal
point. The variable is specified as signed and the quantization mode is set to round to plus
infinity. Because the overflow mode is not specified, the default wrap-around mode is used for
overflow.

#include <ap_fixed.h>
...
ap_fixed<18,6,AP_RND > my_type;
...

When performing calculations where the variables have different number of bits or different
precision, the binary point is automatically aligned. For example, when performing division with
fixed-point type variables of different sizes, the fraction of the quotient is no greater than that of
the dividend. To preserve the fractional part of the quotient you can cast the result to the new
variable width before assignment.

The behavior of the C++ simulations performed using fixed-point matches the resulting
hardware. This allows you to analyze the bit-accurate, quantization, and overflow behaviors using
fast C-level simulation.

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 120Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=120

Fixed-point types are a useful replacement for floating point types which require many clock
cycle to complete. Unless the entire range of the floating-point type is required, the same
accuracy can often be implemented with a fixed-point type resulting in the same accuracy with
smaller and faster hardware.

A summary of the ap_fixed type identifiers is provided in the following table.

Table 2: Fixed-Point Identifier Summary

Identifier Description
W Word length in bits

I The number of bits used to represent the integer value, that is, the number of integer bits to the left of
the binary point. When this value is negative, it represents the number of implicit sign bits (for signed
representation), or the number of implicit zero bits (for unsigned representation) to the right of the
binary point. For example,

ap_fixed<2, 0> a = -0.5; // a can be -0.5,

ap_ufixed<1, 0> x = 0.5; // 1-bit representation. x can be 0 or 0.5
ap_ufixed<1, -1> y = 0.25; // 1-bit representation. y can be 0 or 0.25
const ap_fixed<1, -7> z = 1.0/256; // 1-bit representation for z = 2^-8

Q Quantization mode: This dictates the behavior when greater precision is generated than can be defined
by smallest fractional bit in the variable used to store the result.

ap_fixed Types Description

AP_RND Round to plus infinity

AP_RND_ZERO Round to zero

AP_RND_MIN_INF Round to minus infinity

AP_RND_INF Round to infinity

AP_RND_CONV Convergent rounding

AP_TRN Truncation to minus infinity (default)

AP_TRN_ZERO Truncation to zero

O Overflow mode: This dictates the behavior when the result of an operation exceeds the maximum (or
minimum in the case of negative numbers) possible value that can be stored in the variable used to
store the result.

ap_fixed Types Description

AP_SAT1 Saturation

AP_SAT_ZERO1 Saturation to zero

AP_SAT_SYM1 Symmetrical saturation

AP_WRAP Wrap around (default)

AP_WRAP_SM Sign magnitude wrap around

N This defines the number of saturation bits in overflow wrap modes.

Notes:
1. Using the AP_SAT* modes can result in higher resource usage as extra logic will be needed to perform saturation and

this extra cost can be as high as 20% additional LUT usage.
2. Fixed-point math functions from the hls_math library do not support the ap_[u]fixed template parameters Q,O,

and N, for quantization mode, overflow mode, and the number of saturation bits, respectively. The quantization and
overflow modes are only effective when an ap_[u]fixed variable is on the left hand of assignment or being
initialized, but not during the calculation.

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 121Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=121

The default maximum width allowed for ap_[u]fixed data types is 1024 bits. This default may
be overridden by defining the macro AP_INT_MAX_W with a positive integer value less than or
equal to 4096 before inclusion of the ap_int.h header file.

IMPORTANT! ROM Synthesis can take a long time when using ap_[u]fixed . Changing it to int 
results in a quicker synthesis. For example:

static ap_fixed<32,0> a[32][depth] =

Can be changed to:

static int a[32][depth] =

Global Variables
Global variables can be freely used in the code and are fully synthesizable. However, global
variables can not be inferred as arguments to the top-level function, but must instead be
explicitly specified as arguments for ports in the RTL design.

The following code example shows the default synthesis behavior of global variables. It uses
three global variables. Although this example uses arrays, Vitis HLS supports all types of global
variables.

• Values are read from array Ain.

• Array Aint is used to transform and pass values from Ain to Aout.

• The outputs are written to array Aout.

IMPORTANT! Access to the global variables Ain  and Aout  must be explicitly listed in the argument list.

#include "top.h"

void top(const int idx, const int Ain[N], int Aout[Nhalf]) {

 int Aint[N];

 // Move elements in the input array

 ILOOP: for (int i = 0; i < N; i++) {

 int iadj = (i + idx) % N;

 Aint[i] = Ain[i] + Ain[iadj];

 } // end ILOOP

 // sum the 1st and 2nd halves
 OLOOP: for (int i = 0; i < Nhalf; i++) {

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=122

 Aout[i] = (Aint[i] + Aint[Nhalf + i]);

 } // end OLOOP

} // end top()

Pointers
Pointers are used extensively in C/C++ code and are supported for synthesis, but it is generally
recommended to avoid the use of pointers in your code. This is especially true when using
pointers in the following cases:

• When pointers are accessed (read or written) multiple times in the same function.

• When using arrays of pointers, each pointer must point to a scalar or a scalar array (not
another pointer).

• Pointer casting is supported only when casting between standard C/C++ types, as shown.

Note: Pointer to pointer is not supported.

The following code example shows synthesis support for pointers that point to multiple objects.

#include "pointer_multi.h"

dout_t pointer_multi (sel_t sel, din_t pos) {
 static const dout_t a[8] = {1, 2, 3, 4, 5, 6, 7, 8};
 static const dout_t b[8] = {8, 7, 6, 5, 4, 3, 2, 1};

 dout_t* ptr;
 if (sel)
 ptr = a;
 else
 ptr = b;

 return ptr[pos];
}

Vitis HLS supports pointers to pointers for synthesis but does not support them on the top-level
interface, that is, as argument to the top-level function. If you use a pointer to pointer in multiple
functions, Vitis HLS inlines all functions that use the pointer to pointer. Inlining multiple
functions can increase runtime.

#include "pointer_double.h"

data_t sub(data_t ptr[10], data_t size, data_t**flagPtr)
{
 data_t x, i;

 x = 0;
 // Sum x if AND of local index and pointer to pointer index is true
 for(i=0; i<size; ++i)
 if (**flagPtr & i)

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=123

 x += *(ptr+i);
 return x;
}

data_t pointer_double(data_t pos, data_t x, data_t* flag)
{
 data_t array[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
 data_t* ptrFlag;
 data_t i;

 ptrFlag = flag;

 // Write x into index position pos
 if (pos >=0 & pos < 10)
 *(array+pos) = x;

 // Pass same index (as pos) as pointer to another function
 return sub(array, 10, &ptrFlag);
}

Arrays of pointers can also be synthesized. See the following code example in which an array of
pointers is used to store the start location of the second dimension of a global array. The pointers
in an array of pointers can point only to a scalar or to an array of scalars. They cannot point to
other pointers.

#include "pointer_array.h"

data_t A[N][10];

data_t pointer_array(data_t B[N*10]) {
 data_t i,j;
 data_t sum1;

 // Array of pointers
 data_t* PtrA[N];

 // Store global array locations in temp pointer array
 for (i=0; i<N; ++i)
 PtrA[i] = &(A[i][0]);

 // Copy input array using pointers
 for(i=0; i<N; ++i)
 for(j=0; j<10; ++j)
 *(PtrA[i]+j) = B[i*10 + j];

 // Sum input array
 sum1 = 0;
 for(i=0; i<N; ++i)
 for(j=0; j<10; ++j)
 sum1 += *(PtrA[i] + j);

 return sum1;
}

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=124

Pointer casting is supported for synthesis if native C/C++ types are used. In the following code
example, type int is cast to type char.

#define N 1024

typedef int data_t;
typedef char dint_t;

data_t pointer_cast_native (data_t index, data_t A[N]) {
 dint_t* ptr;
 data_t i =0, result = 0;
 ptr = (dint_t*)(&A[index]);

 // Sum from the indexed value as a different type
 for (i = 0; i < 4*(N/10); ++i) {
 result += *ptr;
 ptr+=1;
 }
 return result;
}

Vitis HLS does not support pointer casting between general types. For example, if a struct
composite type of signed values is created, the pointer cannot be cast to assign unsigned values.

struct {
 short first;
 short second;
} pair;

// Not supported for synthesis
(unsigned)(&pair) = -1U;

In such cases, the values must be assigned using the native types.

struct {
 short first;
 short second;
} pair;

// Assigned value
pair.first = -1U;
pair.second = -1U;

Pointers on the Interface
Pointers can be used as arguments to the top-level function. It is important to understand how
pointers are implemented during synthesis, because they can sometimes cause issues in
achieving the desired RTL interface and design after synthesis. Refer to Vitis-HLS-Introductory-
Examples/Modeling/Pointers on Github for examples of some of the following concepts.

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 125Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Modeling/Pointers
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Modeling/Pointers
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=125

Basic Pointers

A function with basic pointers on the top-level interface, such as shown in the following code
example, produces no issues for Vitis HLS. The pointer can be synthesized to either a simple wire
interface or an interface protocol using handshakes.

TIP: To be synthesized as a FIFO interface, a pointer must be read-only or write-only.

#include "pointer_basic.h"

void pointer_basic (dio_t *d) {
 static dio_t acc = 0;

 acc += *d;
 *d = acc;
}

The pointer on the interface is read or written only once per function call. The test bench is
shown in the following code example.

#include "pointer_basic.h"

int main () {
 dio_t d;
 int i, retval=0;
 FILE *fp;

 // Save the results to a file
 fp=fopen(result.dat,w);
 printf(Din Dout\n, i, d);

 // Create input data
 // Call the function to operate on the data
 for (i=0;i<4;i++) {
 d = i;
 pointer_basic(&d);
 fprintf(fp, %d \n, d);
 printf(%d %d\n, i, d);
 }
 fclose(fp);

 // Compare the results file with the golden results
 retval = system(diff --brief -w result.dat result.golden.dat);
 if (retval != 0) {
 printf(Test failed!!!\n);
 retval=1;
 } else {
 printf(Test passed!\n);
 }

 // Return 0 if the test
 return retval;
}

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 126Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=126

C and RTL simulation verify the correct operation (although not all possible cases) with this
simple data set:

Din Dout
 0 0
 1 1
 2 3
 3 6
Test passed!

Pointer Arithmetic

Introducing pointer arithmetic limits the possible interfaces that can be synthesized in RTL. The
following code example shows the same code, but in this instance simple pointer arithmetic is
used to accumulate the data values (starting from the second value).

#include "pointer_arith.h"

void pointer_arith (dio_t *d) {
 static int acc = 0;
 int i;

 for (i=0;i<4;i++) {
 acc += *(d+i+1);
 *(d+i) = acc;
 }
}

The following code example shows the test bench that supports this example. Because the loop
to perform the accumulations is now inside function pointer_arith, the test bench populates
the address space specified by array d[5] with the appropriate values.

#include "pointer_arith.h"

int main () {
 dio_t d[5], ref[5];
 int i, retval=0;
 FILE *fp;

 // Create input data
 for (i=0;i<5;i++) {
 d[i] = i;
 ref[i] = i;
 }

 // Call the function to operate on the data
 pointer_arith(d);

 // Save the results to a file
 fp=fopen(result.dat,w);
 printf(Din Dout\n, i, d);
 for (i=0;i<4;i++) {
 fprintf(fp, %d \n, d[i]);
 printf(%d %d\n, ref[i], d[i]);
 }
 fclose(fp);

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 127Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=127

 // Compare the results file with the golden results
 retval = system(diff --brief -w result.dat result.golden.dat);
 if (retval != 0) {
 printf(Test failed!!!\n);
 retval=1;
 } else {
 printf(Test passed!\n);
 }

 // Return 0 if the test
 return retval;
}

When simulated, this results in the following output:

Din Dout
 0 1
 1 3
 2 6
 3 10
Test passed!

The pointer arithmetic can access the pointer data out of sequence. On the other hand, wire,
handshake, or FIFO interfaces can only access data in order:

• A wire interface reads data when the design is ready to consume the data or write the data
when the data is ready.

• Handshake and FIFO interfaces read and write when the control signals permit the operation
to proceed.

In both cases, the data must arrive (and is written) in order, starting from element zero. In the
Interface with Pointer Arithmetic example, the code starts reading from index 1 (i starts at 0,
0+1=1). This is the second element from array d[5] in the test bench.

When this is implemented in hardware, some form of data indexing is required. Vitis HLS does
not support this with wire, handshake, or FIFO interfaces.

Alternatively, the code must be modified with an array on the interface instead of a pointer, as in
the following example. This can be implemented in synthesis with a RAM (ap_memory) interface.
This interface can index the data with an address and can perform out-of-order, or non-
sequential, accesses.

Wire, handshake, or FIFO interfaces can be used only on streaming data. It cannot be used with
pointer arithmetic (unless it indexes the data starting at zero and then proceeds sequentially).

#include "array_arith.h"

void array_arith (dio_t d[5]) {
 static int acc = 0;
 int i;

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 128Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=128

 for (i=0;i<4;i++) {
 acc += d[i+1];
 d[i] = acc;
 }
}

Multi-Access Pointers on the Interface

IMPORTANT! Although multi-access pointers are supported on the interface, it is strongly recommended
that you implement the required behavior using the hls::stream  class instead of multi-access pointers
to avoid some of the difficulties discussed below. Details on the hls::stream  class can be found in HLS
Stream Library.

Designs that use pointers in the argument list of the top-level function (on the interface) need
special consideration when multiple accesses are performed using pointers. Multiple accesses
occur when a pointer is read from or written to multiple times in the same function.

Using pointers which are accessed multiple times can introduce unexpected behavior after
synthesis. In the following "bad" example pointer d_i is read four times and pointer d_o is
written to twice: the pointers perform multiple accesses.

#include "pointer_stream_bad.h"

void pointer_stream_bad (dout_t *d_o, din_t *d_i) {
 din_t acc = 0;

 acc += *d_i;
 acc += *d_i;
 *d_o = acc;
 acc += *d_i;
 acc += *d_i;
 *d_o = acc;
}

After synthesis this code will result in an RTL design which reads the input port once and writes
to the output port once. As with any standard C/C++ compiler, Vitis HLS will optimize away the
redundant pointer accesses. The test bench to verify this design is shown in the following code
example:

#include "pointer_stream_bad.h"
int main () {
din_t d_i;
dout_t d_o;
int retval=0;
FILE *fp;

// Open a file for the output results
fp=fopen(result.dat,w);

// Call the function to operate on the data
for (d_i=0;d_i<4;d_i++) {
 pointer_stream_bad(&d_o,&d_i);
 fprintf(fp, %d %d\n, d_i, d_o);
}
fclose(fp);

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 129Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=129

// Compare the results file with the golden results
retval = system(diff --brief -w result.dat result.golden.dat);
if (retval != 0) {
 printf(Test failed !!!\n);
 retval=1;
} else {
 printf(Test passed !\n);
}

// Return 0 if the test
return retval;
}

To implement the code as written, with the “anticipated” 4 reads on d_i and 2 writes to the d_o,
the pointers must be specified as volatile as shown in the "pointer_stream_better" example.

#include "pointer_stream_better.h"

void pointer_stream_better (volatile dout_t *d_o, volatile din_t *d_i) {
 din_t acc = 0;

 acc += *d_i;
 acc += *d_i;
 *d_o = acc;
 acc += *d_i;
 acc += *d_i;
 *d_o = acc;
}

To support multi-access pointers on the interface you should take the following steps:

• Validate the C/C++ before synthesis to confirm the intent and that the C/C++ model is
correct.

• The pointer argument must have the number of accesses on the port interface specified when
verifying the RTL using co-simulation within Vitis HLS.

Understanding Volatile Data

The code in Multi-Access Pointers on the Interface is written with intent that input pointer d_i
and output pointer d_o are implemented in RTL as FIFO (or handshake) interfaces to ensure that:

• Upstream producer modules supply new data each time a read is performed on RTL port d_i.

• Downstream consumer modules accept new data each time there is a write to RTL port d_o.

When this code is compiled by standard C/C++ compilers, the multiple accesses to each pointer
is reduced to a single access. As far as the compiler is concerned, there is no indication that the
data on d_i changes during the execution of the function and only the final write to d_o is
relevant. The other writes are overwritten by the time the function completes.

Vitis HLS matches the behavior of the gcc compiler and optimizes these reads and writes into a
single read operation and a single write operation. When the RTL is examined, there is only a
single read and write operation on each port.

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 130Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=130

The fundamental issue with this design is that the test bench and design do not adequately
model how you expect the RTL ports to be implemented:

• You expect RTL ports that read and write multiple times during a transaction (and can stream
the data in and out).

• The test bench supplies only a single input value and returns only a single output value. A C/C
++ simulation of Multi-Access Pointers on the Interface shows the following results, which
demonstrates that each input is being accumulated four times. The same value is being read
once and accumulated each time. It is not four separate reads.

Din Dout
0 0
1 4
2 8
3 12

To make this design read and write to the RTL ports multiple times, use a volatile qualifier as
shown in Multi-Access Pointers on the Interface. The volatile qualifier tells the C/C++
compiler and Vitis HLS to make no assumptions about the pointer accesses, and to not optimize
them away. That is, the data is volatile and might change.

The volatile qualifier:

• Prevents pointer access optimizations.

• Results in an RTL design that performs the expected four reads on input port d_i and two
writes to output port d_o.

Even if the volatile keyword is used, the coding style of accessing a pointer multiple times still
has an issue in that the function and test bench do not adequately model multiple distinct reads
and writes. In this case, four reads are performed, but the same data is read four times. There are
two separate writes, each with the correct data, but the test bench captures data only for the
final write.

TIP: In order to see the intermediate accesses, use cosim_design -trace_level  to create a trace
file during RTL simulation and view the trace file in the appropriate viewer.

The Multi-Access volatile pointer interface can be implemented with wire interfaces. If a FIFO
interface is specified, Vitis HLS creates an RTL test bench to stream new data on each read.
Because no new data is available from the test bench, the RTL fails to verify. The test bench does
not correctly model the reads and writes.

Modeling Streaming Data Interfaces

Unlike software, the concurrent nature of hardware systems allows them to take advantage of
streaming data. Data is continuously supplied to the design and the design continuously outputs
data. An RTL design can accept new data before the design has finished processing the existing
data.

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 131Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=131

As Understanding Volatile Data shows, modeling streaming data in software is non-trivial,
especially when writing software to model an existing hardware implementation (where the
concurrent/streaming nature already exists and needs to be modeled).

There are several possible approaches:

• Add the volatile qualifier as shown in the Multi-Access Volatile Pointer Interface example.
The test bench does not model unique reads and writes, and RTL simulation using the original
C/C++ test bench might fail, but viewing the trace file waveforms shows that the correct
reads and writes are being performed.

• Modify the code to model explicit unique reads and writes. See the following example.

• Modify the code to using a streaming data type. A streaming data type allows hardware using
streaming data to be accurately modeled.

The following code example has been updated to ensure that it reads four unique values from
the test bench and write two unique values. Because the pointer accesses are sequential and
start at location zero, a streaming interface type can be used during synthesis.

#include "pointer_stream_good.h"

void pointer_stream_good (volatile dout_t *d_o, volatile din_t *d_i) {
 din_t acc = 0;

 acc += *d_i;
 acc += *(d_i+1);
 *d_o = acc;
 acc += *(d_i+2);
 acc += *(d_i+3);
 *(d_o+1) = acc;
}

The test bench is updated to model the fact that the function reads four unique values in each
transaction. This new test bench models only a single transaction. To model multiple
transactions, the input data set must be increased and the function called multiple times.

#include "pointer_stream_good.h"

int main () {
 din_t d_i[4];
 dout_t d_o[4];
 int i, retval=0;
 FILE *fp;

 // Create input data
 for (i=0;i<4;i++) {
 d_i[i] = i;
 }

 // Call the function to operate on the data
 pointer_stream_good(d_o,d_i);

 // Save the results to a file
 fp=fopen(result.dat,w);
 for (i=0;i<4;i++) {
 if (i<2)

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 132Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=132

 fprintf(fp, %d %d\n, d_i[i], d_o[i]);
 else
 fprintf(fp, %d \n, d_i[i]);
 }
 fclose(fp);

 // Compare the results file with the golden results
 retval = system(diff --brief -w result.dat result.golden.dat);
 if (retval != 0) {
 printf(Test failed !!!\n);
 retval=1;
 } else {
 printf(Test passed !\n);
 }

 // Return 0 if the test
 return retval;
}

The test bench validates the algorithm with the following results, showing that:

• There are two outputs from a single transaction.

• The outputs are an accumulation of the first two input reads, plus an accumulation of the next
two input reads and the previous accumulation.

Din Dout
0 1
1 6
2
3

• The final issue to be aware of when pointers are accessed multiple time at the function
interface is RTL simulation modeling.

Multi-Access Pointers and RTL Simulation

When pointers on the interface are accessed multiple times, to read or write, Vitis HLS cannot
determine from the function interface how many reads or writes are performed. Neither of the
arguments in the function interface informs Vitis HLS how many values are read or written.

void pointer_stream_good (volatile dout_t *d_o, volatile din_t *d_i)

Unless the code informs Vitis HLS how many values are required (for example, the maximum size
of an array), the tool assumes a single value and models C/RTL co-simulation for only a single
input and a single output. If the RTL ports are actually reading or writing multiple values, the RTL
co-simulation stalls. RTL co-simulation models the external producer and consumer blocks that
are connected to the RTL design through the port interface. If it requires more than a single
value, the RTL design stalls when trying to read or write more than one value because there is
currently no value to read, or no space to write.

When multi-access pointers are used at the interface, Vitis HLS must be informed of the required
number of reads or writes on the interface. Manually specify the INTERFACE pragma or directive
for the pointer interface, and set the depth option to the required depth.

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=133

For example, argument d_i in the code sample above requires a FIFO depth of four. This ensures
RTL co-simulation provides enough values to correctly verify the RTL.

Vector Data Types
The vector data type is provided to easily model and synthesize single instruction multiple data
(SIMD) type operations. Many operators are overloaded to provide SIMD behavior for vector
types. The Vitis™ HLS library provides the reference implementation for the hls::vector<T,
N> type which represent a single-instruction multiple-data (SIMD) vector, as defined below.

• T: The type of elements that the vector holds, can be a user-defined type which must provide
common arithmetic operations.

• N: The number of elements that the vector holds, must be a positive integer.

• The best performance is achieved when both the bit-width of T and N are integer powers of 2.

Vitis HLS provides a template type hls::vector that can be used to define SIMD operands. All
the operation performed using this type are mapped to hardware during synthesis that will
execute these operations in parallel. These operations can be carried out in a loop which can be
pipelined with II=1. The following example shows how an eight element vector of integers is
defined and used:

typedef hls::vector<int, 8> t_int8Vec;
t_int8Vec intVectorA, intVectorB;
.
.
.
void processVecStream(hls::stream<t_int8Vec>
&inVecStream1,hls::stream<t_int8Vec> &inVecStream2, hls::stream<int8Vec>
&outVecStream)
{
 for(int i=0;i<32;i++)
 {
 #pragma HLS pipeline II=1
 t_int8Vec aVec = inVecStream1.read();
 t_int8Vec bBec = inVecStream2.read();
 //performs a vector operation on 8 integers in parallel
 t_int8Vec cVec = aVec * bVec;
 outVecStream.write(cVec);
 }
}

Refer to HLS Vector Library for additional information. Refer to Vitis-HLS-Introductory-
Examples/Modeling/using_vectors on Github for an example.

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 134Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Modeling/using_vectors
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Modeling/using_vectors
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=134

Bit-Width Propagation
The primary impact of a coding style on functions is on the function arguments and interface. If
the arguments to a function are sized accurately, Vitis HLS can propagate this information
through the design. There is no need to create arbitrary precision types for every variable. In the
following example, two integers are multiplied, but only the lower 24 bits are used for the result.

#include "ap_int.h"

ap_int<24> foo(int x, int y) {
 int tmp;

 tmp = (x * y);
 return tmp
}

When this code is synthesized, the result is a 32-bit multiplier with the output truncated to 24-
bit.

If the inputs are correctly sized to 12-bit types (int12) as shown in the following code example,
the final RTL uses a 24-bit multiplier.

#include "ap_int.h"
typedef ap_int<12> din_t;
typedef ap_int<24> dout_t;

dout_t func_sized(din_t x, din_t y) {
 int tmp;

 tmp = (x * y);
 return tmp
}

Using arbitrary precision types for the two function inputs is enough to ensure Vitis HLS creates
a design using a 24-bit multiplier. The 12-bit types are propagated through the design. Xilinx
recommends that you correctly size the arguments of all functions in the hierarchy so that there
is no need to size local variables.

In general, when variables are driven directly from the function interface, especially from the top-
level function interface, variables can prevent some optimizations from taking place. A typical
case of this is when an input is used as the upper limit for a loop index.

Section II: HLS Programmers Guide
Chapter 6: Data Types

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 135Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=135

Chapter 7

Unsupported C/C++ Constructs
While Vitis HLS supports a wide range of the C/C++ languages, some constructs are not
synthesizable, or can result in errors further down the design flow. This section discusses areas in
which coding changes must be made for the function to be synthesized and implemented in a
device.

To be synthesized:

• The function and its calls must contain the entire functionality of the design.

• None of the functionality can be performed by system calls to the operating system.

• The C/C++ constructs must be of a fixed or bounded size.

• The implementation of those constructs must be unambiguous.

System Calls
System calls cannot be synthesized because they are actions that relate to performing some task
upon the operating system in which the C/C++ program is running.

Vitis HLS ignores commonly-used system calls that display only data and that have no impact on
the execution of the algorithm, such as printf() and fprintf(stdout,). In general, calls to
the system cannot be synthesized and should be removed from the function before synthesis.
Other examples of such calls are getc(), time(), sleep(), all of which make calls to the
operating system.

Vitis HLS defines the macro __SYNTHESIS__ when synthesis is performed. This allows the
__SYNTHESIS__ macro to exclude non-synthesizable code from the design.

Note: Only use the __SYNTHESIS__ macro in the code to be synthesized. Do not use this macro in the
test bench, because it is not obeyed by C/C++ simulation or C/C++ RTL co-simulation.

CAUTION! You must not define or undefine the __SYNTHESIS__  macro in code or with compiler
options, otherwise compilation might fail.

Section II: HLS Programmers Guide
Chapter 7: Unsupported C/C++ Constructs

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 136Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=136

In the following code example, the intermediate results from a sub-function are saved to a file on
the hard drive. The macro __SYNTHESIS__ is used to ensure the non-synthesizable files writes
are ignored during synthesis.

#include "hier_func4.h"

int shift_func(dint_t *in1, dint_t *in2, dout_t *outA, dout_t *outB)
{
 *outA = *in1 >> 1;
 *outB = *in2 >> 2;
}

void hier_func4(din_t A, din_t B, dout_t *C, dout_t *D)
{
 dint_t apb, amb;

 sumsub_func(&A,&B,&apb,&amb);
#ifndef __SYNTHESIS__
 FILE *fp1; // The following code is ignored for synthesis
 char filename[255];
 sprintf(filename,Out_apb_%03d.dat,apb);
 fp1=fopen(filename,w);
 fprintf(fp1, %d \n, apb);
 fclose(fp1);
#endif
 shift_func(&apb,&amb,C,D);
}

The __SYNTHESIS__ macro is a convenient way to exclude non-synthesizable code without
removing the code itself from the function. Using such a macro does mean that the code for
simulation and the code for synthesis are now different.

CAUTION! If the __SYNTHESIS__  macro is used to change the functionality of the C/C++ code, it can
result in different results between C/C++ simulation and C/C++ synthesis. Errors in such code are
inherently difficult to debug. Do not use the __SYNTHESIS__  macro to change functionality.

Dynamic Memory Usage
Any system calls that manage memory allocation within the system, for example, malloc(),
alloc(), and free(), are using resources that exist in the memory of the operating system
and are created and released during runtime. To be able to synthesize a hardware implementation
the design must be fully self-contained, specifying all required resources.

Memory allocation system calls must be removed from the design code before synthesis.
Because dynamic memory operations are used to define the functionality of the design, they
must be transformed into equivalent bounded representations. The following code example
shows how a design using malloc() can be transformed into a synthesizable version and
highlights two useful coding style techniques:

• The design does not use the __SYNTHESIS__ macro.

Section II: HLS Programmers Guide
Chapter 7: Unsupported C/C++ Constructs

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 137Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=137

The user-defined macro NO_SYNTH is used to select between the synthesizable and non-
synthesizable versions. This ensures that the same code is simulated in C/C++ and
synthesized in Vitis HLS.

• The pointers in the original design using malloc() do not need to be rewritten to work with
fixed sized elements.

Fixed sized resources can be created and the existing pointer can simply be made to point to
the fixed sized resource. This technique can prevent manual recoding of the existing design.

#include "malloc_removed.h"
#include <stdlib.h>
//#define NO_SYNTH

dout_t malloc_removed(din_t din[N], dsel_t width) {

#ifdef NO_SYNTH
 long long *out_accum = malloc (sizeof(long long));
 int* array_local = malloc (64 * sizeof(int));
#else
 long long _out_accum;
 long long *out_accum = &_out_accum;
 int _array_local[64];
 int* array_local = &_array_local[0];
#endif
 int i,j;

 LOOP_SHIFT:for (i=0;i<N-1; i++) {
 if (i<width)
 *(array_local+i)=din[i];
 else
 *(array_local[i])=din[i]>>2;
 }

 *out_accum=0;
 LOOP_ACCUM:for (j=0;j<N-1; j++) {
 *out_accum += *(array_local+j);
 }

 return *out_accum;
}

Because the coding changes here impact the functionality of the design, Xilinx does not
recommend using the __SYNTHESIS__ macro. Xilinx recommends performing the following
steps:

1. Add the user-defined macro NO_SYNTH to the code and modify the code.

2. Enable macro NO_SYNTH, execute the C/C++ simulation, and save the results.

3. Disable the macro NO_SYNTH, and execute the C/C++ simulation to verify that the results
are identical.

4. Perform synthesis with the user-defined macro disabled.

Section II: HLS Programmers Guide
Chapter 7: Unsupported C/C++ Constructs

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 138Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=138

This methodology ensures that the updated code is validated with C/C++ simulation and that the
identical code is then synthesized. As with restrictions on dynamic memory usage in C/C++, Vitis
HLS does not support (for synthesis) C/C++ objects that are dynamically created or destroyed.

Pointer Limitations
General Pointer Casting

Vitis HLS does not support general pointer casting, but supports pointer casting between native
C/C++ types.

Pointer Arrays

Vitis HLS supports pointer arrays for synthesis, provided that each pointer points to a scalar or
an array of scalars. Arrays of pointers cannot point to additional pointers.

Function Pointers

Function pointers are not supported.

Note: Pointer to pointer is not supported.

Recursive Functions
Recursive functions cannot be synthesized. This applies to functions that can form multiple
recursions:

unsigned foo (unsigned n)
{
 if (n == 0 || n == 1) return 1;
 return (foo(n-2) + foo(n-1));
}

Vitis HLS also does not support tail recursion, in which there is a finite number of function calls.

unsigned foo (unsigned m, unsigned n)
{
 if (m == 0) return n;
 if (n == 0) return m;
 return foo(n, m%n);
}

In C++, templates can implement tail recursion and can then be used for synthesizable tail-
recursive designs.

Section II: HLS Programmers Guide
Chapter 7: Unsupported C/C++ Constructs

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 139Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=139

CAUTION! Virtual Functions are not supported.

Standard Template Libraries
Many of the C++ Standard Template Libraries (STLs) contain function recursion and use dynamic
memory allocation. For this reason, the STLs cannot be synthesized by Vitis HLS. The solution for
STLs is to create a local function with identical functionality that does not feature recursion,
dynamic memory allocation, or the dynamic creation and destruction of objects.

Note: Standard data types, such as std::complex, are supported for synthesis. However, the
std::complex<long double> data type is not supported in Vitis HLS and should not be used.

Undefined Behaviors
The C/C++ undefined behaviors may lead to a different behavior in simulation and synthesis. An
example of this behavior is shown below:

for (int i=0; i<N; i++) {
 int val; // uninitialized value
 if (i==0) val=0;
 else if (cond) val=1;
 // val may have indeterminate value here
 A[i] = val; // undefined behavior
 val++; // dead code
}

In the above example you should not expect that A[i] gets the value of val from the previous loop
iteration if neither i==0, nor (cond) are true. You should even not expect that the increment
(val++) will happen. The same is true for scalars values obtained after complete partition.

For such C/C++ undefined behavior situations, the behavior between GCC and Vitis HLS when
compiling code is likely to be different, which will lead to a mismatch during RTL/Co-simulation.
This is because in GCC, compiled for CPU, val is often left in the same register or in the same
stack location across loop iterations, and therefore the behavior is that the value of val is
retained between loop iterations.

The solution is either to initialize val at each iteration (if this is the expected behavior) or to move
the declaration of val above the loop, as high as necessary, so that its lifetime scope matches
the intent reuse. You should not expect that the compiler will infer a specific defined RTL
behavior from an undefined C/C++ behavior.

Section II: HLS Programmers Guide
Chapter 7: Unsupported C/C++ Constructs

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 140Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=140

Virtual Functions and Pointers
Not supported.

Section II: HLS Programmers Guide
Chapter 7: Unsupported C/C++ Constructs

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 141Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=141

Chapter 8

Interfaces of the HLS Design
After the C++ code is complete, and synthesis is converting it to an RTL design, there are
elements of the hardware implementation that are also in your control. Specifically, you need to
consider the inputs to and the outputs from the HLS design, the layout of memory and managing
data alignment, and the execution models of the HLS design. This section discusses the following
topics:

• Defining Interfaces

• Vitis HLS Memory Layout Model

• Execution Modes of HLS Designs

• Controlling Initialization and Reset Behavior

Defining Interfaces
Introduction to Interface Synthesis
The arguments of the top-level function in a Vitis™ HLS design are synthesized into interfaces
and ports that group multiple signals to define the communication protocol between the HLS
design and components external to the design. Vitis HLS defines interfaces automatically, using
industry standards to specify the protocol used. The type of interfaces that Vitis HLS creates
depends on the data type and direction of the parameters of the top-level function, the target
flow for the active solution, the default interface configuration settings as specified by
config_interface, and any specified INTERFACE pragmas or directives.

TIP: Interfaces can be manually assigned using the INTERFACE pragma or directive. Refer to Adding
Pragmas and Directives for more information.

The target flows supported by Vitis HLS as described in Vitis HLS Flow Overview include:

• The Vivado® IP flow which is the default flow for the tool

• The Vitis Kernel flow, which is the bottom-up design flow for the Vitis Application
Acceleration Development flow

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 142Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=142

You can specify the target flow when creating a project solution, as described in Creating a New
Vitis HLS Project, or by using the following command:

open_solution -flow_target [vitis | vivado]

The interface defines three elements of the kernel:

1. The interface defines channels for data to flow into or out of the HLS design. Data can flow
from a variety of sources external to the kernel or IP, such as a host application, an external
camera or sensor, or from another kernel or IP implemented on the Xilinx device. The default
channels for Vitis kernels are AXI adapters as described in Interfaces for Vitis Kernel Flow.

2. The interface defines the port protocol that is used to control the flow of data through the
data channel, defining when the data is valid and can be read or can be written, as defined in
Port-Level Protocols for Vivado IP Flow.

TIP: These port protocols can be customized in the Vivado IP flow, but are set and cannot be changed
in the Vitis kernel flow, in most cases.

3. The interface also defines the execution control scheme for the HLS design, specifying the
operation of the kernel or IP as pipelined or sequential, as defined in Block-Level Control
Protocols.

As described in Creating Efficient HLS Designs the choice and configuration of interfaces is a key
to the success of your design. However, Vitis HLS tries to simplify the process by selecting
default interfaces for the target flows. For more information on the defaults used refer to
Interfaces for Vivado IP Flow or Interfaces for Vitis Kernel Flow as appropriate to your design.

After synthesis completes you can review the mapping of the software arguments of your C/C++
code to hardware ports or interfaces in the SW I/O Information section of the Synthesis Summary
report.

Interfaces for Vitis Kernel Flow
The Vitis kernel flow provides support for compiled kernel objects (.xo) for software control
from a host application and by the Xilinx Run Time (XRT). As described in Kernel Properties in the
Vitis Unified Software Platform Documentation, this flow has very specific interface requirements
that Vitis HLS must meet.

Vitis HLS supports memory, stream, and register interface paradigms where each paradigm
follows a certain interface protocol and uses the adapter to communicate with the external
world.

• Memory Paradigm (m_axi): the data is accessed by the kernel through memory such as DDR,
HBM, PLRAM/BRAM/URAM

• Stream Paradigm (axis): the data is streamed into the kernel from another streaming source,
such as video processor or another kernel, and can also be streamed out of the kernel.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 143Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=fiv1568160307462.html&Doc_Version=2022.2%20English&url=ug1393-vitis-application-acceleration
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=143

• Register Paradigm (s_axilite): The data is accessed by the kernel through register
interfaces and accessed by software as register reads/writes.

The Vitis kernel flow implements the following interfaces by default:

C-argument type Paradigm Interface protocol (I/O/Inout)
Scalar(pass by value) Register AXI4-Lite (s_axilite)

Array Memory AXI4 Memory Mapped (m_axi)

Pointer to array Memory m_axi

Pointer to scalar Register s_axilite

Reference Register s_axilite

hls::stream Stream AXI4-Stream (axis)

As you can see from the table above, a pointer to an array is implemented as an m_axi interface
for data transfer, while a pointer to a scalar is implemented using the s_axilite interface. A
scalar value passed as a constant does not need read access, while a pointer to a scalar value
needs both read/write access. The s_axilite interface implements an additional internal
protocol depending upon the C argument type. This internal implementation can be controlled
using Port-Level Protocols for Vivado IP Flow. However, you should not modify the default port
protocols in the Vitis kernel flow unless necessary.

Note: Vitis HLS will not automatically infer the default interfaces for the member elements of a struct/class
when the elements require different interface types. For example, when one element of a struct requires a
stream interface while another member element requires an s_axilite interface. You must explicitly
define an INTERFACE pragma for each element of the struct instead of relying on the default interface
assignment. If no INTERFACE pragma or directive is defined Vitis HLS will issue the following error
message:

ERROR: [HLS 214-312] Vitis mode requires explicit INTERFACE
pragmas for structs in the interface. Please add one INTERFACE pragma for
each struct
member field for argument 'd' of function 'dut(A&)' (example.cpp:19:0)

The default execution mode for Vitis kernel flow is pipelined execution, which enables
overlapping execution of a kernel to improve throughput. This is specified by the
ap_ctrl_chain block control protocol on the s_axilite interface.

TIP: The Vitis environment supports kernels with all of the supported block control protocols as described
in Block-Level Control Protocols.

The vadd function in the following code provides an example of interface synthesis.

#define VDATA_SIZE 16

typedef struct v_datatype { unsigned int data[VDATA_SIZE]; } v_dt;

extern "C" {
void vadd(const v_dt* in1, // Read-Only Vector 1
 const v_dt* in2, // Read-Only Vector 2

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 144Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=144

 v_dt* out_r, // Output Result for Addition
 const unsigned int size // Size in integer
) {

 unsigned int vSize = ((size - 1) / VDATA_SIZE) + 1;

 // Auto-pipeline is going to apply pipeline to this loop
 vadd1:
 for (int i = 0; i < vSize; i++) {
 vadd2:
 for (int k = 0; k < VDATA_SIZE; k++) {
 out_r[i].data[k] = in1[i].data[k] + in2[i].data[k];
 }
 }
}
}

The vadd function includes:

• Two pointer inputs: in1 and in2

• A pointer output: out_r that the results are written to

• A scalar value size

With the default interface synthesis settings used by Vitis HLS for the Vitis kernel flow, the
design is synthesized into an RTL block with the ports and interfaces shown in the following
figure.

Figure 27: RTL Ports After Default Interface Synthesis

The tool creates three types of interface ports on the RTL design to handle the flow of both data
and control.

• Clock, Reset, and Interrupt ports: ap_clk and ap_rst_n and interrupt are added to the
kernel.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 145Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=145

• AXI4-Lite interface: s_axi_control interface which contains the scalar arguments like
size, and manages address offsets for the m_axi interface, and defines the block control
protocol.

• AXI4 memory mapped interface: m_axi_gmem interface which contains the pointer
arguments: in1, in2, and out_r.

Details of M_AXI Interfaces for Vitis

AXI4 memory-mapped (m_axi) interfaces allow kernels to read and write data in global memory
(DDR, HBM, PLRAM), Memory-mapped interfaces are a convenient way of sharing data across
different elements of the accelerated application, such as between the host and kernel, or
between kernels on the accelerator card. The main advantages for m_axi interfaces are listed
below:

• The interface has independent read and write channels

• It supports burst-based accesses

• It provides a queue for outstanding transactions

• Understanding Burst Access: AXI4 memory-mapped interfaces support high throughput
bursts of up to 4K bytes with just a single address phase. With burst mode transfers, Vitis HLS
reads or writes data using a single base address followed by multiple sequential data samples,
which makes this mode capable of higher data throughput. Burst mode of operation is
possible when you use the C memcpy function or a pipelined for loop. Refer to Controlling
AXI4 Burst Behavior or AXI Burst Transfers for more information.

• Automatic Port Widening and Port Width Alignment:

As discussed in Automatic Port Width Resizing, Vitis HLS has the ability to automatically
widen a port width to facilitate data transfers and improve burst access, if a burst access can
be seen by the tool. Therefore all the preconditions needed for bursting, as described in AXI
Burst Transfers, are also needed for port resizing.

In the Vitis Kernel flow automatic port width resizing is enabled by default with the following
configuration commands (notice that one command is specified as bits and the other is
specified as bytes):

config_interface -m_axi_max_widen_bitwidth 512
config_interface -m_axi_alignment_byte_size 64

• Rules for Offset:

IMPORTANT! In the Vitis kernel flow the default mode of operation is offset=direct and
default_slave_interface=s_axilite and should not be changed.

The correct specification of the offset will let the HLS kernel correctly integrate into the Vitis
system. Refer to Offset and Modes of Operation for more information.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 146Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=146

• Bundle Interfaces - Performance vs. Resource Utilization:

By default, Vitis HLS groups function arguments with compatible options into a single m_axi
interface adapter as described in M_AXI Bundles. Bundling ports into a single interface helps
save device resources by eliminating AXI4 logic, which can be necessary when working in
congested designs.

However, a single interface bundle can limit the performance of the kernel because all the
memory transfers have to go through a single interface. The m_axi interface has independent
READ and WRITE channels, so a single interface can read and write simultaneously, though
only at one location. Using multiple bundles lets you increase the bandwidth and throughput
of the kernel by creating multiple interfaces to connect to memory banks.

Details of S_AXILITE Interfaces for Vitis

In C++, a function starts to process data when the function is called from a parent function. The
function call is pushed onto the stack when called, and removed from the stack when processing
is complete to return control to the calling function. This process ensures the parent knows the
status of the child.

Since the host and kernel occupy two separate compute spaces in the Vitis kernel flow, the
"stack" is managed by the Xilinx Run Time (XRT), and communication is managed through the
s_axilite interface. The kernel is software controlled through XRT by reading and writing the
control registers of an s_axilite interface as described in S_AXILITE Control Register Map.
The interface provides the following features:

• Control Protocols: The block control protocol defines control registers in the s_axilite
interface that let you set control signals to manage execution and operation of the kernel.

• Scalar Arguments: Scalar inputs on a kernel are typical, and can be thought of as programming
constants or parameters. The host application transfers these values through the s_axilite
interface.

• Pointers to Scalar Arguments: Vitis HLS lets you read to or write from a pointer to a scalar
value when assigned to an s_axilite interface. Pointers are assigned by default to m_axi
interfaces, so this requires you to manually assign the pointer to the s_axilite using the
INTERFACE pragma or directive:

int top(int *a, int *b) {
#pragma HLS interface s_axilite port=a

• Rules for Offset:

Note: The Vitis kernel flow determines the required offsets. Do not specify the offset option in that
flow.

• Rules for Bundle:

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 147Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=147

The Vitis kernel flow supports only a single s_axilite interface, which means that all
s_axilite interfaces must be bundled together.

• When no bundle is specified the tool automatically creates a default bundle named
Control.

• If for some reason you want to manually specify the bundle name, you must apply the
same bundle to all s_axilite interfaces to create a single bundle.

Details of AXIS Interfaces for Vitis

The AXI4-Stream protocol (AXIS) defines a single uni-directional channel for streaming data in a
sequential manner. The AXI4-Stream interfaces can burst an unlimited amount of data, which
significantly improves performance. Unlike the AXI4 memory-mapped interface which needs an
address to read/write the memory, the AXIS interface simply passes data to another AXIS
interface without needing an address, and so uses fewer device resources. Combined, these
features make the streaming interface a light-weight high performance interface.

The AXI4-Stream works on an industry-standard ready/valid handshake between a producer
and consumer, as shown in the figure below. The data transfer is started once the producer sends
the TVALID signal, and the consumer responds by sending the TREADY signal. This handshake of
data and control should continue until either TREADY or TVALID are set low, or the producer
asserts the TLAST signal indicating it is the last data packet of the transfer.

Figure 28: AXI4-Stream Handshake

AXI4-Stream
Data Producer

AXI4-Stream
Data Consumer

Put initial TDATA, TLAST (optionally TUSER) on the bus

Start transmitting TDATA, TLAST (optionally TUSER)

Signal that initial data is ready by TVALID

Signal data received by TREADY

X24773-102920

IMPORTANT! The AXIS interface can only be assigned to the top-level arguments (ports) of a kernel or IP,
and cannot be assigned to the arguments of functions internal to the design. Streaming channels used
inside the HLS design should use hls::stream  and not an AXIS interface.

You should define the streaming data type using hls::stream<T_data_type>, and use the
ap_axis struct type to implement the AXIS interface. As explained in AXI4-Stream Interfaces
the ap_axis struct lets you choose the implementation of the interface as with or without side-
channels:

• AXI4-Stream Interfaces without Side-Channels implements the AXIS interface as a very light-
weight interface using fewer resources

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 148Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=148

• AXI4-Stream Interfaces with Side-Channels implements a full featured interface providing
greater control

TIP: You should not define your own struct for modeling the AXIS signals (side channels, TLAST, TVALID).
Instead you can overload the TDATA signal for implementing your data type .

Interfaces for Vivado IP Flow
The Vivado IP flow supports a wide variety of I/O protocols and handshakes due to the
requirement of supporting FPGA design for a wide variety of applications. This flow supports a
traditional system design flow where multiple IP are integrated into a system. IP can be
generated through Vitis HLS. In this IP flow there are two modes of control for execution of the
system:

• Software Control: The system is controlled through a software application running on an
embedded Arm processor or external x86 processor, using drivers to access elements of the
hardware design, and reading and writing registers in the hardware to control the execution of
IP in the system.

• Self Synchronous: In this mode the IP exposes signals which are used for starting and stopping
the kernel. These signals are driven by other IP or other elements of the system design that
handles the execution of the IP.

The Vivado IP flow supports memory, stream, and register interface paradigms where each
paradigm supports different interface protocols to communicate with the external world, as
shown in the following table. Note that while the Vitis kernel flow supports only the AXI4
interface adapters, this flow supports a number of different interface types.

Table 3: Interface Types

Paradigm Description Interface Types
Memory Data is accessed by the kernel through memory

such as DDR, HBM, PLRAM/BRAM/
URAMSupported Interface Protocol

ap_memory, BRAM, AXI4 Memory Mapped
(m_axi)

Stream Supported InterfaceData is streamed into the
kernel from another streaming source, such as
video processor or another kernel, and can also
be streamed out of the kernel.

ap_fifo, AXI4-Stream (axis)

Register Data is accessed by the kernel through register
interfaces performed by register reads and
writes.

ap_none, ap_hs, ap_ack, ap_ovld, ap_vld,
and AXI4-Lite adapter (s_axilite).

The default interfaces are defined by the C-argument type in the top-level function, and the
default paradigm, as shown in the following table.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 149Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=149

Table 4: Default Interfaces

C-Argument
Type

Supported
Paradigms

Default
Paradigm

Default Interface Protocol
Input Output Inout

Scalar variable
(pass by value)

Register Register ap_none N/A N/A

Array Memory, Stream Memory ap_memory ap_memory ap_memory

Pointer Memory, Stream,
Register

Register ap_none ap_vld ap_ovld

Reference Register Register ap_none ap_vld ap_vld
hls::stream Stream Stream ap_fifo ap_fifo N/A

The default execution mode for Vivado IP flow is sequential execution, which requires the HLS IP
to complete one iteration before starting the next. This is specified by the ap_ctrl_hs block
control protocol. The control protocol can be changed as specified in Block-Level Control
Protocols.

The vadd function in the following code provides an example of interface synthesis in the
Vivado IP flow.

#define VDATA_SIZE 16

typedef struct v_datatype { unsigned int data[VDATA_SIZE]; } v_dt;

extern "C" {
void vadd(const v_dt* in1, // Read-Only Vector 1
 const v_dt* in2, // Read-Only Vector 2
 v_dt* out_r, // Output Result for Addition
 const unsigned int size // Size in integer
) {

 unsigned int vSize = ((size - 1) / VDATA_SIZE) + 1;

 // Auto-pipeline is going to apply pipeline to this loop
 vadd1:
 for (int i = 0; i < vSize; i++) {
 vadd2:
 for (int k = 0; k < VDATA_SIZE; k++) {
 out_r[i].data[k] = in1[i].data[k] + in2[i].data[k];
 }
 }
}
}

The vadd function includes:

• Two pointer inputs: in1 and in2

• A pointer: out_r that the results are written to

• A scalar value size

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 150Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=150

With the default interface synthesis settings used for the Vivado IP flow, the design is
synthesized into an RTL block with the ports and interfaces shown in the following figure.

Figure 29: RTL Ports After Default Interface Synthesis

In the default Vivado IP flow the tool creates three types of interface ports on the RTL design to
handle the flow of both data and control.

• Clock and Reset ports: ap_clk and ap_rst are added to the kernel.

• Block-level control protocol: The ap_ctrl interface is implemented as an s_axilite
interface.

• Port-level interface protocols: These are created for each argument in the top-level function
and the function return (if the function returns a value). As explained in the table above most
of the arguments use a port protocol of ap_none, and so have no control signals. In the vadd
example above these ports include: in1, in2, and size. However, the out_r_o output port
uses the ap_vld protocol and so is associated with the out_r_o_ap_vld signal.

AP_Memory in the Vivado IP Flow

The ap_memory is the default interface for the memory paradigm described in the tables above.
In the Vivado IP flow it is used for communicating with memory resources such as BRAM and
URAM. The ap_memory protocol also follows the address and data phase. The protocol initially
requests to read/write the resource and waits until it receives an acknowledgment of the
resource availability. It then initiates the data transfer phase of read/write.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 151Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=151

An important consideration for ap_memory is that it can only perform a single beat data transfer
to a single address, which is different from m_axi which can do burst accesses. This makes the
ap_memory a lightweight protocol, compared to the others.

• Memory Resources: By default Vitis HLS implements a protocol to communicate with a single-
port RAM resource. You can control the implementation of the protocol by specifying the
storage_type as part of the INTERFACE pragma or directive. The storage_type lets you
explicitly define which type of RAM is used, and which RAM ports are created (single-port or
dual-port). If no storage_type is specified Vitis HLS uses:

○ A single-port RAM by default.

○ A dual-port RAM if it reduces the initiation interval or latency.

M_AXI Interfaces in the Vivado IP Flow

AXI4 memory-mapped (m_axi) interfaces allow an IP to read and write data in global memory
(DDR, HBM, PLRAM), Memory-mapped interfaces are a convenient way of sharing data across
multiple IP. The main advantages for m_axi interfaces are listed below:

• The interface has independent read and write channels

• It supports burst-based accesses

• It provides a queue for outstanding transactions

• Understanding Burst Access: AXI4 memory-mapped interfaces support high throughput
bursts of up to 4K bytes with just a single address phase. With burst mode transfers, Vitis HLS
reads or writes data using a single base address followed by multiple sequential data samples,
which makes this mode capable of higher data throughput. Burst mode of operation is
possible when you use the C memcpy function or a pipelined for loop. Refer to Controlling
AXI4 Burst Behavior or AXI Burst Transfers for more information.

• Automatic Port Widening and Port Width Alignment:

As discussed in Automatic Port Width Resizing, Vitis HLS has the ability to automatically
widen a port width to facilitate data transfers and improve burst access when all the
preconditions needed for bursting are present. In the Vivado IP flow the following
configuration settings disable automatic port width resizing by default. To enable this feature
you must change these configuration options (notice that one command is specified as bits
and the other is specified as bytes):

config_interface -m_axi_max_widen_bitwidth 0
config_interface -m_axi_alignment_byte_size 0

• Specifying Alignment for Vivado IP mode:

The alignment for an m_axi port allows the port to read and write memory according to the
specified alignment. Choosing the correct alignment is important as it will impact performance
in the best case, and can impact functionality in the worst case.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 152Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=152

Aligned memory access means that the pointer (or the start address of the data) is a multiple
of a type-specific value called the alignment. The alignment is the natural address multiple
where the type must be or should be stored (e.g. for performance reasons) on a Memory. For
example, Intel 32-bit architecture stores words of 32 bits, each of 4 bytes in the memory. The
data is aligned to one-word or 4-byte boundary.

The alignment should be consistent in the system. The alignment is determined when the IP is
operating in AXI4 master mode and should be specified, like the Intel 32-bit architecture with
4-byte alignment. When the IP is operating in slave mode the alignment should match the
alignment of the master.

• Rules for Offset:

The default for m_axi offset is offset=direct and default_slave_interface=s_axilite. However, in
the Vivado IP flow you can change it as described in Offset and Modes of Operation.

• Bundle Interfaces - Performance vs. Resource Utilization:

By default, Vitis HLS groups function arguments with compatible options into a single m_axi
interface adapter as described in M_AXI Bundles. Bundling ports into a single interface helps
save device resources by eliminating AXI4 logic, which can be necessary when working in
congested designs.

However, a single interface bundle can limit the performance of the IP because all the memory
transfers have to go through a single interface. The m_axi interface has independent READ
and WRITE channels, so a single interface can read and write simultaneously, though only at
one location. Using multiple bundles lets you increase performance by creating multiple
interfaces to connect to memory banks.

S_AXILITE in the Vivado IP Flow

In the Vivado IP flow, the default execution control is managed by register reads and writes
through an s_axilite interface using the default ap_ctrl_hs control protocol. The IP is
software controlled by reading and writing the control registers of an s_axilite interface as
described in S_AXILITE Control Register Map.

The s_axilite interface provides the following features:

• Control Protocols: The block control protocol as specified in Block-Level Control Protocols.

• Scalar Arguments: Scalar arguments from the top-level function can be mapped to an
s_axilite interface which creates a register for the value as described in S_AXILITE Control
Register Map. The software can perform reads/writes to this register space.

• Rules for Offset: The Vivado IP flow defines the size, or range of addresses assigned to a port
based on the data type of the associated C-argument in the top-level function. However, the
tool also lets you manually define the offset size as described in S_AXILITE Offset Option.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 153Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=153

• Rules for Bundle: In the Vivado IP flow you can specify multiple bundles using the
s_axilite interface, and this will create a separate interface adapter for each bundle you
have defined. However, there are some rules related to using multiple bundles that you should
be familiar with as explained in S_AXILITE Bundle Rules.

AP_FIFO in the Vivado IP Flow

In the Vivado IP flow, the ap_fifo interface protocol is the default interface for the streaming
paradigm on the interface for communication with a memory resource FIFO, and can also be
used as a communication channel between different functions inside the IP. This protocol should
only be used if the data is accessed sequentially, and Xilinx strongly recommends using the
hls::stream<data type> which implements a FIFO.

TIP: The <data type>  should not be the same as the T_data_type, which should only be used on
the interface.

AXIS Interfaces in the Vivado IP Flow

The AXI4-Stream protocol (axis) is an alternative for streaming interfaces, and defines a single
uni-directional channel for streaming data in a sequential manner. Unlike the m_axi protocol, the
AXI4-Stream interfaces can burst an unlimited amount of data, which significantly improves
performance. Unlike the AXI4 memory-mapped interface which needs an address to read/write
the memory, the axis interface simply passes data to another axis interface without needing
an address, and so uses fewer device resources. Combined, these features make the streaming
interface a light-weight high performance interface as described in AXI4-Stream Interfaces.

AXI Adapter Interface Protocols
IMPORTANT! As discussed in Interfaces for Vitis Kernel Flow, the AXI4 adapter interfaces are the default
interfaces used by Vitis HLS for the Vitis Application Acceleration Development flow, though they are also
supported in the Vivado IP flow. TheAXI4-Stream Accelerator Adapter is a soft Xilinx® LogiCORE™
Intellectual Property (IP) core used as a infrastructure block for connecting hardware accelerators to
embedded CPUs.

The AXI4 interfaces supported by Vitis HLS include the AXI4-Stream interface (axis), AXI4-Lite
(s_axilite), and AXI4 master (m_axi) interfaces. For a complete description of the AXI4
interfaces, including timing and ports, see the Vivado Design Suite: AXI Reference Guide (UG1037).
As described in the following sections, the AXI4 interfaces implement an adapter to manage
communication according to the protocol. None of the other available Vitis HLS interfaces
implement such an adapter.

• m_axi: Specify on arrays and pointers (and references in C++) only. The m_axi mode specifies
an AXI4 Memory Mapped interface.

TIP: You can group bundle arguments into a single m_axi interface.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 154Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=154

• s_axilite: Specify this protocol on any type of argument except streams. The s_axilite
mode specifies an AXI4-Lite slave interface.

TIP: You can bundle multiple arguments into a single s_axilite  interface.

• axis: Specify this protocol on input arguments or output arguments only, not on input/output
arguments. The axis mode specifies an AXI4-Stream interface.

AXI4 Master Interface

AXI4 memory-mapped (m_axi) interfaces allow kernels to read and write data in global memory
(DDR, HBM, PLRAM). Memory-mapped interfaces are a convenient way of sharing data across
different elements of the accelerated application, such as between the host and kernel, or
between kernels on the accelerator card. Refer to Vitis-HLS-Introductory-Examples/Interface/
Memory on Github for examples of some of these concepts.

The main advantages for m_axi interfaces are listed below:

• The interface has a separate and independent read and write channels

• It supports burst-based accesses with potential performance of ~17 GB/s

• It provides support for outstanding transactions

In the Vitis Kernel flow the m_axi interface is assigned by default to pointer and array
arguments. In this flow it supports the following default features:

• Pointer and array arguments are automatically mapped to the m_axi interface

• The default mode of operation is offset=slave in the Vitis flow and should not be changed

• All pointer and array arguments are mapped to a single interface bundle to conserve device
resources, and ports share read and write access across the time it is active

• The default alignment in the Vitis flow is set to 64 bytes

• The maximum read/write burst length is set to 16 by default

While not used by default in the Vivado IP flow, when the m_axi interface is specified it has the
following default features:

• The default operation mode is offset=off but you can change it as described in Offset and
Modes of Operation

• Assigned pointer and array arguments are mapped to a single interface bundle to conserve
device resources, and share the interface across the time it is active

• The default alignment in Vivado IP flow is set to 1 byte

• The maximum read/write burst length is set to 16 by default

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 155Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Memory
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Memory
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=155

In both the Vivado IP flow and Vitis kernel flow, the INTERFACE pragma or directive can be used
to modify default values as needed. Some customization can help improve design performance as
described in Optimizing AXI System Performance.

You can use an AXI4 master interface on array or pointer/reference arguments, which Vitis HLS
implements in one of the following modes:

• Individual data transfers

• Burst mode data transfers

With individual data transfers, Vitis HLS reads or writes a single element of data for each
address. The following example shows a single read and single write operation. In this example,
Vitis HLS generates an address on the AXI interface to read a single data value and an address to
write a single data value. The interface transfers one data value per address.

void bus (int *d) {
 static int acc = 0;

 acc += *d;
 *d = acc;
}

With burst mode transfers, Vitis HLS reads or writes data using a single base address followed by
multiple sequential data samples, which makes this mode capable of higher data throughput.
Burst mode of operation is possible when you use the C memcpy function or a pipelined for
loop. Refer to AXI Burst Transfers for more information.

IMPORTANT! The C memcpy  function is only supported for synthesis when used to transfer data to or
from a top-level function argument specified with an AXI4 master interface.

When this example is synthesized, it results in the interface shown in the following figure.

Note: In this figure, the AXI4 interfaces are collapsed.

Figure 30: AXI4 Interface

When using a for loop to implement burst reads or writes, follow these requirements:

• Pipeline the loop

• Access addresses in increasing order

• Do not place accesses inside a conditional statement

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 156Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=156

• For nested loops, do not flatten loops, because this inhibits the burst operation

Note: Only one read and one write is allowed in a for loop unless the ports are bundled in different AXI
ports.

Offset and Modes of Operation

IMPORTANT! In the Vitis kernel flow the default mode of operation is offset=slave and should not be
changed.

The AXI4 Master interface has a read/write address channel that can be used to read/write
specific addresses. By default the m_axi interface starts all read and write operations from the
address 0x00000000. For example, given the following code, the design reads data from
addresses 0x00000000 to 0x000000C7 (50 32-bit words, gives 200 bytes), which represents
50 address values. The design then writes data back to the same addresses.

#include <stdio.h>
#include <string.h>

void example(int *a){

#pragma HLS INTERFACE mode=m_axi port=a depth=50

 int i;
 int buff[50];

 //memcpy creates a burst access to memory
 //multiple calls of memcpy cannot be pipelined and will be scheduled
sequentially
 //memcpy requires a local buffer to store the results of the memory
transaction
 memcpy(buff,(const int*)a,50*sizeof(int));

 for(i=0; i < 50; i++){
 buff[i] = buff[i] + 100;
 }

 memcpy((int *)a,buff,50*sizeof(int));
}

The tool provides the capability to let the base address be configured statically in the Vivado IP
for instance, or dynamically by the application or another IP during run time.

The m_axi interface can be both a master initiating transactions, and also a slave interface that
receives the data and sends acknowledgment. Depending on the mode specified with the
offset option of the INTERFACE pragma, an HLS IP can use multiple approaches to set the
base address.

TIP: The config_interface -m_axi_offset  command provides a global setting for the offset,
that can be overridden for specific m_axi interfaces using the INTERFACE pragma offset option.

• Master Mode: When acting as a master interface with different offset options, the m_axi
interface start address can be either hard-coded or set at run time.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 157Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=157

○ offset=off: Vitis HLS sets a base address for the m_axi interface when the IP is used in
the Vivado IP integrator tool. One disadvantage with this approach is that you cannot
change the base address during run time. See Customizing AXI4 Master Interfaces in IP
Integrator for setting the base address.

The following example is synthesized with offset=off, the default for the Vivado IP
flow.

void example(int *a){
#pragma HLS INTERFACE m_axi depth=50 port=a offset=off

 int i;
 int buff[50];

 //memcpy creates a burst access to memory
 //multiple calls of memcpy cannot be pipelined and will be scheduled
sequentially
 //memcpy requires a local buffer to store the results of the memory
transaction
 memcpy(buff,(const int*)a,50*sizeof(int));

 for(i=0; i < 50; i++){
 buff[i] = buff[i] + 100;
 }

 memcpy((int *)a,buff,50*sizeof(int));
}

○ offset=direct: Vitis HLS generates a port on the IP for setting the address. Note the
addition of the a port as shown in the figure below. This lets you update the address at run
time, so you can have one m_axi interface reading and writing different locations. For
example, an HLS module that reads data from an ADC into RAM, and an HLS module that
processes that data. Since you can change the address on the module, while one HLS
module is processing the initial dataset the other module can be reading more data into
different address.

void example(int *a){
#pragma HLS INTERFACE m_axi depth=50 port=a offset=direct
...
}

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 158Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=158

Figure 31: offset=direct

• Slave Mode: The slave mode for an interface is set with offset=slave. In this mode the IP
will be controlled by the host application, or the micro-controller through the s_axilite
interface. This is the default for the Vitis kernel flow, and can also be used in the Vivado IP
flow. Here is the flow of operation:

1. initially, the Host/CPU will start the IP or kernel using the block-level control protocol
which is mapped to the s_axilite adapter.

2. The host will send the scalars and address offsets for the m_axi interfaces through the
s_axilite adapter.

3. The m_axi adapter will read the start address from the s_axilite adapter and store it
in a queue.

4. The HLS design starts to read the data from the global memory.

As shown in the figure below, the HLS design will have both the s_axilite adapter for the
base address, and the m_axi to perform read and write transfer to the global memory.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 159Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=159

Figure 32: AXI Adapters in Slave Mode

HLS DESIGN

MAXI ADAPTER

Host/
Embedded
Processor

Global memory/IP

Port handshake

Port handshake

s_axilite

m_axi

In1 out

Control register

Address Port

0x10 In1 (LBA)

0x14 In1 (HBA)

0x1C out(LBA)

0x28 out(LBA)

size size

size

in1

out

m_axi
Start
Address

X26768-060722

Offset Rules

The following are rules associated with the offset option:

• Fully Specified Offset: When the user explicitly sets the offset value the tool uses the
specified settings. The user can also set different offset values for different m_axi interfaces
in the design, and the tool will use the specified offsets.

#pragma HLS INTERFACE s_axilite port=return
#pragma HLS INTERFACE mode=m_axi bundle=BUS_A port=out offset=direct
#pragma HLS INTERFACE mode=m_axi bundle=BUS_B port=in1 offset=slave
#pragma HLS INTERFACE mode=m_axi bundle=BUS_C port=in2 offset=off

• No Offset Specified: If there are no offsets specified in the INTERFACE pragma, the tool will
defer to the setting specified by config_interface -m_axi_offset.

Note: If the global m_axi_offset setting is specified, and the design has an s_axilite interface, the
global setting is ignored and offset=slave is assumed.

void top(int *a) {
#pragma HLS interface mode=m_axi port=a
#pragma HLS interface mode=s_axilite port=a
}

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 160Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=160

Controlling the Address Offset in an AXI4 Interface

By default, the AXI4 master interface starts all read and write operations from address
0x00000000. For example, given the following code, the design reads data from addresses
0x00000000 to 0x000000C7 (50 32-bit words, gives 200 bytes), which represents 50 address
values. The design then writes data back to the same addresses.

void example(int *a){

#pragma HLS INTERFACE mode=m_axi depth=50 port=a
#pragma HLS INTERFACE mode=s_axilite port=return bundle=AXILiteS

 int i;
 int buff[50];

 memcpy(buff,(const int*)a,50*sizeof(int));

 for(i=0; i < 50; i++){
 buff[i] = buff[i] + 100;
 }
 memcpy((int *)a,buff,50*sizeof(int));
}

To apply an address offset, use the -offset option with the INTERFACE directive, and specify
one of the following options:

• off: Does not apply an offset address. This is the default.

• direct: Adds a 32-bit port to the design for applying an address offset.

• slave: Adds a 32-bit register inside the AXI4-Lite interface for applying an address offset.

In the final RTL, Vitis HLS applies the address offset directly to any read or write address
generated by the AXI4 master interface. This allows the design to access any address location in
the system.

If you use the slave option in an AXI interface, you must use an AXI4-Lite port on the design
interface. Xilinx recommends that you implement the AXI4-Lite interface using the following
pragma:

#pragma HLS INTERFACE mode=s_axilite port=return

In addition, if you use the slave option and you used several AXI4-Lite interfaces, you must
ensure that the AXI master port offset register is bundled into the correct AXI4-Lite interface. In
the following example, port a is implemented as an AXI master interface with an offset and AXI4-
Lite interfaces called AXI_Lite_1 and AXI_Lite_2:

#pragma HLS INTERFACE mode=m_axi port=a depth=50 offset=slave
#pragma HLS INTERFACE mode=s_axilite port=return bundle=AXI_Lite_1
#pragma HLS INTERFACE mode=s_axilite port=b bundle=AXI_Lite_2

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 161Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=161

The following INTERFACE directive is required to ensure that the offset register for port a is
bundled into the AXI4-Lite interface called AXI_Lite_1:

#pragma HLS INTERFACE mode=s_axilite port=a bundle=AXI_Lite_1

M_AXI Bundles

Vitis HLS groups function arguments with compatible options into a single m_axi interface
adapter. Bundling ports into a single interface helps save FPGA resources by eliminating AXI
logic, but it can limit the performance of the kernel because all the memory transfers have to go
through a single interface. The m_axi interface has independent READ and WRITE channels, so
a single interface can read and write simultaneously, though only at one location. Using multiple
bundles the bandwidth and throughput of the kernel can be increased by creating multiple
interfaces to connect to multiple memory banks.

In the following example all the pointer arguments are grouped into a single m_axi adapter using
the interface option bundle=BUS_A, and adds a single s_axilite adapter for the m_axi
offsets, the scalar argument size, and the function return.

extern "C" {
void vadd(const unsigned int *in1, // Read-Only Vector 1
 const unsigned int *in2, // Read-Only Vector 2
 unsigned int *out, // Output Result
 int size // Size in integer
) {

#pragma HLS INTERFACE mode=m_axi bundle=BUS_A port=out
#pragma HLS INTERFACE mode=m_axi bundle=BUS_A port=in1
#pragma HLS INTERFACE mode=m_axi bundle=BUS_A port=in2
#pragma HLS INTERFACE mode=s_axilite port=in1
#pragma HLS INTERFACE mode=s_axilite port=in2
#pragma HLS INTERFACE mode=s_axilite port=out
#pragma HLS INTERFACE mode=s_axilite port=size
#pragma HLS INTERFACE mode=s_axilite port=return

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 162Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=162

Figure 33: MAXI and S_AXILITE

HLS DESIGN

MAXI ADAPTER

Host/
Embedded
Processor

Global memory/IP

Port handshake

Port handshake

s_axilite

m_axi

In1 out

Control register

Address Port

0x10 In1 (LBA)

0x14 In1 (HBA)

0x1C out(LBA)

0x28 out(LBA)

size size

size

in1

out

m_axi
Start
Address

BUS_A

X26771-060722

You can also choose to bundle function arguments into separate interface adapters as shown in
the following code. Here the argument in2 is grouped into a separate interface adapter with
bundle=BUS_B. This creates a new m_axi interface adapter for port in2.

extern "C" {
void vadd(const unsigned int *in1, // Read-Only Vector 1
 const unsigned int *in2, // Read-Only Vector 2
 unsigned int *out, // Output Result
 int size // Size in integer
) {

#pragma HLS INTERFACE mode=m_axi bundle=BUS_A port=out
#pragma HLS INTERFACE mode=m_axi bundle=BUS_A port=in1
#pragma HLS INTERFACE mode=m_axi bundle=BUS_B port=in2
#pragma HLS INTERFACE mode=s_axilite port=in1
#pragma HLS INTERFACE mode=s_axilite port=in2
#pragma HLS INTERFACE mode=s_axilite port=out
#pragma HLS INTERFACE mode=s_axilite port=size
#pragma HLS INTERFACE mode=s_axilite port=return

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 163Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=163

Figure 34: 2 MAXI Bundles

HLS DESIGN MAXI ADAPTER

Host/
Embedded
Processor

Global memory/IP

Port Handshake

Port
Handshake

s_axilite

m_axi

In1

Control register

Port

In1 (LBA), In1 (HBA)

In2 (LBA), In2 (HBA)

out(LBA)

out(LBA)

Size

size

in2

MAXI ADAPTER

In1 out

BUS_A

m_axi

in1

out

Port
Handshake

X26770-060722

Bundle Rules

The global configuration command config_interface -m_axi_auto_max_ports false
will limit the number of interface bundles to the minimum required. It will allow the tool to group
compatible ports into a single m_axi interface. The default setting for this command is disabled
(false), but you can enable it to maximize bandwidth by creating a separate m_axi adapter for
each port.

With m_axi_auto_max_ports disabled, the following are some rules for how the tool handles
bundles under different circumstances:

1. Default Bundle Name: The tool groups all interface ports with no bundle name into a single
m_axi interface port using the tool default name bundle=<default>, and names the RTL
port m_axi_<default>. The following pragmas:

#pragma HLS INTERFACE mode=m_axi port=a depth=50
#pragma HLS INTERFACE mode=m_axi port=a depth=50
#pragma HLS INTERFACE mode=m_axi port=a depth=50

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 164Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=164

Result in the following messages:

INFO: [RTGEN 206-500] Setting interface mode on port 'example/gmem' to
'm_axi'.
INFO: [RTGEN 206-500] Setting interface mode on port 'example/gmem' to
'm_axi'.
INFO: [RTGEN 206-500] Setting interface mode on port 'example/gmem' to
'm_axi'.

2. User-Specified Bundle Names: The tool groups all interface ports with the same user-
specified bundle=<string> into the same m_axi interface port, and names the RTL port
the value specified by m_axi_<string>. Ports without bundle assignments are grouped
into the default bundle as described above. The following pragmas:

#pragma HLS INTERFACE mode=m_axi port=a depth=50 bundle=BUS_A
#pragma HLS INTERFACE mode=m_axi port=b depth=50
#pragma HLS INTERFACE mode=m_axi port=c depth=50

Result in the following messages:

INFO: [RTGEN 206-500] Setting interface mode on port 'example/BUS_A' to
'm_axi'.
INFO: [RTGEN 206-500] Setting interface mode on port 'example/gmem' to
'm_axi'.
INFO: [RTGEN 206-500] Setting interface mode on port 'example/gmem' to
'm_axi'.

IMPORTANT! If you bundle incompatible interfaces Vitis HLS issues a message and ignores the
bundle assignment.

M_AXI Resources

The AXI Master Adapter converts the customized AXI commands from the HLS scheduler to
standard AXI AMBA protocol and sends them to the external memory. The MAXI adapter uses
resources such as FIFO to store the requests/Data and ack. Here is the summary of the modules
and the resource they consume:

• Write Module: The bus write modules performs the write operations.

○ FIFO_wreq: This FIFO module stores the future write requests. When the AW channel is
available a new write request to global memory will be popped out of this FIFO.

○ buff_wdata: This FIFO stores the future write data that needs to be sent to the global
memory. When the W channel is available and AXI protocol conditions are met, the write
data of size= burst_length will be popped out of this FIFO and sent to the global memory.

○ FIFO_resp: This module is responsible for controlling the number of pipelined
outstanding requests sent to the global memory.

• Read Module: These modules perform the read operations. It uses the following resources

○ FIFO_rreq: This FIFO module stores the future write requests. When the AR channel is
free a read request to global memory will be popped out of this FIFO.

○ buff_rdata: This FIFO stores the read data that are received from the global memory.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 165Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=165

The device resource consumption of the M_AXI adapter is a sum of all the write modules (size of
the FIFO_wreq module, buff_wdata, and size of FIFO_ resp) and the sum of all read
modules. In general, the size of the FIFO is calculated as = Width * Depth. When you refer to a
1KB FIFO storage it can be one of the configurations such as 32*32, 8*64 etc, which are selected
according to the design specification. Similarly, the adapter FIFO storage can be globally
configured for the design using the following options of the config_interface command:

• -m_axi_latency

• -m_axi__max_read/write_burst_length

• -m_axi_num_read/write_outstanding

• -m_axi_addr64

TIP: You can also use similar options on the INTERFACE pragma or directive to configure specific m_axi
interfaces.

These configuration options control the width and depth of the FIFO as shown below.

• Size of the FIFO_wreq/rreq module = (width(config_interface -
m_axi_addr64[=true|false])) * Depth(config_interface -m_axi_latency)).
This FIFO will be implemented as a shift register by the Vivado tool.

• Size of the buff_wdata module = (width (port width after HLS synthesis) * Depth
(config_interface -m_axi_num_read/write_outstanding * config_interface
-m_axi_max_read/write_burst_length)).

TIP: This FIFO by default will be implemented as BRAM, but it can be implemented in LUTRAM or
URAM as determined by config_interface -maxi_buffer_impl.

• Size of the FIFO_resp module = width(2) * depth (config_interface -
m_axi_num_read/write_outstanding-1).

Controlling AXI4 Burst Behavior

An optimal AXI4 interface is one in which the design never stalls while waiting to access the bus,
and after bus access is granted, the bus never stalls while waiting for the design to read/write. To
create the optimal AXI4 interface, the following options are provided in the INTERFACE pragma
or directive to specify the behavior of the bursts and optimize the efficiency of the AXI4
interface. Refer to AXI Burst Transfers for more information on burst transfers.

TIP: The volatile  qualifier prevents burst access to or from the variable.

Some of these options use internal storage to buffer data and may have an impact on area and
resources:

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 166Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=166

• latency: Specifies the expected latency of the AXI4 interface, allowing the design to initiate
a bus request a number of cycles (latency) before the read or write is expected. If this figure is
too low, the design will be ready too soon and may stall waiting for the bus. If this figure is too
high, bus access may be granted but the bus may stall waiting on the design to start the
access.

• max_read_burst_length: Specifies the maximum number of data values read during a
burst transfer.

• num_read_outstanding: Specifies how many read requests can be made to the AXI4 bus,
without a response, before the design stalls. This implies internal storage in the design, a FIFO
of size: num_read_outstanding*max_read_burst_length*word_size.

• max_write_burst_length: Specifies the maximum number of data values written during a
burst transfer.

• num_write_outstanding: Specifies how many write requests can be made to the AXI4
bus, without a response, before the design stalls. This implies internal storage in the design, a
FIFO of size: num_read_outstanding*max_read_burst_length*word_size

The following example can be used to help explain these options:

 #pragma HLS interface mode=m_axi port=input offset=slave bundle=gmem0
depth=1024*1024*16/(512/8)
 latency=100
 num_read_outstanding=32
 num_write_outstanding=32
 max_read_burst_length=16
 max_write_burst_length=16

The interface is specified as having a latency of 100. Vitis HLS seeks to schedule the request for
burst access 100 clock cycles before the design is ready to access the AXI4 bus. To further
improve bus efficiency, the options num_write_outstanding and num_read_outstanding
ensure the design contains enough buffering to store up to 32 read and write accesses. This
allows the design to continue processing until the bus requests are serviced. Finally, the options
max_read_burst_length and max_write_burst_length ensure the maximum burst size
is 16 and that the AXI4 interface does not hold the bus for longer than this.

These options allow the behavior of the AXI4 interface to be optimized for the system in which it
will operate. The efficiency of the operation does depend on these values being set accurately.

Automatic Port Width Resizing

In the Vitis tool flow Vitis HLS provides the ability to automatically re-size m_axi interface ports
to 512-bits to improve burst access. However, automatic port width resizing only supports
standard C data types and does not support aggregate types such as ap_int, ap_uint,
struct, or array.

IMPORTANT! Structs on the interface prevent automatic widening of the port. You must break the struct
into individual elements to enable this feature.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 167Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=167

Vitis HLS controls automatic port width resizing using the following two commands:

• config_interface -m_axi_max_widen_bitwidth <N>: Directs the tool to
automatically widen bursts on M-AXI interfaces up to the specified bitwidth. The value of
<N> must be a power-of-two between 0 and 1024.

• config_interface -m_axi_alignment_byte_size <N>: Note that burst widening
also requires strong alignment properties. Assume pointers that are mapped to m_axi
interfaces are at least aligned to the provided width in bytes (power of two). This can help
automatic burst widening.

In the Vitis Kernel flow automatic port width resizing is enabled by default with the following:

config_interface -m_axi_max_widen_bitwidth 512
config_interface -m_axi_alignment_byte_size 64

In the Vivado IP flow this feature is disabled by default:

config_interface -m_axi_max_widen_bitwidth 0
config_interface -m_axi_alignment_byte_size 0

Automatic port width resizing will only re-size the port if a burst access can be seen by the tool.
Therefore all the preconditions needed for bursting, as described in AXI Burst Transfers, are also
needed for port resizing. These conditions include:

• Must be a monotonically increasing order of access (both in terms of the memory location
being accessed as well as in time). You cannot access a memory location that is in between
two previously accessed memory locations- aka no overlap.

• The access pattern from the global memory should be in sequential order, and with the
following additional requirements:

○ The sequential accesses need to be on a non-vector type

○ The start of the sequential accesses needs to be aligned to the widen word size

○ The length of the sequential accesses needs to be divisible by the widen factor

The following code example is used in the calculations that follow:

vadd_pipeline:
 for (int i = 0; i < iterations; i++) {
#pragma HLS LOOP_TRIPCOUNT min = c_len/c_n max = c_len/c_n

 // Pipelining loops that access only one variable is the ideal way to
 // increase the global memory bandwidth.
 read_a:
 for (int x = 0; x < N; ++x) {
#pragma HLS LOOP_TRIPCOUNT min = c_n max = c_n
#pragma HLS PIPELINE II = 1
 result[x] = a[i * N + x];
 }

 read_b:
 for (int x = 0; x < N; ++x) {

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 168Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=168

#pragma HLS LOOP_TRIPCOUNT min = c_n max = c_n
#pragma HLS PIPELINE II = 1
 result[x] += b[i * N + x];
 }

 write_c:
 for (int x = 0; x < N; ++x) {
#pragma HLS LOOP_TRIPCOUNT min = c_n max = c_n
#pragma HLS PIPELINE II = 1
 c[i * N + x] = result[x];
 }
 }
}
}

The width of the automatic optimization for the code above is performed in three steps:

1. The tool checks for the number of access patterns in the read_a loop. There is one access
during one loop iteration, so the optimization determines the interface bit-width as 32= 32
*1 (bitwidth of the int variable * accesses).

2. The tool tries to reach the default max specified by the config_interface -
m_axi_max_widen_bitwidth 512, using the following expression terms:

length = (ceil((loop-bound of index inner loops) *
(loop-bound of index - outer loops)) * #(of access-patterns))

• In the above code, the outer loop is an imperfect loop so there will not be burst transfers
on the outer-loop. Therefore the length will only include the inner-loop. Therefore the
formula will be shortened to:

length = (ceil((loop-bound of index inner loops)) * #(of access-
patterns))

or: length = ceil(128) *32 = 4096

3. Is the calculated length a power of 2? If Yes, then the length will be capped to the width
specified by -m_axi_max_widen_bitwidth.

There are some pros and cons to using the automatic port width resizing which you should
consider when using this feature. This feature improves the read latency from the DDR as the
tool is reading a big vector, instead of the data type size. It also adds more resources as it needs
to buffer the huge vector and shift the data accordingly to the data path size.

Creating an AXI4 Interface with 32-bit Address

By default, Vitis HLS implements the AXI4 port with a 64-bit address bus. However, some
devices such as the Zynq-7000 have a 32 bit address bus. In this case you can implement the
AXI4 interface with a 32-bit address bus by disabling the m_axi_addr64 interface configuration
option as follows:

1. Select Solution → Solution Settings.

2. In the Solution Settings dialog box, click the General category, and Edit the existing
config_interface command, or click Add to add one.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 169Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=169

3. In the Edit or Add dialog box, select config_interface, and disable m_axi_addr64.

IMPORTANT! When you disable the m_axi_addr64 option, Vitis HLS implements all AXI4 interfaces in
the design with a 32-bit address bus.

Customizing AXI4 Master Interfaces in IP Integrator

When you incorporate an HLS RTL design that uses an AXI4 master interface into a design in the
Vivado IP integrator, you can customize the block. From the block diagram in IP integrator, select
the HLS block, right-click, and select Customize Block to customize any of the settings provided.
A complete description of the AXI4 parameters is provided in this link in the Vivado Design Suite:
AXI Reference Guide (UG1037).

The following figure shows the Re-Customize IP dialog box for the design shown below. This
design includes an AXI4-Lite port.

Figure 35: Customizing AXI4 Master Interfaces in IP Integrator

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 170Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf;a=xAXI4AndAXI4LiteSignals
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=170

AXI4-Lite Interface

Overview

An HLS IP or kernel can be controlled by a host application, or embedded processor using the
Slave AXI4-Lite interface (s_axilite) which acts as a system bus for communication between
the processor and the kernel. Using the s_axilite interface the host or an embedded
processor can start and stop the kernel, and read or write data to it. When Vitis HLS synthesizes
the design the s_axilite interface is implemented as an adapter that captures the data that
was communicated from the host in registers on the adapter. Refer to Vitis-HLS-Introductory-
Examples/Interface/Register on Github for examples of some of these concepts.

The AXI4-Lite interface performs several functions within a Vivado IP or Vitis kernel:

• It maps a block-level control mechanism which can be used to start and stop the kernel.

• It provides a channel for passing scalar arguments, pointers to scalar values, function return
values, and address offsets for m_axi interfaces from the host to the IP or kernel

• For the Vitis Kernel flow:

○ The tool will automatically infer the s_axilite interface pragma to provide offsets to
pointer arguments assigned to m_axi interfaces, scalar values, and function return type.

○ Vitis HLS lets you read to or write from a pointer to a scalar value when assigned to an
s_axilite interface. Pointers are assigned by default to m_axi interfaces, so this
requires you to manually assign the pointer to the s_axilite using the INTERFACE
pragma or directive:

int top(int *a, int *b) {
#pragma HLS interface s_axilite port=a

○ Bundle: Do not specify the bundle option for the s_axilite adapter in the Vitis Kernel
flow. The tool will create a single s_axilite interface that will serve for the whole
design.

IMPORTANT! HLS will return an error if multiple bundles are specified for the Vitis Kernel flow.

○ Offset: The tool will automatically choose the offsets for the interface. Do not specify any
offsets in this flow.

• For the Vivado IP flow:

○ This flow will not use the s_axilite interface by default.

○ To use the s_axilite as a communication channel for scalar arguments, pointers to
scalar values, offset to m_axi pointer address, and function return type, you must manually
specify the INTERFACE pragma or directive.

○ Bundle: This flow supports multiple s_axilite interfaces, specified by bundle. Refer to
S_AXILITE Bundle Rules for more information.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 171Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Register
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Register
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=171

○ Offset: By default the tool will place the arguments in a sequential order starting from 0x10
in the control register map. Refer to S_AXILITE Offset Option for additional details.

S_AXILITE Example

The following example shows how Vitis HLS implements multiple arguments, including the
function return, as an s_axilite interface. Because each pragma uses the same name for the
bundle option, each of the ports is grouped into a single interface.

void example(char *a, char *b, char *c)
{
#pragma HLS INTERFACE mode=s_axilite port=return bundle=BUS_A
#pragma HLS INTERFACE mode=s_axilite port=a bundle=BUS_A
#pragma HLS INTERFACE mode=s_axilite port=b bundle=BUS_A
#pragma HLS INTERFACE mode=s_axilite port=c bundle=BUS_A
#pragma HLS INTERFACE mode=ap_vld port=b

 *c += *a + *b;
}

TIP: If you do not specify the bundle  option, Vitis HLS groups all arguments into a single s_axilite 
bundle and automatically names the port.

The synthesized example will be part of a system that has three important elements as shown in
the figure below:

1. Host application running on an x86 or embedded processor interacting with the IP or kernel

2. SAXI Lite Adapter: The INTERFACE pragma implements an s_axilite adapter. The adapter
has two primary functions: implementing the interface protocol to communicate with the
host, and providing a Control Register Map to the IP or kernel.

3. The HLS engine or function that implements the design logic

Figure 36: S_AXILITE Adapter

HLS Engine
Host/

Embedded
ProcessorPort handshake

SAXI LITE ADAPTER
Control register

Address Port

0x00 IP control signals

0x10 a(read/write)

0x18 b(read/write)

0x1c B (control signal)

0x20 c_i

a

b

c

BUS_A

s_axilite

0x28 c_o

0x2c C (control signal)

X26769-060722

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 172Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=172

By default, Vitis HLS automatically assigns the address for each port that is grouped into an
s_axilite interface. The size, or range of addresses assigned to a port is dependent on the
argument data type and the port protocol used, as described below. You can also explicitly define
the address using the offset option as discussed in S_AXILITE Offset Option.

• Port a: By default, is implemented as ap_none. 1-word for the data signal is assigned and only
3 bits are used as the argument data type is char. Remaining bits are unused.

• Port b: is implemented as ap_vld defined by the INTERFACE pragma in the example. The
corresponding control register is of size 2 bytes (16-bits) and is divided into two sections as
follows:

○ (0x1c) Control signal : 1-word for the control signal is assigned.

○ (0x18) Data signal: 1-word for the data signal is assigned and only 3 bits are used as the
argument data type is char. Remaining bits are unused.

• Port c: By default, is implemented as ap_ovld as an output. The corresponding control
register is of size 4 bytes (32 bits) and is divided into three sections:

○ (0x20) Data signal of c_i: 1-word for the input data signal is assigned, and only 3 bits are
used as the argument data type is char, the rest are not used.

○ (0x24) Reserved Space

○ (0x28) Data signal of c_o: 1-word for the output data signal is assigned.

○ (0x2c) Control signal of c_o : 1-word for control signal ap_ovld is assigned and only 3 bits
are used as the argument data type is char. Remaining bits are unused.

In operation the host application will initially start the kernel by writing into the Control address
space (0x00). The host/CPU completes the initial setup by writing into the other address spaces
which are associated with the various function arguments as defined in the example.

The control signal for port b is asserted and only then can the kernel read ports a and b (port a is
ap_none and does not have a control signal). Until that time the design is stalled and waiting for
the valid register to be set for port b. Each time port b is read by the HLS engine the input valid
register is cleared and the register resets to logic 0.

After the HLS engine finishes its computation, the output value on port C is stored in the control
register and the corresponding valid bit is set for the host to read. After the host reads the data,
the HLS engine will write the ap_done bit in the Control register (0x00) to mark the end of the
IP computation.

Vitis HLS reports the assigned addresses in the S_AXILITE Control Register Map, and also
provides them in C Driver Files to aid in your software development. Using the s_axilite
interface, you can exploit the C driver files for use with code running on an embedded or x86
processor using provided C application program interface (API) functions, to let you control the
hardware from your software.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 173Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=173

S_AXILITE Control Register Map

Vitis HLS automatically generates a Control Register Map for controlling the Vivado IP or Vitis
kernel, and the ports grouped into s_axilite interface. The register map, which is added to the
generated RTL files, can be divided into two sections:

1. Block-level control signals

2. Function arguments mapped into the s_axilite interface

In the Vitis kernel flow, the block protocol is associated with the s_axilite interface by
default. To change the default block protocol, specify the interface pragma as follows:

#pragma HLS INTERFACE mode=ap_ctrl_hs port=return

In the Vivado IP flow though, the block control protocol is assigned to its own interface,
ap_ctrl, as seen in Interfaces for Vivado IP Flow. However, if you are using an s_axilite
interface in your IP, you can also assign the block control protocol to that interface using the
following INTERFACE pragmas, as an example:

#pragma HLS INTERFACE mode=s_axilite port=return bundle=BUS_A
#pragma HLS INTERFACE mode=ap_ctrl_hs port=return bundle=BUS_A

In the Control Register Map, Vitis HLS reserves addresses 0x00 through 0x18 for the block-level
protocol, interrupt, mailbox and auto-restart controls. The latter are present only when counted
auto-restart and the mailbox are enabled, as shown below:

Table 5: Addresses

Address Description
0x00 Control signals

0x04 Global Interrupt Enable Register

0x08 IP Interrupt Enable Register (Read/Write)

0x0c IP Interrupt Status Register (Read/TOW)

0x10 Auto-restart counter (Write; present only with counted
autorestart)

0x14 Input mailbox write (Read/Write; present only when the
input mailbox is enabled)

0x18 Output mailbox read (Read/Write; present only when
the output mailbox is enabled)

The Control signals (0X00) contains ap_start, ap_done, ap_ready, and ap_idle; and in the
case of ap_ctrl_chain the block protocol also contains ap_continue. These are the block-
level interface signals which are accessed through the s_axilite adapter.

To start the block operation theap_start bit in the Control register must be set to 1. The HLS
engine will then proceed and read any inputs grouped into the AXI4-Lite slave interface from the
register in the interface.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 174Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=174

When the block completes the operation, theap_done,ap_idleandap_ready registers will be
set by the hardware output ports and the results for any output ports grouped into the
s_axilite interface read from the appropriate register.

For function arguments, Vitis HLS automatically assigns the address for each argument or port
that is assigned to the s_axilite interface. The tool will assign each port an offset starting
from 0x10, the lower addresses being reserved for control signals. The size, or range of
addresses assigned to a port is dependent on the argument data type and the port protocol used.

Because the variables grouped into an AXI4-Lite interface are function arguments which do not
have a default value in the C code, none of the argument registers in the s_axilite interface
can be assigned a default value. The registers can be implemented with a reset using the
config_rtl command, but they cannot be assigned any other default value.

The Control Register Map generated by Vitis HLS is provided below:

//------------------------Address Info-------------------
// 0x00 : Control signals
// bit 0 - ap_start (Read/Write/COH)
// bit 1 - ap_done (Read)
// bit 2 - ap_idle (Read) can be disabled with config_rtl -no_idle

// bit 3 - ap_ready (Read/COR)
// bit 4 - ap_continue (Read/Write/SC) for ap_ctrl_chain protocol
// bit 7 - auto_restart (Read/Write) enabled by config_interface -
s_axilite_auto_restart_counter
// bit 9 - interrupt (Read) Present when there is at least one
enabled interrupt
// others - reserved
// 0x04 : Global Interrupt Enable Register
// bit 0 - Global Interrupt Enable (Read/Write)
// others - reserved
// 0x08 : IP Interrupt Enable Register (Read/Write)
// bit 0 - enable ap_done interrupt (Read/Write)
// bit 1 - enable ap_ready interrupt (Read/Write)
// others - reserved
// 0x0c : IP Interrupt Status Register (Read/TOW)
// bit 0 - ap_done (COR/TOW)
// bit 1 - ap_ready (COR/TOW)
// others - reserved
// 0x10 : Data signal of a
// bit 7~0 - a[7:0] (Read/Write)
// others - reserved
// 0x14 : reserved
// 0x18 : Data signal of b
// bit 7~0 - b[7:0] (Read/Write)
// others - reserved
// : Control signal of b
// bit 0 - b_ap_vld (Read/Write/SC)
// others - reserved
// 0x20 : Data signal of c_i
// bit 7~0 - c_i[7:0] (Read/Write)
// others - reserved
// 0x24 : reserved
// 0x28 : Data signal of c_o
// bit 7~0 - c_o[7:0] (Read)
// others - reserved

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 175Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=175

// 0x2c : Control signal of c_o
// bit 0 - c_o_ap_vld (Read/COR)
// others - reserved
// (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH =
Clear on Handshake)

S_AXILITE and Port-Level Protocols

Port-level I/O protocols sequence data into and out of the HLS engine from the s_axilite
adapter as seen in S_AXILITE Example. In the Vivado IP flow, you can assign port-level I/O
protocols to the individual ports and signals bundled into an s_axilite interface. In the Vitis
kernel flow, changing the default port-level I/O protocols is not recommended unless necessary.
The tool assigns a default port protocol to a port depending on the type and direction of the
argument associated with it. The port can contain one or more of the following:

• Data signal for the argument

• Valid signal (ap_vld/ap_ovld) to indicate when the data can be read

• Acknowledge signal (ap_ack) to indicate when the data has been read

The default port protocol assignments for various argument types are as follows:

Table 6: Supported Argument Types

Argument Type Default Supported
scalar ap_none ap_ack and ap_vld can also be used

Pointers/References

Inputs ap_none ap_ack and ap_vld

Outputs ap_vld ap_none, ap_ack, and ap_ovld can
also be used

Inouts ap_ovld ap_none, ap_ack, and ap_vld are also
supported

IMPORTANT! Arrays default to ap_memory . The bram  port protocol is not supported for arrays in an
s_axilite  interface.

The S_AXILITE Example groups port b into the s_axilite interface and specifies port b as
using the ap_vld protocol with INTERFACE pragmas. As a result, the s_axilite adapter
contains a register for the port b data, and a register for the port b input valid signal.

If the input valid register is not set to logic 1, the data in the b data register is not considered
valid, and the design stalls and waits for the valid register to be set. Each time port b is read, Vitis
HLS automatically clears the input valid register and resets the register to logic 0.

RECOMMENDED: To simplify the operation of your design, Xilinx recommends that you use the default
port protocols associated with the s_axilite interface.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 176Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=176

S_AXILITE Bundle Rules

In the S_AXILITE Example all the function arguments are grouped into a single s_axilite
interface adapter specified by the bundle=BUS_A option in the INTERFACE pragma. The
bundle option simply lets you group ports together into one interface.

In the Vitis kernel flow there should only be a single interface bundle, commonly named
s_axi_control by the tool. So you should not specify the bundle option in that flow, or you
will probably encounter an error during synthesis. However, in the Vivado IP flow you can specify
multiple bundles using the s_axilite interface, and this will create a separate interface
adapter for each bundle you have defined. The following example shows this:

void example(char *a, char *b, char *c)
{
#pragma HLS INTERFACE mode=s_axilite port=a bundle=BUS_A
#pragma HLS INTERFACE mode=s_axilite port=b bundle=BUS_A
#pragma HLS INTERFACE mode=s_axilite port=c bundle=OUT
#pragma HLS INTERFACE mode=s_axilite port=return bundle=BUS_A
#pragma HLS INTERFACE mode=ap_vld port=b
 *c += *a + *b;
}

After synthesis completes, the Synthesis Summary report provides feedback regarding the
number of s_axilite adapters generated. The SW-to-HW Mapping section of the report
contains the HW info showing the control register offset and the address range for each port.

However, there are some rules related to using bundles with the s_axilite interface.

1. Default Bundle Names: This rule explicitly groups all interface ports with no bundle name into
the same AXI4-Lite interface port, uses the tool default bundle name, and names the RTL
port s_axi_<default>, typically s_axi_control.

In this example all ports are mapped to the default bundle:

void top(char *a, char *b, char *c)
{
#pragma HLS INTERFACE mode=s_axilite port=a
#pragma HLS INTERFACE mode=s_axilite port=b
#pragma HLS INTERFACE mode=s_axilite port=c
 *c += *a + *b;
}

2. User-Specified Bundle Names: This rule explicitly groups all interface ports with the same
bundle name into the same AXI4-Lite interface port, and names the RTL port the value
specified by s_axi_<string>.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 177Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=177

The following example results in interfaces named s_axi_BUS_A, s_axi_BUS_B, and
s_axi_OUT:

void example(char *a, char *b, char *c)
{
#pragma HLS INTERFACE mode=s_axilite port=a bundle=BUS_A
#pragma HLS INTERFACE mode=s_axilite port=b bundle=BUS_B
#pragma HLS INTERFACE mode=s_axilite port=c bundle=OUT
#pragma HLS INTERFACE mode=s_axilite port=return bundle=OUT
#pragma HLS INTERFACE mode=ap_vld port=b
 *c += *a + *b;
}

3. Partially Specified Bundle Names: If you specify bundle names for some arguments, but
leave other arguments unassigned, then the tool will bundle the arguments as follows:

• Group all ports into the specified bundles as indicated by the INTERFACE pragmas.

• Group any ports without bundle assignments into a default named bundle. The default
name can either be the standard tool default, or an alternative default name if the tool
default has already been specified by the user.

In the following example the user has specified bundle=control, which is the tool default
name. In this case, port c will be assigned to s_axi_control as specified by the user, and
the remaining ports will be bundled under s_axi_control_r, which is an alternative
default name used by the tool.

void top(char *a, char *b, char *c) {
#pragma HLS INTERFACE mode=s_axilite port=a
#pragma HLS INTERFACE mode=s_axilite port=b
#pragma HLS INTERFACE mode=s_axilite port=c bundle=control
}

S_AXILITE Offset Option
Note: The Vitis kernel flow determines the required offsets. Do not specify the offset option in that flow.

In the Vivado IP flow, Vitis HLS defines the size, or range of addresses assigned to a port in the
S_AXILITE Control Register Map depending on the argument data type and the port protocol
used. However, the INTERFACE pragma also contains an offset option that lets you specify the
address offset in the AXI4-Lite interface.

When specifying the offset for your argument, you must consider the size of your data and
reserve some extra for the port control protocol. The range of addresses you reserve should be
based on a 32-bit word. You should reserve enough 32-bit words to fit your argument data type,
and add reserve one additional word for the control protocol, even for ap_none.

TIP: In the case of the ap_memory  protocol for arrays, you do not need to reserve the extra word for the
control protocol. In this case, simply reserve enough 32-bit words to fit your argument data type.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 178Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=178

For example, to reserve enough space for a double you need to reserve two 32-bit words for the
64-bit data type, and then reserve an additional 32-bit word for the control protocol. So you
need to reserve a total of three 32-bit words, or 96 bits. If your argument offset starts at 0x020,
then the next available offset would begin at 0x02c, in order to reserve the required address
range for your argument.

If you make a mistake in setting the offset of your arguments, by not reserving enough address
range to fit your data type and the control protocol, Vitis HLS will recognize the error, will warn
you of the issue, and will recover by moving your misplaced argument register to the end of the
Control Register Map. This will allow your build to proceed, but may not work with your host
application or driver if they were written to your specified offset.

C Driver Files

When an AXI4-Lite slave interface is implemented, a set of C driver files are automatically
created. These C driver files provide a set of APIs that can be integrated into any software
running on a CPU and used to communicate with the device via the AXI4-Lite slave interface.

The C driver files are created when the design is packaged as IP in the IP catalog.

Driver files are created for standalone and Linux modes. In standalone mode the drivers are used
in the same way as any other Xilinx standalone drivers. In Linux mode, copy all the C files (.c)
and header files (.h) files into the software project.

The driver files and API functions derive their name from the top-level function for synthesis. In
the above example, the top-level function is called “example”. If the top-level function was
named “DUT” the name “example” would be replaced by “DUT” in the following description. The
driver files are created in the packaged IP (located in the impl directory inside the solution).

Table 7: C Driver Files for a Design Named Example

File Path Usage Mode Description
data/example.mdd Standalone Driver definition file.
data/example.tcl Standalone Used by SDK to integrate the software

into an SDK project.
src/xexample_hw.h Both Defines address offsets for all internal

registers.
src/xexample.h Both API definitions
src/xexample.c Both Standard API implementations
src/xexample_sinit.c Standalone Initialization API implementations
src/xexample_linux.c Linux Initialization API implementations
src/Makefile Standalone Makefile

In file xexample.h, two structs are defined.

• XExample_Config: This is used to hold the configuration information (base address of each
AXI4-Lite slave interface) of the IP instance.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 179Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=179

• XExample: This is used to hold the IP instance pointer. Most APIs take this instance pointer as
the first argument.

The standard API implementations are provided in files xexample.c, xexample_sinit.c,
xexample_linux.c, and provide functions to perform the following operations.

• Initialize the device

• Control the device and query its status

• Read/write to the registers

• Set up, monitor, and control the interrupts

Refer to Section V: Vitis HLS C Driver Reference for a description of the API functions provided
in the C driver files.

IMPORTANT! The C driver APIs always use an unsigned 32-bit type (U32). You might be required to cast
the data in the C code into the expected type.

C Driver Files and Float Types

C driver files always use a data 32-bit unsigned integer (U32) for data transfers. In the following
example, the function uses float type arguments a and r1. It sets the value of a and returns the
value of r1:

float calculate(float a, float *r1)
{
#pragma HLS INTERFACE mode=ap_vld register port=r1
#pragma HLS INTERFACE mode=s_axilite port=a
#pragma HLS INTERFACE mode=s_axilite port=r1
#pragma HLS INTERFACE mode=s_axilite port=return

 *r1 = 0.5f*a;
 return (a>0);
}

After synthesis, Vitis HLS groups all ports into the default AXI4-Lite interface and creates C
driver files. However, as shown in the following example, the driver files use type U32:

// API to set the value of A
void XCalculate_SetA(XCalculate *InstancePtr, u32 Data) {
 Xil_AssertVoid(InstancePtr != NULL);
 Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
 XCalculate_WriteReg(InstancePtr->Hls_periph_bus_BaseAddress,
XCALCULATE_HLS_PERIPH_BUS_ADDR_A_DATA, Data);
}

// API to get the value of R1
u32 XCalculate_GetR1(XCalculate *InstancePtr) {
 u32 Data;

 Xil_AssertNonvoid(InstancePtr != NULL);
 Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 180Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=180

 Data = XCalculate_ReadReg(InstancePtr->Hls_periph_bus_BaseAddress,
XCALCULATE_HLS_PERIPH_BUS_ADDR_R1_DATA);
 return Data;
}

If these functions work directly with float types, the write and read values are not consistent
with expected float type. When using these functions in software, you can use the following
casts in the code:

float a=3.0f,r1;
u32 ua,ur1;

// cast float “a” to type U32
XCalculate_SetA(&calculate,*((u32*)&a));
ur1=XCalculate_GetR1(&calculate);

// cast return type U32 to float type for “r1”
r1=*((float*)&ur1);

Controlling Hardware

TIP: The example provided below demonstrates the ap_ctrl_hs  block control protocol, which is the
default for the Vivado IP flow. Refer to Block-Level Control Protocols for more information and a
description of the ap_ctrl_chain  protocol which is the default for the Vitis kernel flow.

In this example, the hardware header file xexample_hw.h provides a complete list of the
memory mapped locations for the ports grouped into the AXI4-Lite slave interface, as described
in S_AXILITE Control Register Map.

// 0x00 : Control signals
// bit 0 - ap_start (Read/Write/SC)
// bit 1 - ap_done (Read/COR)
// bit 2 - ap_idle (Read)
// bit 3 - ap_ready (Read)
// bit 7 - auto_restart (Read/Write)
// others - reserved
// 0x04 : Global Interrupt Enable Register
// bit 0 - Global Interrupt Enable (Read/Write)
// others - reserved
// 0x08 : IP Interrupt Enable Register (Read/Write)
// bit 0 - Channel 0 (ap_done)
// bit 1 - Channel 1 (ap_ready)
// 0x0c : IP Interrupt Status Register (Read/TOW)
// bit 0 - Channel 0 (ap_done)
// others - reserved
// 0x10 : Data signal of a
// bit 7~0 - a[7:0] (Read/Write)
// others - reserved
// 0x14 : reserved
// 0x18 : Data signal of b
// bit 7~0 - b[7:0] (Read/Write)
// others - reserved
// 0x1c : reserved
// 0x20 : Data signal of c_i
// bit 7~0 - c_i[7:0] (Read/Write)
// others - reserved
// 0x24 : reserved

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 181Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=181

// 0x28 : Data signal of c_o
// bit 7~0 - c_o[7:0] (Read)
// others - reserved
// 0x2c : Control signal of c_o
// bit 0 - c_o_ap_vld (Read/COR)
// others - reserved
// (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH =
Clear on
Handshake)

To correctly program the registers in the s_axilite interface, you must understand how the
hardware ports operate with the default port protocols, or the custom protocols as described in
S_AXILITE and Port-Level Protocols.

For example, to start the block operation the ap_start register must be set to 1. The device
will then proceed and read any inputs grouped into the AXI4-Lite slave interface from the
register in the interface. When the block completes operation, the ap_done, ap_idle and
ap_ready registers will be set by the hardware output ports and the results for any output ports
grouped into the AXI4-Lite slave interface read from the appropriate register.

The implementation of function argument c in the example highlights the importance of some
understanding how the hardware ports operate. Function argument c is both read and written to,
and is therefore implemented as separate input and output ports c_i and c_o, as explained in
S_AXILITE Example.

The first recommended flow for programing the s_axilite interface is for a one-time
execution of the function:

• Use the interrupt function standard API implementations provided in the C Driver Files to
determine how you want the interrupt to operate.

• Load the register values for the block input ports. In the above example this is performed
using API functions XExample_Set_a, XExample_Set_b, and XExample_Set_c_i.

• Set the ap_start bit to 1 using XExample_Start to start executing the function. This
register is self-clearing as noted in the header file above. After one transaction, the block will
suspend operation.

• Allow the function to execute. Address any interrupts which are generated.

• Read the output registers. In the above example this is performed using API functions
XExample_Get_c_o_vld, to confirm the data is valid, and XExample_Get_c_o.

Note: The registers in the s_axilite interface obey the same I/O protocol as the ports. In this case,
the output valid is set to logic 1 to indicate if the data is valid.

• Repeat for the next transaction.

The second recommended flow is for continuous execution of the block. In this mode, which is
described in much more detail in the next section, the input ports included in the AXI4-Lite
interface should only be ports which perform configuration. The block will typically run much
faster than a CPU. If the block must wait for inputs, the block will spend most of its time waiting:

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 182Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=182

• Use the interrupt function to determine how you wish the interrupt to operate.

• Load the register values for the block input ports. In the above example this is performed
using API functions XExample_Set_a, XExample_Set_a and XExample_Set_c_i.

• Set the auto-start function using API XExample_EnableAutoRestart.

• Allow the function to execute. The individual port I/O protocols will synchronize the data
being processed through the block.

• Address any interrupts which are generated. The output registers could be accessed during
this operation but the data may change often.

• Use the API function XExample_DisableAutoRestart to prevent any more executions.

• Read the output registers. In the above example this is performed using API functions
XExample_Get_c_o and XExample_Set_c_o_vld.

Auto-Restart Mode

Some kernels are not meant to be started for each individual execution of the top-level function,
as was described in the previous section, but are meant to execute continuously with streaming
input and output data, in a purely data-driven fashion. These kernels can be modeled in one of
two ways:

• Using the ap_ctrl_none interface mode at the top level, if the kernel does not interact with
the host code at all, for example it does not need to be started or stopped, and does not have
any s_axilite registers for its top arguments.

• Using auto-restart mode (and the regular ap_ctrl_hs interface mode), if the kernel has
mostly streaming I/O, but occasionally needs to be managed by the software, rather than at
every top level "call", as in the previous section.

In the second case, the kernel must be started by the host code after reset and platform
initialization, giving the CPU a chance to configure the rest of the platform. It can also be stopped
by the host code if needed. For example, to reconfigure the kernel operation.

Auto-restart can do the following:

• Infinite, if the kernel executes continuously, as long as it has input streaming data, until it is
stopped by the host code.

• Counted, if the kernel is executed a specified number of times (similar to work items in a work
group in OpenCL).

Auto-restart is enabled by setting config_interface -
s_axilite_auto_restart_counter=1 in the TCL file (values other than 0, which means no
auto-restart counter, and 1, which means one auto-restart counter are not supported). In the
former case, the host code must:

• Write a pattern of all 1's (equivalent to -1 for signed integers or ~0 for unsigned integers in C)
into the auto-restart counter register (address 0x10) to start the kernel.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 183Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=183

• Write a pattern of all 0's (equivalent to 0 for signed and unsigned integers in C) into the auto-
restart counter register to stop the kernel.

In the latter case, the host code must:

• Write the number N of times the kernel must be executed into the auto-restart counter
register to start the kernel for N times.

• Write 0 to stop the kernel before the end of the counted repetition (For example, to manage
an error condition).

Note: In both auto-restart modes, the ap_done bit in the kernel control register goes high when the last
execution has been completed, and the kernel is idle.

Note: There is a legacy auto-restart mode, which is turned on by setting to 1 or to 0 bit 7 of the kernel
control register, and was briefly described at the end of the previous section, using
XExample_EnableAutoRestart and XExample_DisableAutoRestart. In this legacy mode
ap_done goes high every time the kernel has completed one execution.

When a kernel is executed in auto-restart mode, the host code may need to write a new value of
its input arguments, or read a new value of its output arguments without stopping the kernel.
This may happen in two ways, depending on the application requirements:

• If the top level arguments can be read or written by the host code independent of each other,
then the host code may directly read or write the corresponding s_axilite registers, as
described at the end of the previous section.

• If the top level arguments must be read or written together, in a single "transaction", then the
mailbox mechanism can be used. For example, a routing table kept in the s_axilite
interface as a set of several registers must be updated together, to avoid dropping packets, or
a 128 bit value must be read by the host code in a single "snapshot", without the risk of
reading some words before an update by the kernel, and other words after an update by the
kernel.

This can be achieved by using the mailbox I/O mechanism, which provides a means to take a
"snapshot" of the top s_axilite I/O registers that are shared between the host code and the
kernel, without ever blocking the host code or the kernel.

The mailbox is enabled for the input s_axilite registers, output, or both by setting
config_interface -s_axilite_mailbox=none|input|output|both in the TCL file (default is none,
meaning no mailbox).

When the input or the output mailbox is present, s_axilite registers are duplicated. One copy
is accessed by the host code, and the other copy is accessed by the kernel code at any given
point in time.

• When the host code updates in the input mailbox, it must be locked, by setting bit 0 of the
input mailbox control register (address 0x14) to a value of 0. As long as this bit stays at 0, the
host code can freely access its copy of the mailbox, and no updated input values are seen by
the kernel code.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 184Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=184

• When the host code is done updating the input mailbox, it unlocks the mailbox, by setting bit
0 of the mailbox control register to 1. From this point on, when the kernel activates
ap_ready to signal the start of a new iteration, the SW copy of the mailbox is copied to the
HW copy.

• The host code can be notified of the completion of this operation by reading bit 1 of the input
mailbox control register, which is automatically set to 1 whenever bit 0 is set to 0, and it is
reset to 0 after the input mailbox write has been completed by the kernel.

• It is also possible for the host code to lock the mailbox again before the kernel has had a
chance to read it. In this case the update is not performed, and the value previously written
into the SW side of the mailbox can be overwritten by the host code.

This ensures that the host code is able to ensure atomic updates, and at the same time neither is
blocked by the other, as long as the host code does not wait for the write to be completed, which
may take a long time if the kernel never restarts, for example because it has no input streaming
data.

The output mailbox works similarly, where the host code writes a 0 into bit 0 of the output
mailbox control register (address 0x18) when it needs to read the outputs from the kernel, and
writes 1 into that bit when it is done. At that point the kernel can update (potentially many times)
the output mailbox, until it is locked again. The kernel signals that an update has occurred by
resetting to 0 bit 1 of the output mailbox control register.

Controlling Software

The API functions can be used in the software running on the CPU to control the hardware block.
An overview of the process is:

• Create an instance of the hardware

• Look Up the device configuration

• Initialize the device

• Set the input parameters of the HLS block

• Start the device and read the results

An example application is shown below.

#include "xexample.h" // Device driver for HLS HW block
#include "xparameters.h"

// HLS HW instance
XExample HlsExample;
XExample_Config *ExamplePtr

int main() {
 int res_hw;

// Look Up the device configuration
 ExamplePtr = XExample_LookupConfig(XPAR_XEXAMPLE_0_DEVICE_ID);
 if (!ExamplePtr) {

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 185Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=185

 print("ERROR: Lookup of accelerator configuration failed.\n\r");
 return XST_FAILURE;
 }

// Initialize the Device
 status = XExample_CfgInitialize(&HlsExample, ExamplePtr);
 if (status != XST_SUCCESS) {
 print("ERROR: Could not initialize accelerator.\n\r");
 exit(-1);
 }

//Set the input parameters of the HLS block
 XExample_Set_a(&HlsExample, 42);
 XExample_Set_b(&HlsExample, 12);
 XExample_Set_c_i(&HlsExample, 1);

// Start the device and read the results
 XExample_Start(&HlsExample);
 do {
 res_hw = XExample_Get_c_o(&HlsExample);
 } while (XExample_Get_c_o(&HlsExample) == 0); // wait for valid data output
 print("Detected HLS peripheral complete. Result received.\n\r");
}

Control Clock and Reset in AXI4-Lite Interfaces
Note: If you instantiate the slave AXI4-Lite register file in a bus fabric that uses a different clock frequency,
Vivado IP integrator will automatically generate a clock domain crossing (CDC) slice that performs the
same function as the control clock described below, making use of the option unnecessary.

By default, Vitis HLS uses the same clock for the AXI4-Lite interface and the synthesized design.
Vitis HLS connects all registers in the AXI4-Lite interface to the clock used for the synthesized
logic (ap_clk).

Optionally, you can use the INTERFACE directive clock option to specify a separate clock for
each AXI4-Lite port. When connecting the clock to the AXI4-Lite interface, you must use the
following protocols:

• AXI4-Lite interface clock must be synchronous to the clock used for the synthesized logic
(ap_clk). That is, both clocks must be derived from the same master generator clock.

• AXI4-Lite interface clock frequency must be equal to or less than the frequency of the clock
used for the synthesized logic (ap_clk).

If you use the clock option with the INTERFACE directive, you only need to specify the clock
option on one function argument in each bundle. Vitis HLS implements all other function
arguments in the bundle with the same clock and reset. Vitis HLS names the generated reset
signal with the prefix ap_rst_ followed by the clock name. The generated reset signal is active-
Low independent of the config_rtl command.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 186Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=186

The following example shows how Vitis HLS groups function arguments a and b into an AXI4-
Lite port with a clock named AXI_clk1 and an associated reset port.

// Default AXI-Lite interface implemented with independent clock called
AXI_clk1
#pragma HLS interface mode=s_axilite port=a clock=AXI_clk1
#pragma HLS interface mode=s_axilite port=b

In the following example, Vitis HLS groups function arguments c and d into AXI4-Lite port
CTRL1 with a separate clock called AXI_clk2 and an associated reset port.

// CTRL1 AXI-Lite bundle implemented with a separate clock (called AXI_clk2)
#pragma HLS interface mode=s_axilite port=c bundle=CTRL1 clock=AXI_clk2
#pragma HLS interface mode=s_axilite port=d bundle=CTRL1

Customizing AXI4-Lite Slave Interfaces in IP Integrator

When an HLS RTL design using an AXI4-Lite slave interface is incorporated into a design in
Vivado IP integrator, you can customize the block. From the block diagram in IP integrator, select
the HLS block, right-click with the mouse button and select Customize Block.

The address width is by default configured to the minimum required size. Modify this to connect
to blocks with address sizes less than 32-bit.

Figure 37: Customizing AXI4-Lite Slave Interfaces in IP Integrator

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 187Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=187

AXI4-Stream Interfaces

IMPORTANT! hls::axis  (and ap_axiu /ap_axis ) cannot be used on internal functions or
variables as the AXI4-Stream protocol is only supported on the interfaces of top-level functions. For
internal functions or variables you must use hls::stream  objects as described in HLS Stream Library.

An AXI4-Stream interface can be applied to any input argument and any array or pointer output
argument. Because an AXI4-Stream interface transfers data in a sequential streaming manner, it
cannot be used with arguments that are both read and written. In terms of data layout, the data
type of the AXI4-Stream is aligned to the next byte. For example, if the size of the data type is 12
bits, it will be extended to 16 bits. Depending on whether a signed/unsigned interface is
selected, the extended bits are either sign-extended or zero-extended.

If the stream data type is an user-defined struct, the default procedure is to keep the struct
aggregated and align the struct to the size of the largest data element to the nearest byte. The
only exception to this rule is if the struct contains a hls::stream object. In this special case,
the struct will be disaggregated and an axi stream will be created for each member element of
the struct.

TIP: The maximum supported port width is 4096 bits, even for aggregated structs or reshaped arrays.

The following code examples show how the packed alignment depends on your struct type. If the
struct contains only char type, as shown in the following example, then it will be packed with
alignment of one byte. Total size of the struct will be two bytes:

struct A {
 char foo;
 char bar;
};

However, if the struct has elements with different data types, as shown below, then it will be
packed and aligned to the size of the largest data element, or four bytes in this example. Element
bar will be padded with three bytes resulting in a total size of eight bytes for the struct:

struct A {
 int foo;
 char bar;
};

IMPORTANT! Structs contained in AXI4-Stream interfaces (axis) are aggregated by default, and the
stream itself cannot be disaggregated. If separate streams for member elements of the struct are desired
then this must be manually coded as separate elements, resulting in a separate axis interface for each
element. Refer to Vitis-HLS-Introductory-Examples/Interface/Aggregation_Disaggregation/
disaggregation_of_axis_port on Github for an example.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 188Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Aggregation_Disaggregation/disaggregation_of_axis_port
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Aggregation_Disaggregation/disaggregation_of_axis_port
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=188

How AXI4-Stream Works

AXI4-Stream is a protocol designed for transporting arbitrary unidirectional data. In an AXI4-
Stream, TDATA width of bits is transferred per clock cycle. The transfer is started once the
producer sends the TVALID signal and the consumer responds by sending the TREADY signal
(once it has consumed the initial TDATA). At this point, the producer will start sending TDATA and
TLAST (TUSER if needed to carry additional user-defined sideband data). TLAST signals the last
byte of the stream. So the consumer keeps consuming the incoming TDATA until TLAST is
asserted.

Figure 38: AXI4-Stream Handshake

AXI4-Stream
Data Producer

AXI4-Stream
Data Consumer

Put initial TDATA, TLAST (optionally TUSER) on the bus

Start transmitting TDATA, TLAST (optionally TUSER)

Signal that initial data is ready by TVALID

Signal data received by TREADY

X24773-102920

AXI4-Stream has additional optional features like sending positional data with TKEEP and TSTRB
ports which makes it possible to multiplex both the data position and data itself on the TDATA
signal. Using the TID and TDIST signals, you can route streams as these fields roughly
corresponds to stream identifier and stream destination identifier. Refer to Vivado Design Suite:
AXI Reference Guide (UG1037) or the AMBA AXI4-Stream Protocol Specification (ARM IHI 0051A)
for more information.

How AXI4-Stream is Implemented

If your design requires a streaming interface begin by defining and using a streaming data
structure like hls::stream in Vitis HLS. This simple object encapsulates the requirements of
streaming and its streaming interface is by default implemented in the RTL as a FIFO interface
(ap_fifo) but can be optionally, implemented as a handshake interface (ap_hs) or an AXI4-Stream
interface (axis). Refer to Vitis-HLS-Introductory-Examples/Interface/Streaming on Github for
different examples of streaming interfaces.

If a AXI4-Stream interface (axis) is specified via the interface pragma mode option, the interface
implementation will mimic the style of an AXIS interface by defining the TDATA, TVALID and
TREADY signals.

If a more formal AXIS implementation is desired, then Vitis HLS requires the usage of a special
data type (hls::axis defined in ap_axi_sdata.h) to encapsulate the requirements of the
AXI4-Stream protocol and implement the special RTL signals needed for this interface.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 189Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://developer.arm.com/documentation/ihi0051/a/
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Streaming
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=189

The AXI4-Stream interface is implemented as a struct type in Vitis HLS and has the following
signature (defined in ap_axi_sdata.h):

template <typename T, size_t WUser, size_t WId, size_t WDest> struct axis
{ .. };

Where:

• T: The data type to be streamed.

TIP: This can support any data type, including ap_fixed.

• WUser: Width of the TUSER signal

• WId: Width of the TID signal

• WDest: Width of the TDest signal

When the stream data type (T) are simple integer types, there are two predefined types of AXI4-
Stream implementations available:

• A signed implementation of the AXI4-Stream class (or more simply ap_axis<Wdata,
WUser, WId, WDest>)

hls::axis<ap_int<WData>, WUser, WId, WDest>

• An unsigned implementation of the AXI4-Stream class (or more simply ap_axiu<WData,
WUser, WId, WDest>)

hls::axis<ap_uint<WData>, WUser, WId, WDest>

The value specified for the WUser, WId, and WDest template parameters controls the usage of
side-channel signals in the AXI4-Stream interface.

When the hls::axis class is used, the generated RTL will typically contain the actual data
signal TDATA, and the following additional signals: TVALID, TREADY, TKEEP, TSTRB, TLAST,
TUSER, TID, and TDEST.

TVALID, TREADY, and TLAST are necessary control signals for the AXI4-Stream protocol.
TKEEP, TSTRB, TUSER, TID, and TDEST signals are optional special signals that can be used to
pass around additional bookkeeping data.

TIP: If WUser , WId , and WDest  are set to 0, the generated RTL will not include the optional TUSER,
TID, and TDEST signals in the interface.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 190Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=190

Registered AXI4-Stream Interfaces

As a default, AXI4-Stream interfaces are always implemented as registered interfaces to ensure
that no combinational feedback paths are created when multiple HLS IP blocks with AXI4-Stream
interfaces are integrated into a larger design. For AXI4-Stream interfaces, four types of register
modes are provided to control how the interface registers are implemented:

• Forward: Only the TDATA and TVALID signals are registered.

• Reverse: Only the TREADY signal is registered.

• Both: All signals (TDATA, TREADY, and TVALID) are registered. This is the default.

• Off: None of the port signals are registered.

The AXI4-Stream side-channel signals are considered to be data signals and are registered
whenever TDATA is registered.

RECOMMENDED: When connecting HLS generated IP blocks with AXI4-Stream interfaces at least one
interface should be implemented as a registered interface or the blocks should be connected via an AXI4-
Stream Register Slice.

There are two basic methods to use an AXI4-Stream in your design:

• Use an AXI4-Stream without side-channels.

• Use an AXI4-Stream with side-channels.

This second use model provides additional functionality, allowing the optional side-channels
which are part of the AXI4-Stream standard, to be used directly in your C/C++ code.

AXI4-Stream Interfaces without Side-Channels

An AXI4-Stream is used without side-channels when the function argument, ap_axis or
ap_axiu data type, does not contain any AXI4 side-channel elements (that is, when the WUser,
WId, and WDest parameters are set to 0). In the following example, both interfaces are
implemented using an AXI4-Stream:

#include "ap_axi_sdata.h"
#include "hls_stream.h"

typedef ap_axiu<32, 0, 0, 0> trans_pkt;

void example(hls::stream< trans_pkt > &A, hls::stream< trans_pkt > &B)
{
#pragma HLS INTERFACE mode=axis port=A
#pragma HLS INTERFACE mode=axis port=B
 trans_pkt tmp;
 A.read(tmp);
 tmp.data += 5;
 B.write(tmp);
}

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 191Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=191

After synthesis, both arguments are implemented with a data port (TDATA) and the standard
AXI4-Stream protocol ports, TVALID, TREADY, TKEEP, TLAST, and TSTRB, as shown in the
following figure.

Figure 39: AXI4-Stream Interfaces without Side-Channels

TIP: If you specify an hls::stream  object with a data type other than ap_axis  or ap_axiu , the
tool will infer an AXI4-Stream interface without the TLAST signal, or any of the side-channel signals. This
implementation of the AXI4-Stream interface consumes fewer device resources, but offers no visibility into
when the stream is ending.

Multiple variables can be combined into the same AXI4-Stream interface by using a struct, which
is aggregated by Vitis HLS by default. Aggregating the elements of a struct into a single wide-
vector, allows all elements of the struct to be implemented in the same AXI4-Stream interface.

AXI4-Stream Interfaces with Side-Channels

The following example shows how the side-channels can be used directly in the C/C++ code and
implemented on the interface. The code uses #include "ap_axi_sdata.h" to provide an
API to handle the side-channels of the AXI4-Stream interface. In the following example a signed
32-bit data type is used:

#include "ap_axi_sdata.h"
#include "ap_int.h"
#include "hls_stream.h"

#define DWIDTH 32

typedef ap_axiu<DWIDTH, 1, 1, 1> trans_pkt;

extern "C"{
 void krnl_stream_vmult(hls::stream<trans_pkt> &A,
 hls::stream<trans_pkt> &B) {
#pragma HLS INTERFACE mode=axis port=A
#pragma HLS INTERFACE mode=axis port=B
#pragma HLS INTERFACE mode=s_axilite port=return bundle=control
 bool eos = false;

 vmult: do {
#pragma HLS PIPELINE II=1
 trans_pkt t2 = A.read();

 // Packet for Output
 trans_pkt t_out;

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 192Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=192

 // Reading data from input packet
 ap_uint<DWIDTH> in2 = t2.data;
 ap_uint<DWIDTH> tmpOut = in2 * 5;

 // Setting data and configuration to output packet
 t_out.data = tmpOut;
 t_out.last = t2.last;
 t_out.keep = -1; //Enabling all bytes
 // Writing packet to output stream
 B.write(t_out);
 if (t2.last) {
 eos = true;
 }
 } while (eos == false);
 }
}

After synthesis, both the A and B arguments are implemented with data ports, the standard
AXI4-Stream protocol ports, TVALID and TREADY and all of the optional ports described in the
struct.

Figure 40: AXI4-Stream Interfaces with Side-Channels

Coding Style for Array to Stream

While arrays can be converted to streams, it can often lead to coding and synthesis issues as
arrays can be accessed in random order while a stream requires a sequential access pattern
where every element is read in order. To avoid such issues, any time a streaming interface is
required, it is highly recommended to use the hls::stream object as described in Using HLS
Streams. Usage of this construct will enforce streaming semantics in the source code.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 193Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=193

However, to convert an array to a stream you should perform all the operations on temp
variables. Read the input stream, process the temp variable, and write the output stream, as
shown in the example below. This approach lets you preserve the sequential reading and writing
of the stream of data, rather than attempting multiple or random reads or writes.

struct A {
 short varA;
 int varB;
};

void dut(A in[N], A out[N], bool flag) {
#pragma HLS interface mode=axis port=in,out
 for (unsigned i=0; i<N; i++) {
 A tmp = in[i];
 if (flag)
 tmp.varB = tmp.varA + 5;
 out[i] = tmp;
 }
}

If this coding style is not adhered to, it will lead to functional failures of the stream processing.

The recommended method is to define the arguments as hls::stream objects as shown
below:

void dut(hls::stream<A> &in, hls::stream<A> &out, bool flag) {
#pragma HLS interface mode=axis port=in,out

for (unsigned i=0; i<N; i++) {
 A tmp = in.read();
 if (flag)
 tmp.varB = tmp.varA + 5;
 out.write(tmp);
 }
}

Port-Level Protocols for Vivado IP Flow
IMPORTANT! The port-level protocols described here can be used in the Vivado IP flow as explained in
Interfaces for Vivado IP Flow. These protocols are not supported in the Vitis kernel flow.

By default input pointers and pass-by-value arguments are implemented as simple wire ports
with no associated handshaking signal. For example, in the vadd function discussed in Interfaces
for Vivado IP Flow, the input ports are implemented without an I/O protocol, only a data port. If
the port has no I/O protocol, (by default or by design) the input data must be held stable until it is
read.

By default output pointers are implemented with an associated output valid signal to indicate
when the output data is valid. In the vadd function example, the output port is implemented
with an associated output valid port (out_r_o_ap_vld) which indicates when the data on the
port is valid and can be read. If there is no I/O protocol associated with the output port, it is
difficult to know when to read the data.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 194Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=194

TIP: It is always a good idea to use an I/O protocol on an output.

Function arguments which are both read from and written to are split into separate input and
output ports. In the vadd function example, the out_r argument is implemented as both an
input port out_r_i, and an output port out_r_o with associated I/O protocol port
out_r_o_ap_vld.

If the function has a return value, an output port ap_return is implemented to provide the
return value. When the RTL design completes one transaction, this is equivalent to one execution
of the C/C++ function, the block-level protocols indicate the function is complete with the
ap_done signal. This also indicates the data on port ap_return is valid and can be read.

Note: The return value of the top-level function cannot be a pointer.

For the example code shown the timing behavior is shown in the following figure (assuming that
the target technology and clock frequency allow a single addition per clock cycle).

Figure 41: RTL Port Timing with Default Synthesis

• The design starts when ap_start is asserted High.

• The ap_idle signal is asserted Low to indicate the design is operating.

• The input data is read at any clock after the first cycle. Vitis HLS schedules when the reads
occur. The ap_ready signal is asserted High when all inputs have been read.

• When output sum is calculated, the associated output handshake (sum_o_ap_vld) indicates
that the data is valid.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 195Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=195

• When the function completes, ap_done is asserted. This also indicates that the data on
ap_return is valid.

• Port ap_idle is asserted High to indicate that the design is waiting start again.

Port-Level I/O: No Protocol

The ap_none specifies that no I/O protocol be added to the port. When this is specified the
argument is implemented as a data port with no other associated signals. The ap_none mode is
the default for scalar inputs.

ap_none

The ap_none port-level I/O protocol is the simplest interface type and has no other signals
associated with it. Neither the input nor output data signals have associated control ports that
indicate when data is read or written. The only ports in the RTL design are those specified in the
source code.

An ap_none interface does not require additional hardware overhead. However, the ap_none
interface does requires the following:

• Producer blocks to do one of the following:

○ Provide data to the input port at the correct time, typically before the design starts.

○ Hold data for the length of a transaction until the design raises the ap_ready signal.

• Consumer blocks to read output ports when the design is done, and before it is started again.

Note: The ap_none interface cannot be used with array arguments.

Port-Level I/O: Wire Handshakes

Interface mode ap_hs includes a two-way handshake signal with the data port. The handshake is
an industry standard valid and acknowledge handshake. Mode ap_vld is the same but only has a
valid port and ap_ack only has a acknowledge port.

Mode ap_ovld is for use with in-out arguments. When the in-out is split into separate input and
output ports, mode ap_none is applied to the input port and ap_vld applied to the output port.
This is the default for pointer arguments that are both read and written.

The ap_hs mode can be applied to arrays that are read or written in sequential order. If Vitis
HLS can determine the read or write accesses are not sequential, it will halt synthesis with an
error. If the access order cannot be determined, Vitis HLS will issue a warning.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 196Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=196

ap_hs (ap_ack, ap_vld, and ap_ovld)

The ap_hs port-level I/O protocol provides the greatest flexibility in the development process,
allowing both bottom-up and top-down design flows. Two-way handshakes safely perform all
intra-block communication, and manual intervention or assumptions are not required for correct
operation. The ap_hs port-level I/O protocol provides the following signals:

• Data port

• Valid signal to indicate when the data signal is valid and can be read

• Acknowledge signal to indicate when the data has been read

The following figure shows how an ap_hs interface behaves for both an input and output port.
In this example, the input port is named in, and the output port is named out.

Note: The control signals names are based on the original port name. For example, the valid port for data
input in is named in_vld.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 197Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=197

Figure 42: Behavior of ap_hs Interface

For inputs, the following occurs:

• After start is applied, the block begins normal operation.

• If the design is ready for input data but the input valid is Low, the design stalls and waits for
the input valid to be asserted to indicate a new input value is present.

Note: The preceding figure shows this behavior. In this example, the design is ready to read data input
in on clock cycle 4 and stalls waiting for the input valid before reading the data.

• When the input valid is asserted High, an output acknowledge is asserted High to indicate
the data was read.

For outputs, the following occurs:

• After start is applied, the block begins normal operation.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 198Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=198

• When an output port is written to, its associated output valid signal is simultaneously
asserted to indicate valid data is present on the port.

• If the associated input acknowledge is Low, the design stalls and waits for the input
acknowledge to be asserted.

• When the input acknowledge is asserted, indicating the data has been read, the output valid
is deasserted on the next clock edge.

ap_ack

The ap_ack port-level I/O protocol is a subset of the ap_hs interface type. The ap_ack port-
level I/O protocol provides the following signals:

• Data port

• Acknowledge signal to indicate when data is consumed

○ For input arguments, the design generates an output acknowledge that is active-High in
the cycle the input is read.

○ For output arguments, Vitis HLS implements an input acknowledge port to confirm the
output was read.

Note: After a write operation, the design stalls and waits until the input acknowledge is asserted High,
which indicates the output was read by a consumer block. However, there is no associated output port
to indicate when the data can be consumed.

CAUTION! You cannot use C/RTL co-simulation to verify designs that use ap_ack on an output port.

ap_vld

The ap_vld is a subset of the ap_hs interface type. The ap_vld port-level I/O protocol
provides the following signals:

• Data port

• Valid signal to indicate when the data signal is valid and can be read

○ For input arguments, the design reads the data port as soon as the valid is active. Even if
the design is not ready to read new data, the design samples the data port and holds the
data internally until needed.

○ For output arguments, Vitis HLS implements an output valid port to indicate when the
data on the output port is valid.

ap_ovld

The ap_ovld is a subset of the ap_hs interface type. The ap_ovld port-level I/O protocol
provides the following signals:

• Data port

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 199Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=199

• Valid signal to indicate when the data signal is valid and can be read

○ For input arguments and the input half of inout arguments, the design defaults to type
ap_none.

○ For output arguments and the output half of inout arguments, the design implements type
ap_vld.

Port-Level I/O: Memory Interface Protocol

Array arguments are implemented by default as an ap_memory interface. This is a standard
block RAM interface with data, address, chip-enable, and write-enable ports.

An ap_memory interface can be implemented as a single-port of dual-port interface. If Vitis HLS
can determine that using a dual-port interface will reduce the initial interval, it will automatically
implement a dual-port interface. The BIND_STORAGE pragma or directive is used to specify the
memory resource and if this directive is specified on the array with a single-port block RAM, a
single-port interface will be implemented. Conversely, if a dual-port interface is specified using
the BIND_STORAGE pragma and Vitis HLS determines this interface provides no benefit it will
automatically implement a single-port interface.

If the array is accessed in a sequential manner an ap_fifo interface can be used. As with the
ap_hs interface, Vitis HLS will halt if it determines the data access is not sequential, report a
warning if it cannot determine if the access is sequential or issue no message if it determines the
access is sequential. The ap_fifo interface can only be used for reading or writing, not both.

ap_memory, bram

The ap_memory and bram interface port-level I/O protocols are used to implement array
arguments. This type of port-level I/O protocol can communicate with memory elements (for
example, RAMs and ROMs) when the implementation requires random accesses to the memory
address locations.

Note: If you only need sequential access to the memory element, use the ap_fifo interface instead. The
ap_fifo interface reduces the hardware overhead, because address generation is not performed.

The ap_memory and bram interface port-level I/O protocols are identical. The only difference is
the way Vivado IP integrator shows the blocks:

• The ap_memory interface appears as discrete ports.

• The bram interface appears as a single, grouped port. In IP integrator, you can use a single
connection to create connections to all ports.

When using an ap_memory interface, specify the array targets using the BIND_STORAGE
pragma. If no target is specified for the arrays, Vitis HLS determines whether to use a single or
dual-port RAM interface.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 200Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=200

TIP: Before running synthesis, ensure array arguments are targeted to the correct memory type using the
BIND_STORAGE pragma. Re-synthesizing with corrected memories can result in a different schedule and
RTL.

The following figure shows an array named d specified as a single-port block RAM. The port
names are based on the C/C++ function argument. For example, if the C/C++ argument is d, the
chip-enable is d_ce, and the input data is d_q0 based on the output/q port of the BRAM.

Figure 43: Behavior of ap_memory Interface

After reset, the following occurs:

• After start is applied, the block begins normal operation.

• Reads are performed by applying an address on the output address ports while asserting the
output signal d_ce.

Note: For a default block RAM, the design expects the input data d_q0 to be available in the next clock
cycle. You can use the BIND_STORAGE pragma to indicate the RAM has a longer read latency.

• Write operations are performed by asserting output ports d_ce and d_we while
simultaneously applying the address and output data d_d0.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 201Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=201

ap_fifo

When an output port is written to, its associated output valid signal interface is the most
hardware-efficient approach when the design requires access to a memory element and the
access is always performed in a sequential manner, that is, no random access is required. The
ap_fifo port-level I/O protocol supports the following:

• Allows the port to be connected to a FIFO

• Enables complete, two-way empty-full communication

• Works for arrays, pointers, and pass-by-reference argument types

Note: Functions that can use an ap_fifo interface often use pointers and might access the same variable
multiple times. To understand the importance of the volatile qualifier when using this coding style, see
Multi-Access Pointers on the Interface.

In the following example, in1 is a pointer that accesses the current address, then two addresses
above the current address, and finally one address below.

void foo(int* in1, ...) {
 int data1, data2, data3;
 ...
 data1= *in1;
 data2= *(in1+2);
 data3= *(in1-1);
 ...
}

If in1 is specified as an ap_fifo interface, Vitis HLS checks the accesses, determines the
accesses are not in sequential order, issues an error, and halts. To read from non-sequential
address locations, use an ap_memory or bram interface.

You cannot specify an ap_fifo interface on an argument that is both read from and written to.
You can only specify an ap_fifo interface on an input or an output argument. A design with
input argument in and output argument out specified as ap_fifo interfaces behaves as shown
in the following figure.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 202Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=202

Figure 44: Behavior of ap_fifo Interface

For inputs, the following occurs:

• After ap_start is applied, the block begins normal operation.

• If the input port is ready to be read but the FIFO is empty as indicated by input port
in_empty_n Low, the design stalls and waits for data to become available.

• When the FIFO contains data as indicated by input port in_empty_n High, an output
acknowledge in_read is asserted High to indicate the data was read in this cycle.

For outputs, the following occurs:

• After start is applied, the block begins normal operation.

• If an output port is ready to be written to but the FIFO is full as indicated by out_full_n
Low, the data is placed on the output port but the design stalls and waits for the space to
become available in the FIFO.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 203Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=203

• When space becomes available in the FIFO as indicated by out_full_n High, the output
acknowledge signal out_write is asserted to indicate the output data is valid.

• If the top-level function or the top-level loop is pipelined using the -rewind option, Vitis HLS
creates an additional output port with the suffix _lwr. When the last write to the FIFO
interface completes, the _lwr port goes active-High.

Programming Model for Multi-Port Access in HBM
HBM provides high bandwidth if arrays are split in different banks/pseudo-channels in the
design. This is a common practice in partitioning an array into different memory regions in high-
performance computing. The host allocates a single buffer, which will be spread across the
pseudo-channels.

Vitis HLS would consider different pointers to be independent channels, and removes any
dependency analysis. But the host allocates a single buffer for both pointers, and this lets the
tool maintain the dependency analysis through pragma HLS ALIAS. The ALIAS pragma
informs data dependence analysis about the pointer distance. Refer to the ALIAS pragma for
more information.

The kernel arg0 is allocated in bank0 and kernel arg1 is allocated in bank1. The pointer distance
should be specified in the distance option of the ALIAS pragma as shown below:

//Assume that the host code looks like this:
int *buf = clCreateBuffer(ctxt, CL_MEM_READ_ONLY, 2*bank_size, ...);
clSetKernelArg(kernel, 0, 0x20000000, buf); // bank0
clSetKernelArg(kernel, 1, 0x20000000, buf+bank_size); // bank1

//The ALIAS pragma informs data dependence analysis about the pointer
distance
void kernel(int *bank0, int *bank1, ...)
{
#pragma HLS alias ports=bank0,bank1 distance=bank_size

The ALIAS pragma can be specified using one of the following forms:

• Constant distance:

#pragma HLS alias ports=arr0,arr1,arr2,arr3 distance=1024

• Variable distance:

#pragma HLS alias ports=arr0,arr1,arr2,arr3 offset=0,512,1024,2048

Constraints:

• The depths of all the ports in the interface pragma must be the same

• All ports must be assigned to different bundles, bound to different HBM controllers

• The number of ports specified in the second form must be the same as the number of offsets
specified, one offset per port. #pragma HLS interface offset=off is not supported

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 204Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=204

• Each port can only be used in one ALIAS pragma

Managing Interfaces with SSI Technology Devices
Certain Xilinx devices use stacked silicon interconnect (SSI) technology. In these devices, the total
available resources are divided over multiple super logic regions (SLRs). The connections between
SLRs use super long line (SSL) routes. SSL routes incur delays costs that are typically greater than
standard FPGA routing. To ensure designs operate at maximum performance, use the following
guidelines:

• Register all signals that cross between SLRs at both the SLR output and SLR input.

• You do not need to register a signal if it enters or exits an SLR via an I/O buffer.

• Ensure that the logic created by Vitis HLS fits within a single SLR.

Note: When you select an SSI technology device as the target technology, the utilization report includes
details on both the SLR usage and the total device usage.

If the logic is contained within a single SLR device, Vitis HLS provides a -register_all_io
option to the config_rtl command. If the option is enabled, all inputs and outputs are
registered. If disabled, none of the inputs or outputs are registered.

Vitis HLS Memory Layout Model
The Vitis application acceleration development flow provides a framework for developing and
delivering FPGA accelerated applications using standard programming languages for both
software and hardware components. The software component, or host program, is developed
using C/C++ to run on x86 or embedded processors, with OpenCL/ Native XRT API calls to
manage run time interactions with the accelerator. The hardware component, or kernel (that runs
on the actual FPGA card/platform), can be developed using C/C++, OpenCL C, or RTL. The Vitis
software platform promotes concurrent development and test of the hardware and software
elements of a heterogeneous application. Due to this, the software program that runs on the host
computer needs to communicate with the acceleration kernel that runs on the FPGA hardware
model using well-defined interfaces and protocols. As a result, it becomes important to define the
exact memory model that is used so that the data that is being read/written can be correctly
processed. The memory model defines the way data is arranged and accessed in computer
memory. It consists of two separate but related issues: data alignment and data structure
padding. In addition, the Vitis HLS compiler supports the specification of special attributes (and
pragmas) to change the default data alignment and data structure padding rules.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 205Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=205

Data Alignment
Software programmers are conditioned to think of memory as a simple array of bytes and the
basic data types are composed of one or more blocks of memory. However, the computer's
processor does not read from and write to memory in single byte-sized chunks. Instead, today's
modern CPUs access memory in 2, 4, 8, 16, or even 32-byte chunks at a time - although 32 bit
and 64 bit instruction set architecture (ISA) architectures are the most common. Due to how the
memory is organized in your system, the addresses of these chunks should be multiples of their
sizes. If an address satisfies this requirement, then it is said to be aligned. The difference between
how high-level programmers think of memory and how modern processors actually work with
memory is pretty important in terms of application correctness and performance. For example, if
you don't understand the address alignment issues in your software, the following situations are
all possible:

• your software will run slower

• your application will lock up/hang

• your operating system can crash

• your software will silently fail, yielding incorrect results

The C++ language provides a set of fundamental types of various sizes. To make manipulating
variables of these types fast, the generated object code will try to use CPU instructions that
read/write the whole data type at once. This in turn means that the variables of these types
should be placed in memory in a way that makes their addresses suitably aligned. As a result,
besides size, each fundamental type has another property: its alignment requirement. It may
seem that the fundamental type’s alignment is the same as its size. This is not generally the case
since the most suitable CPU instruction for a particular type may only be able to access a part of
its data at a time. For example, a 32-bit x86 GNU/Linux machine may only be able to read at
most 4 bytes at a time so a 64-bit long long type will have a size of 8 and an alignment of 4.
The following table shows the size and alignment (in bytes) for the basic native data types in C/C
++ for both 32-bit and 64-bit x86-64 GNU/Linux machines.

Table 8: Data Types

Type
32-bit x86 GNU/Linux 64-bit x86 GNU/Linux

Size Alignment Size Alignment
bool 1 1 1 1

char 1 1 1 1

short int 2 2 2 2

int 4 4 4 4

long int 4 4 8 8

long long int 8 4 8 8

float 4 4 4 4

double 8 4 8 8

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 206Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=206

Table 8: Data Types (cont'd)

Type
32-bit x86 GNU/Linux 64-bit x86 GNU/Linux

Size Alignment Size Alignment
long double 12 4 16 16

void* 4 4 8 8

Given the above arrangement, why does a programmer need to change the alignment? There are
several reasons but the main reason will be to trade-off between memory requirements and
performance. When you are sending data back and forth from the host computer and the
accelerator, every byte that is transmitted has a cost. Fortunately, the GCC C/C++ compiler
provides the language extension __attribute__ ((aligned(X))) in order to change the
default alignment for the variable, structures/classes, or a structure field, measured in bytes. For
example, the following declaration causes the compiler to allocate the global variable x on a 16-
byte boundary.

int x __attribute__ ((aligned (16))) = 0;

The __attribute__((aligned (X))) does not change the sizes of variables it is applied to,
but may change the memory layout of structures by inserting padding between elements of the
struct. As a result, the size of the structure will change. If you don't specify the alignment factor
in an aligned attribute, the compiler automatically sets the alignment for the declared variable or
field to the largest alignment used for any data type on the target machine you are compiling for.
Doing this can often make copy operations more efficient because the compiler can use
whatever instructions copy the biggest chunks of memory when performing copies to or from
the variables or fields that you have aligned this way. The aligned attribute can only increase
the alignment and can never decrease it. The C++ function offsetof can be used to determine the
alignment of each member element in a structure.

Data Structure Padding
As shown in the table in Data Alignment, the native data types have a well-defined alignment
structure but what about user-defined data types? The C++ compiler also needs to make sure
that all the member variables in a struct or class are properly aligned. For this, the compiler may
insert padding bytes between member variables. In addition, to make sure that each element in
an array of a user-defined type is aligned, the compiler may add some extra padding after the last
data member. Consider the following example:

struct One
{
 short int s;
 int i;
 char c;
}

struct Two
{
 int i;
 char c;
 short int s;
}

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 207Send Feedback

https://en.cppreference.com/w/cpp/types/offsetof
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=207

The GCC compiler always assumes that an instance of struct One will start at an address
aligned to the most strict alignment requirement of all of the struct's members, which is int in
this case. This is actually how the alignment requirements of user-defined types are calculated.
Assuming the memory are on x86-64 alignment with short int having the alignment of 2 and
int having an alignment of 4, to make the i data member of struct One suitably aligned, the
compiler needs to insert two extra bytes of padding between s and i to create alignment, as
shown in the figure below. Similarly, to align data member c, the compiler needs to insert three
bytes after c.

In the case of struct One, the compiler will infer a total size of 12 bytes based on the
arrangement of the elements of the struct. However, if the elements of the struct are reordered
(as shown in struct Two), the compiler is now able to infer the smaller size of 8 bytes.

Figure 45: Padding of Structs

By default, the C/C++ compiler will lay out members of a struct in the order in which they are
declared, with possible padding bytes inserted between members, or after the last member, to
ensure that each member is aligned properly. However, the GCC C/C++ compiler provides a
language extension, __attribute__((packed))which tells the compiler not to insert
padding but rather allow the struct members to be misaligned. For example, if the system
normally requires all int objects to have 4-byte alignment, the usage of
__attribute__((packed)) can cause int struct members to be allocated at odd offsets.

Usage of __attribute__((packed)) must be carefully considered because accessing
unaligned memory can cause the compiler to insert code to read the memory byte by byte
instead of reading multiple chunks of memory at one time.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 208Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=208

Vitis HLS Alignment Rules and Semantics
Given the behavior of the GCC compiler described previously, this section will detail how Vitis
HLS uses aligned and packed attributes to create efficient hardware. First, you need to
understand the Aggregate and Disaggregate features in Vitis HLS. Structures or class objects in
the code, for instance internal and global variables, are disaggregated by default. Disaggregation
implies that the structure/class is decomposed into separate objects, one for each struct/class
member. The number and type of elements created are determined by the contents of the struct
itself. Arrays of structs are implemented as multiple arrays, with a separate array for each
member of the struct.

However, structs used as arguments to the top-level function are kept aggregated by default.
Aggregation implies that all the elements of a struct are collected into a single wide vector. This
allows all members of the struct to be read and written simultaneously. The member elements of
the struct are placed into the vector in the order in which they appear in the C/C++ code: the
first element of the struct is aligned on the LSB of the vector and the final element of the struct
is aligned with the MSB of the vector. Any arrays in the struct are partitioned into individual
array elements and placed in the vector from lowest to the highest order.

Table 10: Interface Arguments and Internal Variables

Behavior without AGGREGATE pragma Behavior with AGGREGATE pragma
(compact=auto or not specified)

Interface
Argument Internal Variable Interface

Argument Internal variable

AXI protocol interface
(m_axi/s_axilite/
axis)

aggregate
compact=none

N/A compact=none N/A

Struct/Class
containing
hls::stream object

Automatically
disaggregate the
struct/class

Automatically
disaggregate the
struct/class

N/A N/A

other interface
protocols

aggregate
compact=bit

Automatically
disaggregated

compact=bit compact=bit

The goal of the default aggregation behavior in Vitis HLS is to use an x86_64-gnu-linux memory
layout at the top level hardware interface while optimizing the internal hardware for better
quality of results (QoR). The above table shows the default behavior of Vitis HLS. Two modes are
shown in the table: the default mode where the AGGREGATE pragma is not specified by the user,
and the case where the AGGREGATE pragma is specified by the user.

In the case of AXI4 interfaces (m_axi/s_axilite/axis), a structure is padded by default
according to the order of elements of the struct as explained in Data Structure Padding. This
aggregates the structure to a size that is the closest power of 2, and so some padding may be
applied in this case. This in effect infers the compact=none option on the AGGREGATE pragma.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 209Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=209

In the case of other interface protocols, the struct is packed at the bit-level, so the aggregated
vector is only the size of the various elements of the struct, This in effect infers the
compact=bit option on the AGGREGATE pragma.

The only exception to the above rules is when using hls::stream in the interface indirectly
(i.e. the hls::stream object is specified inside a struct/class that is then used as the type of an
interface port). The struct containing the hls::stream object is always disaggregated into its
individual member elements.

Examples of Aggregation
Aggregate Memory Mapped Interface

This is an example of the AGGREGATE pragma or directive for an m_axi interface. The
following is the aggregation_of_m_axi_ports example available on GitHub.

struct A {
 char foo; // 1 byte
 short bar; // 2 bytes
};

int dut(A* arr) {
#pragma HLS interface m_axi port=arr depth=10
#pragma HLS aggregate variable=arr compact=auto
 int sum = 0;
 for (unsigned i=0; i<10; i++) {
 auto tmp = arr[i];
 sum += tmp.foo + tmp.bar;
 }
 return sum;
}

For the above example, the size of the m_axi interface port arr is 3 bytes (or 24 bits) but due to
the AGGREGATE compact=auto pragma, the size of the port will be aligned to 4 bytes (or 32
bits) as this is the closest power of 2. Vitis HLS will issue the following message in the log file:

INFO: [HLS 214-241] Aggregating maxi variable 'arr' with compact=none mode
in 32-bits (example.cpp:19:0)

TIP: The message above is only issued if the AGGREGATE  pragma is specified. But even without the
pragma, the tool will automatically aggregate and pad the interface port arr  to 4 bytes as the default
behavior for an AXI interface port.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 210Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Aggregation_Disaggregation/aggregation_of_m_axi_ports
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=210

Aggregate Structs on the Interface

This is an example of the AGGREGATE pragma or directive for an ap_fifo interface. The
following is the aggregation_of_struct example available on GitHub.

struct A {
 int myArr[3]; // 4 bytes per element (12 bytes total)
 ap_int<23> length; // 23 bits
};

int dut(A arr[N]) {
#pragma HLS interface ap_fifo port=arr
#pragma HLS aggregate variable=arr compact=auto
 int sum = 0;
 for (unsigned i=0; i<10; i++) {
 auto tmp = arr[i];
 sum += tmp.myArr[0] + tmp.myArr[1] + tmp.myArr[2] + tmp.length;
 }
 return sum;
}

For ap_fifo interface, the struct will packed at the bit-level with or without aggregate pragma.

In the above example, the AGGREGATE pragma will create a port of size 119 bits for port arr.
The array myArr will take 12 bytes (or 96 bits) and the element length will take 23 bits for a
total of 119 bits. Vitis HLS will issue the following message in the log file:

INFO: [HLS 214-241] Aggregating fifo (array-to-stream) variable 'arr' with
compact=bit mode
 in 119-bits (example.cpp:19:0)

Aggregate Nested Struct Port

This is an example of the AGGREGATE pragma or directive in the Vivado IP flow. The following is
the aggregation_of_nested_structs example available on GitHub.

#define N 8

struct T {
 int m; // 4 bytes
 int n; // 4 bytes
 bool o; // 1 byte
};

struct S {
 int p; // 4 bytes
 T q; // 9 bytes
};
 void top(S a[N], S b[N], S c[N]) {
#pragma HLS interface bram port=c
#pragma HLS interface ap_memory port=a
#pragma HLS aggregate variable=a compact=byte
#pragma HLS aggregate variable=b compact=bit
#pragma HLS aggregate variable=c compact=byte
 for (int i=0; i<N; i++) {
 c[i].q.m = a[i].q.m + b[i].q.m;

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 211Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Aggregation_Disaggregation/aggregation_of_struct
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Aggregation_Disaggregation/aggregation_of_nested_structs
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=211

 c[i].q.n = a[i].q.n - b[i].q.n;
 c[i].q.o = a[i].q.o || b[i].q.o;
 c[i].p = a[i].q.n;
 }
}

In the above example, the aggregation algorithm will create a port of size 104 bits for ports a,
and c as the compact=byte option was specified in the aggregate pragma but the
compact=bit default option is used for port b and its packed size will be 97 bits. The nested
structures S and T are aggregated to encompass three 32 bit member variables (p, m, and n) and
one bit/byte member variable (o).

TIP: This example uses the Vivado IP flow to illustrate the aggregation behavior. In the Vitis kernel flow,
port b  will be automatically inferred as an m_axi  port and will not allow the compact=bit  setting.

Vitis HLS will issue the following messages in the log file:

INFO: [HLS 214-241] Aggregating bram variable 'b' with compact=bit mode in
97-bits (example.cpp:19:0)
INFO: [HLS 214-241] Aggregating bram variable 'a' with compact=byte mode in
104-bits (example.cpp:19:0)
INFO: [HLS 214-241] Aggregating bram variable 'c' with compact=byte mode in
104-bits (example.cpp:19:0)

Examples of Disaggregation
Disaggregate AXIS Interface

This is an example of the DISAGGREGATE pragma or directive for an axis interface. The
example the disaggregation_of_axis_port available on GitHub.

Table 11: Disaggregated Struct on AXIS Interface

HLS Source Code Synthesized IP Module

#define N 10

struct A {
 char c;
 int i;
};

void dut(A in[N], A out[N]) {
#pragma HLS interface axis port=in
#pragma HLS interface axis port=out
#pragma HLS disaggregate variable=in
#pragma HLS disaggregate variable=out
 int sum = 0;
 for (unsigned i=0; i<N; i++) {
 out[i].c = in[i].c;
 out[i].i = in[i].i;
 }
}

module dut (
ap_local_block,
ap_local_deadlock,
ap_clk,
ap_rst_n,
ap_start,
ap_done,
ap_idle,
ap_ready,
in_c_TVALID,
in_i_TVALID,
out_c_TREADY,
out_i_TREADY,
in_c_TDATA,
in_c_TREADY,
in_i_TDATA,
in_i_TREADY,
out_c_TDATA,
out_c_TVALID,
out_i_TDATA,
out_i_TVALID
);

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 212Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Aggregation_Disaggregation/disaggregation_of_axis_port
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=212

In the above disaggregation example, the struct arguments in and out are mapped to AXIS
interfaces, and then disaggregated. This results in Vitis HLS creating two AXI streams for each
argument: in_c, in_i, out_c and out_i. Each member of the struct A becomes a separate
stream.

The RTL interface of the generated module is shown on the right above where the member
elements c and i are individual AXI stream ports, each with its own TVALID, TREADY and
TDATA signals.

Vitis HLS will issue the following messages in the log file:

INFO: [HLS 214-210] Disaggregating variable 'in' (example.cpp:19:0)
INFO: [HLS 214-210] Disaggregating variable 'out' (example.cpp:19:0)

Disaggregate HLS::STREAM

This is an example of the DISAGGREGATE pragma or directive when used with the
hls::stream type.

Table 12: Disaggregated Struct of HLS::STREAM

HLS Source Code Synthesized IP Module

#define N 1024

struct A {,
 hls::stream<int> s_in;
 long arr[N];
};

long dut(struct A &d) {
 long sum = 0;
 while(!d.s_in.empty())
 sum += d.s_in.read();
 for (unsigned i=0; i<N; i++)
 sum += d.arr[i];
 return sum;
}

module dut (
ap_local_block,
ap_local_deadlock,
ap_clk,
ap_rst,
ap_start,
ap_done,
ap_idle,
ap_ready,
d_s_in_dout,
d_s_in_empty_n,
d_s_in_read,
d_arr_ce0,
d_arr_q0,
ap_return
);

Using an hls::stream object inside a structure that is used in the interface will cause the
struct port to be automatically disaggregated by the Vitis HLS compiler. As shown in the above
example, the generated RTL interface will contain separate RTL ports for the hls::stream
object s_in (named d_s_in_*) and separate RTL ports for the array arr (named d_arr_*).

Vitis HLS will issue the following messages in the log file:

INFO: [HLS 214-210] Disaggregating variable 'd'
INFO: [HLS 214-241] Aggregating fifo (hls::stream) variable 'd_s_in' with
compact=bit mode in 32-bits

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 213Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=213

Impact of Struct Size on Pipelining
The size of a struct used in a function interface can adversely impact pipelining of loops in that
function that have access to the interface in the loop body. Consider the following code example
which has two M_AXI interfaces:

struct A { /* Total size = 192 bits (32 x 6) or 24 bytes */
 int s_1;
 int s_2;
 int s_3;
 int s_4;
 int s_5;
 int s_6;
};

void read(A *a_in, A buf_out[NUM]) {
READ:
 for (int i = 0; i < NUM; i++)
 {
 buf_out[i] = a_in[i];
 }
}

void compute(A buf_in[NUM], A buf_out[NUM], int size) {
COMPUTE:
 for (int j = 0; j < NUM; j++)
 {
 buf_out[j].s_1 = buf_in[j].s_1 + size;
 buf_out[j].s_2 = buf_in[j].s_2;
 buf_out[j].s_3 = buf_in[j].s_3;
 buf_out[j].s_4 = buf_in[j].s_4;
 buf_out[j].s_5 = buf_in[j].s_5;
 buf_out[j].s_6 = buf_in[j].s_6 % 2;
 }
}

void write(A buf_in[NUM], A *a_out) {
 WRITE:
 for (int k = 0; k < NUM; k++)
 {
 a_out[k] = buf_in[k];
 }
}

void dut(A *a_in, A *a_out, int size)
{
#pragma HLS INTERFACE m_axi port=a_in bundle=gmem0
#pragma HLS INTERFACE m_axi port=a_out bundle=gmem1
 A buffer_in[NUM];
 A buffer_out[NUM];

#pragma HLS dataflow
 read(a_in, buffer_in);
 compute(buffer_in, buffer_out, size);
 write(buffer_out, a_out);
}

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 214Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=214

In the above example, the size of struct A is 192 bits, which is not a power of 2. As stated earlier
in the document, all AXI4 interfaces are by default sized to a power of 2. Vitis HLS will
automatically size the two M_AXI interfaces (a_in and a_out) to be of size 256 - the closest
power of 2 to the size of 192 bits (and report in the log file as shown below).

INFO: [HLS 214-241] Aggregating maxi variable 'a_out' with compact=none
mode in
256-bits (example.cpp:49:0)
INFO: [HLS 214-241] Aggregating maxi variable 'a_in' with compact=none mode
in 256-bits
(example.cpp:49:0)

This will imply that when writing the struct data out, the first write will write 24 bytes to the first
buffer in one cycle but the second write will have to write 8 bytes to the remaining 8 bytes in the
first buffer and then write 16 bytes into a second buffer resulting in two writes - as shown in the
figure below.

Figure 46: Misaligned Write Cycles

This will cause the II of the WRITE loop in function write() to have an II violation since it
needs II=2 instead of II=1. Similar behavior will happen when reading and therefore the read()
function will also have an II violation since it needs II=2. Vitis HLS will issue the following
warning for the II violation in function read() and write():

WARNING: [HLS 200-880] The II Violation in module 'read_r' (loop 'READ'):
Unable
to enforce a carried dependence constraint (II = 1, distance = 1, offset =
1) between
bus read operation ('gmem0_addr_read_1', example.cpp:23) on port 'gmem0'
(example.cpp:23)

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 215Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=215

and bus read operation ('gmem0_addr_read', example.cpp:23) on port 'gmem0'
(example.cpp:23).

WARNING: [HLS 200-880] The II Violation in module 'write_Pipeline_WRITE'
(loop 'WRITE'):
Unable to enforce a carried dependence constraint (II = 1, distance = 1,
offset = 1)
between bus write operation ('gmem1_addr_write_ln44', example.cpp:44) on
port 'gmem1'
(example.cpp:44) and bus write operation ('gmem1_addr_write_ln44',
example.cpp:44) on
port 'gmem1' (example.cpp:44).

The way to fix such II issues is to pad struct A with 8 additional bytes such that you are always
writing 256 bits (32 bytes) at a time or by using the other alternatives shown in the table below.
This will allow the scheduler to schedule the reads/writes in the READ/WRITE loop with II=1.

Table 13: Struct Alignment

Code Block Description

struct A {
 int
s_1;

 int
s_2;

 int s_3;
 int s_4;
 int s_5;
 int s_6;
 int pad_1;
 int pad_2;
};

Defines the total size of the struct as 256 bits (32 x 8) or 32
bytes, by adding required padding elements.

struct A {
 int
s_1;

 int
s_2;

 int s_3;
 int s_4;
 int s_5;
 int s_6;
 } __attribute__ ((aligned(32)));

Uses the standard __aligned__ attribute.

struct alignas(32) A {
 int
s_1;

 int
s_2;

 int s_3;
 int s_4;
 int s_5;
 int s_6;
 }

Uses the C++ standard alignas type specifier to specify
custom alignment of variables and user defined types.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 216Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=216

Execution Modes of HLS Designs
HLS designs have two types of execution modes. These modes are determined by block
protocols assigned to the kernels by Vitis HLS during kernel compilation. The block protocol can
be specified using #pragma HLS INTERFACE. The modes and block protocol to enable them
are listed below:

• Pipeline: Enabled by the default block protocol of ap_ctrl_chain lets kernels overlap in
execution with a single kernel finishing the execution of one task while starting the execution
of the next

• Auto-restart: Auto-restart mode lets the kernel automatically restart at the end of each
execution, and iterate for a predetermined number of times, or until some control condition
changes and enables the kernel to stop execution.

For more information on how XRT supports these execution modes, refer to Supported Kernel
Execution Models.

Block-Level Control Protocols
The execution mode of a Vitis kernel or Vivado IP is specified by the block-level control protocol.
Execution modes of kernels include:

• Pipelined execution (ap_ctrl_chain) permitting overlapping kernel runs to begin
processing additional data as soon as the kernel is ready. This is the default block control
protocol.

• Data driven execution (ap_ctrl_none) which enables the kernel to run when data is
available, and stall when data is not.

You can specify the block-level control protocol on the function or the function return. If the C/C
++ code does not return a value, you can still specify the control protocol on the function return.
If the C/C++ code uses a function return, Vitis HLS creates an output port ap_return for the
return value.

TIP: When the function return is specified as an AXI4-Lite interface (s_axilite) all the ports in the
control protocol are bundled into the s_axilite interface. This is a common practice for software-
controllable kernels or IP when an application or software driver is used to configure and control when the
block starts and stops operation. This is a requirement of XRT and the Vitis kernel flow.

The ap_ctrl_hs block-level control protocol is the default for the Vivado IP flow. Interfaces for
Vivado IP Flow shows the resulting RTL ports and behavior when Vitis HLS implements
ap_ctrl_hs on a function.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 217Send Feedback

https://xilinx.github.io/XRT/2019.2/html/xrt_kernel_executions.html
https://xilinx.github.io/XRT/2019.2/html/xrt_kernel_executions.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=217

The ap_ctrl_chain control protocol is the default for the Vitis kernel flow as explained in
Interfaces for Vitis Kernel Flow. It is similar to ap_ctrl_hs but provides an additional input
signal ap_continue to apply back pressure. Xilinx recommends using the ap_ctrl_chain
block-level I/O protocol when chaining Vitis HLS blocks together.

TIP: Refer to Supported Kernel Execution Models for more information on how XRT uses these control
protocols.

ap_ctrl_hs

The following figure shows the behavior of the block-level handshake signals created by the
ap_ctrl_hs control protocol for a non-pipelined design.

Figure 47: Behavior of ap_ctrl_hs Interface

After reset, the following occurs:

1. The block waits for ap_start to go High before it begins operation.

2. Output ap_idle goes Low immediately to indicate the design is no longer idle.

3. The ap_start signal must remain High until ap_ready goes High. Once ap_ready goes
High:

• If ap_start remains High the design will start the next transaction.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 218Send Feedback

https://xilinx.github.io/XRT/2020.2/html/xrt_kernel_executions.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=218

• If ap_start is taken Low, the design will complete the current transaction and halt
operation.

4. Data can be read on the input ports.

5. Data can be written to the output ports.

Note: The input and output ports can also specify a port-level I/O protocol that is independent of the
control protocol. For details, see Port-Level Protocols for Vivado IP Flow.

6. Output ap_done goes High when the block completes operation.

Note: If there is an ap_return port, the data on this port is valid when ap_done is High. Therefore,
the ap_done signal also indicates when the data on output ap_return is valid.

7. When the design is ready to accept new inputs, the ap_ready signal goes High. Following is
additional information about the ap_ready signal:

• The ap_ready signal is inactive until the design starts operation.

• In non-pipelined designs, the ap_ready signal is asserted at the same time as ap_done.

• In pipelined designs, the ap_ready signal might go High at any cycle after ap_start is
sampled High. This depends on how the design is pipelined.

• If the ap_start signal is Low when ap_ready is High, the design executes until
ap_done is High and then stops operation.

• If the ap_start signal is High when ap_ready is High, the next transaction starts
immediately, and the design continues to operate.

8. The ap_idle signal indicates when the design is idle and not operating. Following is
additional information about the ap_idle signal:

• If the ap_start signal is Low when ap_ready is High, the design stops operation, and
the ap_idle signal goes High one cycle after ap_done.

• If the ap_start signal is High when ap_ready is High, the design continues to operate,
and the ap_idle signal remains Low.

ap_ctrl_chain

The ap_ctrl_chain control protocol is similar to the ap_ctrl_hs protocol but provides an
additional input port named ap_continue. An active-High ap_continue signal indicates that
the downstream block that consumes the output data is ready for new data inputs. If the
downstream block is not able to consume new data inputs, the ap_continue signal is Low,
which prevents upstream blocks from generating additional data.

The ap_ready port of the downstream block can directly drive the ap_continue port.
Following is additional information about the ap_continue port:

• If the ap_continue signal is High when ap_done is High, the design continues operating.
The behavior of the other block-level control signals is identical to those described in the
ap_ctrl_hs block-level I/O protocol.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 219Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=219

• If the ap_continue signal is Low when ap_done is High, the design stops operating, the
ap_done signal remains High, and data remains valid on the ap_return port if the
ap_return port is present.

In the following figure, the first transaction completes, and the second transaction starts
immediately because ap_continue is High when ap_done is High. However, the design halts
at the end of the second transaction until ap_continue is asserted High.

Figure 48: Behavior of ap_ctrl_chain Interface

ap_ctrl_none

If you specify the ap_ctrl_none control protocol, the handshake signal ports (ap_start,
ap_idle, ap_ready, and ap_done) are not created. It is highly recommended to use the
autorestart mode (see section on autorestart drivers) even for data-driven kernels, because it
allows the host code to start and stop when needed, in an orderly fashion.

IMPORTANT! If you use the ap_ctrl_none control protocol in your design, you must meet at least one
of the conditions for C/RTL co-simulation as described in Interface Synthesis Requirements to verify the
RTL design. If at least one of these conditions is not met, C/RTL co-simulation halts with the following
message:

@E [SIM-345] Cosim only supports the following 'ap_ctrl_none' designs:
(1)
combinational designs; (2) pipelined design with task interval of 1;
(3) designs with
array streaming or hls_stream ports.
@E [SIM-4] *** C/RTL co-simulation finished: FAIL ***

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 220Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=220

Auto-Restarting Kernels
The Vitis environment kernels can be defined as software controllable, or non-software
controlled. This means that the kernel is controlled through software such as the host
application; or the kernel is managed by the hardware and can be purely data driven, or is
controlled through starter logic in the kernel.

In the software controlled mode the kernel follows the C-semantics in which the function is
meant to be "called" by the main or host application, and "returned" when the function is
complete. However, the software controlled kernel includes a subset of kernels that
automatically restart and keep running until reset. The execution and completion of the kernel
are dependent on data availability on the interface, and the host application does not explicitly
start and stop the kernel for every execution. Instead the host application starts the kernel one
time and the kernel runs for a specified number of iterations, or runs continuously until it is reset
or explicitly stopped by the host application. This auto-restarting kernel is useful for data-driven
designs with streaming data coming from and going to the I/O pins (Ethernet, SerDes) of the
FPGA, or streamed from or to a different kernel (kernel-to-kernel streaming).

Working with Auto-Restarting Kernels

Auto-restarting kernels can run continuously after being started once by the host application.
They can run until reset and restarted, or they can be programmed to run for a predetermined
number of iterations without the host explicitly calling them multiple times. You can also set the
kernel to restart for a specified number of executions in a mode called counted auto-restart. This
functionality is similar to a while(running) loop in software code, where the running
variable is controlled by the host code. The control of the kernel is managed in hardware so that
once the kernel is started by the host code it is automatically restarted until the iteration count is
exceeded, or until explicitly stopped by the host code. In addition, the host application can query
the status of the kernel to check specific register states or to provide new parameters to be used
at the next opportunity.

Auto-restarting kernels make use of several unique features:

1. The auto-restart bit to continuously restart the kernel, or restart it for a specified number of
iterations, without explicit host calls for each kernel execution.

2. A mailbox to enable the host to occasionally synchronize with the kernel to set new
operating parameters, or check the status of the current run, as described in Using the
Mailbox.

3. The software_reset feature letting the host application reset the auto-restart kernel to
stop it.

Supported Kernel Interface

These kernels require the ap_ctrl_chain or ap_ctrl_hs protocol specified by Vitis HLS,
where ap_ctrl_chain is the recommended protocol.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 221Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=221

• The kernel should specify the mode=ap_ctrl_chain INTERFACE pragma on the function
return.

• The kernel supports streaming interfaces (axis).

• The kernel also both scalar arguments (s_axilite) and memory mapped (m_axi) arguments
which can be both read and written.

Auto-restart kernels can be used in a couple of different scenarios:

1. Auto-restart kernel with streaming interfaces (axis) only, that does not require the kernel to
interact with the host application at all. Examples of this would be a Fast-Fourier Transform
(FFT) with configuration data compiled into the kernel, or FIR filters with coefficients
compiled into the kernel.

2. Auto-restart kernel using scalars and memory mapped (m_axi) arguments, either with axis
interfaces or without. The scalar and memory mapped arguments require the mailbox to
update the kernel parameters when needed. Examples of this would include a simple rule-
based firewall with rules written by the host application at reset, with a counter of dropped
packets that can be read by the host code but where all values must come from a single
kernel execution. Or, a load balancer that uses a hash map to send data to a server, must
update the server list, server map, and corresponding IP addresses simultaneously.

Enabling Auto-Restart

You must enable the auto-restart and the mailbox features when the kernel code (.cpp) is
compiled into the Vitis kernel (.xo). Use the following Vitis HLS commands in a Tcl script from
the v++ -c command line with the --hls.pre_tcl option:

config_interface -s_axilite_mailbox both
config_interface -s_axilite_auto_restart_counter 1

To enable the never-ending kernel without the mailbox feature, specify the following:

config_interface -s_axilite_auto_restart_counter 1

If the kernel uses a streaming interface (axis), you will also need to set the following:

config_interface -s_axilite_sw_reset

Using the Mailbox

The main advantage of auto-restarting kernels is that they run semi-autonomously operating as
data-driven kernels without the need for frequent interaction with the host application and for
software control. But auto-restarting kernels also offer semi-synchronization through the
mailbox, which is the ability to exchange data with the host application in an asynchronous, non-
blocking, and safe way. For software controlled kernels, the kernel follows the C-semantics of call
and return. The input arguments are read at the start of kernel execution, and the output
arguments are written at the end of each kernel execution. However, in the auto-restart kernel,

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 222Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=222

the kernel is managed in hardware, offering many of the performance advantages, so that once
started by the host code it is automatically restarted until explicitly stopped. The host code can
also query the status of the kernel to determine when it actually has finished executing after
being instructed to do so. The host application and auto-restarting kernel use the following
communications protocol:

• For passing argument values from the host to the kernel, the mailbox implements a set of
double-buffered s_axilite mapped registers to ensure non-blocking communication and
consistent passing of inputs by the host code and passing of outputs by the kernel.

• Whenever the host code writes to an input argument, it changes the host-side copy. The
kernel running in hardware does not see that change. After the host code requests a mailbox
write, the next time the kernel automatically restarts the copy of the registers that are seen by
the kernel is consistently updated. Hence the host code can write any number of arguments in
any order, and the kernel does not see these updates until the host code requests a mailbox
write, and the kernel restarts.

TIP: If some arguments are arrays mapped to s_axilite  register files, then the entire array must be
written between successive mailbox writes because it is implemented as a ping-pong buffer.

• The same process occurs on the output side when the kernel writes to the kernel side register
and requests a mailbox read. The next time the kernel is done, the values of the s_axilite
mapped output arguments are updated, and the host code can read them as needed.

Hence the host application has the following criteria:

• Not in charge of providing input data at every execution of the kernel and collecting output
data at its finish, as it would be in the case of software controlled kernels.

• Involved in occasionally setting and updating some kernel input parameters (for example,
routing tables, etc.) and checking the status of the kernel computation. This semi-
synchronization operation is typically done without a fixed communication rate between the
host and kernel.

• When the host application has a new set of parameters to send to the hardware kernel, it
does so without caring where the hardware kernel is in its computation. When the host
application needs to check the status of the hardware kernel, it does so without caring where
exactly the hardware is in its computation. It is satisfied only that the parameter update and
status check is performed consistently for the hardware.

Mailbox Semantics

The mailbox features can be used for both input and output, and would need to be specified for
all s_axilite I/Os of a kernel. It is enabled with a global option for the interfaces using the
Vitis HLS config_interface command:

config_interface -s_axilite_mailbox both
config_interface -s_axilite_auto_restart_counter 1

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 223Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=223

After setting up the config_interface option, the mailbox implements a pair of registers
called HW copy and SW copy. The input mailbox and output mailbox has an independent pair of
registers as shown in the below figure. Communication with the kernel includes:

• Input Mailbox:

• The host application writes some or all elements to the SW copy register of the mailbox.

• The host application notifies the mailbox that SW copy is updated.

• When the hardware kernel restarts, the SW copy register is copied to the HW copy
register.

• The host application is notified that the HW copy has been updated, and can change the
SW copy register again as needed.

TIP: Multiple reads by the hardware kernel can occur without an update from the host application.

• Output Mailbox:

• The host application notifies the mailbox that it wants to read an updated copy of the
mailbox. The hardware writes some or all the elements to the HW copy register of the
mailbox at the end of the current kernel execution.

• When the kernel is done, HW copy is copied to the SW copy register.

• The host application is notified that SW copy is updated and can read it at any time.

TIP: Multiple writes by the hardware can occur without any software request to update.

Examples of Auto-Restarting Kernels

The following sections describe the auto-restarting kernel examples.

Using Auto-Restart with the Mailbox

The mailbox feature provides the ability to have semi-synchronization with the host. The mailbox
is a non-blocking mechanism that updates the kernel parameters. Any updates provided through
the mailbox will be picked up the next time the kernel starts (from a kernel perspective).

This example kernel uses scalar values which will be programmed from the host application, and
the kernel will pick them at the next kernel call. The scalars, adder1 and adder2, will be
asynchronously updated from the host. Set the kernel in auto-restarting mode and enable the
mailbox feature using the following Vitis HLS commands:

config_interface -s_axilite_mailbox both
config_interface -s_axilite_auto_restart_counter 1
config_interface -s_axilite_sw_reset

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 224Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=224

The example code as follows:

#define DWIDTH 32
11
12 typedef ap_axiu<DWIDTH, 0, 0, 0> pkt;
13
14 extern "C" {
15 void krnl_stream_vdatamover(hls::stream<pkt> &in,
16 ┆ ┆ ┆ ┆ ┆ hls::stream<pkt> &out,
17 ┆ ┆ ┆ ┆ ┆ int adder1,
18 ┆ ┆ ┆ ┆ ┆ int adder2
19 ┆ ┆ ┆ ┆ ┆) {
20
21 #pragma HLS interface ap_ctrl_chain port=return
22 #pragma HLS INTERFACE s_axilite port=adder2
25 #pramga HLS port=adder1 stable
 #pramga HLS port=adder2 stable
27 bool eos = false;
28 vdatamover:
29 do {
30 // Reading a and b streaming into packets
31 pkt t1 = in.read();
32
33 // Packet for output
34 pkt t_out;
35
36 // Reading data from input packet
37 ap_uint<DWIDTH> in1 = t1.data;
38
39 // Vadd operation
40 ap_uint<DWIDTH> tmpOut = in1+adder1+adder2;
41
42 // Setting data and configuration to output packet
43 t_out.data = tmpOut;
44 t_out.last = t1.last;
45 t_out.keep = -1; // Enabling all bytes
46
47 // Writing packet to output stream
48 out.write(t_out);
49
50 if (t1.last) {
51 ┆ eos = true;
52 }
53 } while (eos == false);
54

Create a mailbox to update the scalars values adder1 and adder2.

Update the kernel parameters using the set_arg and write methods as shown below. The
auto-restarting kernel will not stop itself because there is no start and stop for a streaming
interface. It requires to be explicitly stopped or reset. The host code can explicitly stop the kernel
from running using the abort() method.

// add(in1, in2, nullptr, data_size)
 xrt::kernel add(device, uuid, "krnl_stream_vadd");
 xrt::bo in1(device, data_size_bytes, add.group_id(0));
 auto in1_data = in1.map<int*>();
 xrt::bo in2(device, data_size_bytes, add.group_id(1));
 auto in2_data = in2.map<int*>();

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 225Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=225

 // mult(in3, nullptr, out, data_size)
 xrt::kernel mult(device, uuid, "krnl_stream_vmult");
 xrt::bo in3(device, data_size_bytes, mult.group_id(0));
 auto in3_data = in3.map<int*>();
 xrt::bo out(device, data_size_bytes, mult.group_id(2));
 auto out_data = out.map<int*>();

 xrt::kernel incr(device, uuid, "krnl_stream_vdatamover");
 int adder1 = 20; // arbitrarily chosen to be different from 0
 int adder2 = 10; // arbitrarily chosen to be different from 0

 // create run objects for re-use in loop
 xrt::run add_run(add);
 xrt::run mult_run(mult);
 std::cout <<"performing never-ending mode with infinite auto
restart"<<std::endl;
 auto incr_run = incr(xrt::autostart{0}, nullptr, nullptr, adder1, adder2);

// create mailbox to programatically update the incr scalar adder
 xrt::mailbox incr_mbox(incr_run);

 // computed expected result
 std::vector<int> sw_out_data(data_size);

 std::cout << " for loop started" <<std::endl;
 bool error = false; // indicates error in any of the iterations
 for (unsigned int cnt = 0; cnt < iter; ++cnt) {

 // Create the test data and software result
 for(size_t i = 0; i < data_size; ++i) {
 in1_data[i] = static_cast<int>(i);
 in2_data[i] = 2 * static_cast<int>(i);
 in3_data[i] = static_cast<int>(i);
 out_data[i] = 0;
 sw_out_data[i] = (in1_data[i] + in2_data[i] + adder1 + adder2) *
in3_data[i];
 }

 // sync test data to kernel
 in1.sync(XCL_BO_SYNC_BO_TO_DEVICE);
 in2.sync(XCL_BO_SYNC_BO_TO_DEVICE);
 in3.sync(XCL_BO_SYNC_BO_TO_DEVICE);

 // start the pipeline
 add_run(in1, in2, nullptr, data_size);
 mult_run(in3, nullptr, out, data_size);

 // wait for the pipeline to finish
 add_run.wait();
 mult_run.wait();

 // prepare for next iteration, update the mailbox with the next
 // value of 'adder'.
 incr_mbox.set_arg(2, ++adder1); // update the mailbox
 incr_mbox.set_arg(3, --adder2); // update the mailbox

 // write the mailbox content to hw, the write will not be picked
 // up until the next iteration of the pipeline (incr).
 incr_mbox.write(); // requests sync of mailbox to hw

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 226Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=226

 // sync result from device to host
 out.sync(XCL_BO_SYNC_BO_FROM_DEVICE);

 // compare with expected scalar adders
 for (size_t i = 0 ; i < data_size; i++) {
 if (out_data[i] != sw_out_data[i]) {
 std::cout << "error in iteration = " << cnt
 << " expected output = " << sw_out_data[i]
 << " observed output = " << out_data[i]
 << " adder1 = " << adder1 - 1
 << " adder2 = " << adder2 + 1 << '\n';
 throw std::runtime_error("result mismatch");
 }
 }
 }
 incr_run.abort();
}

Using Counted Auto-Restart

This example uses the same code, but in this case the kernel is configured to be restart and run
for three iterations and then stop. The only required change is to specify the number of iterations
as shown in the code example below.

TIP: In the counted auto-restart case, there is no need to use the abort(), because the host will know
when to stop.

143 xrt::kernel incr(device, uuid, "increment");
144 int adder1 = 20; // arbitrarily chosen to be different from 0
145 int adder2 = 10; // arbitrarily chosen to be different from 0
151 // start the incr kernel in auto restart mode with default adders
152 // since it is a streaming kernel it will be stalled waiting for
153 // input
154 auto incr_run = incr(xrt::autostart{3}, nullptr, nullptr, adder1);

Controlling Initialization and Reset Behavior
The reset port is used in an FPGA to return the registers and block RAM connected to the reset
port to an initial value any time the reset signal is applied. Typically the most important aspect of
RTL configuration is selecting the reset behavior.

Note: When discussing reset behavior it is important to understand the difference between initialization
and reset. Refer to Initialization Behavior for more information.

The presence and behavior of the RTL reset port is controlled using the config_rtl command,
as shown in the following figure. You can access this command by selecting the Solution → 
Solution Settings menu command.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 227Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=227

Figure 49: RTL Configurations

The reset settings include the ability to set the polarity of the reset and whether the reset is
synchronous or asynchronous but more importantly it controls, through the reset option, which
registers are reset when the reset signal is applied.

IMPORTANT! When AXI4 interfaces are used on a design the reset polarity is automatically changed to
active-Low irrespective of the setting in the config_rtl  configuration. This is required by the AXI4
standard.

The reset option has four settings:

• none: No reset is added to the design.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 228Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=228

• control: This is the default and ensures all control registers are reset. Control registers are
those used in state machines and to generate I/O protocol signals. This setting ensures the
design can immediately start its operation state.

• state: This option adds a reset to control registers (as in the control setting) plus any registers
or memories derived from static and global variables in the C/C++ code. This setting ensures
static and global variable initialized in the C/C++ code are reset to their initialized value after
the reset is applied.

• all: This adds a reset to all registers and memories in the design.

Finer grain control over reset is provided through the RESET pragma or directive. Static and
global variables can have a reset added through the RESET directive. Variables can also be
removed from those being reset by using the RESET directive’s off option.

IMPORTANT! It is important when using the reset state  or all options to consider the effect on
resetting arrays.

Initialization Behavior
In C/C++, variables defined with the static qualifier and those defined in the global scope are
initialized to zero, by default. These variables may optionally be assigned a specific initial value.
For these initialized variables, the value in the C/C++ code is assigned at compile time (at time
zero) and never again. In both cases, the initial value is implemented in the RTL.

• During RTL simulation the variables are initialized with the same values as the C/C++ code.

• The variables are also initialized in the bitstream used to program the FPGA. When the device
powers up, the variables will start in their initialized state.

In the RTL, although the variables start with the same initial value as the C/C++ code, there is no
way to force the variable to return to this initial state. To restore the initial state, variables must
be implemented with a reset signal.

IMPORTANT! Top-level function arguments can be implemented in an AXI4-Lite interface. Because there
is no way to provide an initial value in C/C++ for function arguments, these variable cannot be initialized in
the RTL as doing so would create an RTL design with different functional behavior from the C/C++ code
which would fail to verify during C/RTL co-simulation.

Section II: HLS Programmers Guide
Chapter 8: Interfaces of the HLS Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 229Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=229

Chapter 9

Creating Efficient HLS Designs
For designers implementing a Vitis™ kernel there are various trade-offs available when working
with the device memory (PLRAM, HBM and DDR) available on FPGA devices. The following is a
checklist of best practices to use when designing AXI4 memory mapped interfaces for your
application.

With throughput as the chief optimization goal, it is clear that accelerating the compute part of
your application using the macro and micro-architecture optimizations is the first step but the
time taken for transferring data to/from the kernel can also influence the application architecture
with respect to throughput goals. Due to the high overhead for data transfer, it becomes
important to think about overlapping the computation with the communication (data movement)
that is present in your application.

For your given application:

• Decompose the kernel algorithm by building a pipeline of producer-consumer tasks, modeled
using a Load, Compute, Store (LCS) coding pattern

○ All external I/O accesses must be in the Load and Store tasks.

○ There should be multiple Load or Store tasks if the kernel needs to read or write from
different ports in parallel.

○ The Compute task(s) should only have scalars, array, streams or stream of blocks
arguments.

○ Ensure that all these tasks (specified as functions) can be executed in overlapped fashion
(enables task-level parallelism by the compiler).

○ Compute tasks can be further split up into smaller compute tasks which may contain
further optimizations such as pipelining. The same rules as LCS apply for these smaller
compute functions as well.

○ Always use local memory to pass data to/from the Compute tasks.

• Load and Store blocks are responsible for moving data between global memory and the
Compute blocks as efficiently as possible.

○ On one end, they must read or write data through the streaming interface according to the
(temporal) sequential order mandated by the Compute task inside the kernel

○ On the other end, they must read or write data through the memory-mapped interface
according to the (spatial) arrangement order set by the software application

Section II: HLS Programmers Guide
Chapter 9: Creating Efficient HLS Designs

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 230Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=230

• Changing your mindset about data accesses is key to building a proper HW design with HLS

○ In SW, it is common to think about how the data is “accessed” (the algorithm pulls the data
it needs).

○ In HW, it is more efficient in think of how data “flows” through the algorithm (the data is
pushed to the algorithm)

○ In SW, you reason about array indices and “where” data is accessed

○ In HW, you reason about streams and “when” data is accessed

• Global memories have long access times (DRAM, HBM) and their bandwidth is limited
(DRAM). To reduce the overhead of accessing global memory, the interface function needs to

○ Access sufficiently large contiguous blocks of data (to benefit from bursting)

○ Accessing data sequentially leads to larger bursts (and higher data throughput efficiency) as
compared to accessing random and/or out-of-order data (where burst analysis will fail)

○ Avoid redundant accesses (to preserve bandwidth)

• In many cases, the sequential order of data in and out of the Compute tasks is different from
the arrangement order of data in global memory.

○ In this situation, optimizing the interface functions requires creating internal caching
structures that gather enough data and organize it appropriately to minimize the overhead
of global memory accesses while being able to satisfy the sequential order expected by the
streaming interface

- Example: 2D Convolution

○ In order to simplify the data movement logic, the developer can also consider different
ways of storing the data in memory. For instance, accessing data in DRAM in a column-
major fashion can be very inefficient. Rather than implementing a dedicated data-mover in
the kernel, it may be better to transpose the data in SW and store in row-major order
instead which will greatly simply HW access patterns.

• Maximize the port width of the interface, i.e., the bit-width of each AXI port by setting it to
512 bits (64 bytes).

○ Use hls::vector or ap_(u)int<512> as the data type of the port to infer maximal burst
lengths. Usage of structs in the interface may result in poor burst performance.

○ Accessing the global memory is expensive and so accessing larger word sizes is more
efficient.

○ Imagine the interface ports to be like pipes feeding data to your kernel. The wider the pipe,
the more data that can be accessed and processed, and sent back.

○ Transfer large blocks of data from the global device memory. One large transfer is more
efficient than several smaller transfers. The bandwidth is limited by the PCIe performance.
Run the DMA test to measure PCIe® transfer effective max throughput. It is usually in the
range of 10-17 GB/sec for reading and writing respectively.

Section II: HLS Programmers Guide
Chapter 9: Creating Efficient HLS Designs

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 231Send Feedback

https://www.xilinx.com/html_docs/xilinx2022_1/vitis_doc/vitis_hls_optimization_techniques.html?hl=2d%2Cfilter#ddw1586913493144
https://www.xilinx.com/html_docs/xilinx2022_1/vitis_doc/vitis_hls_coding_styles.html?hl=convolution#hxs1539734246476
https://www.xilinx.com/html_docs/xilinx2022_1/vitis_doc/vitis_hls_coding_styles.html?hl=hls%3A%3Avector#hjd1600374477961
https://www.xilinx.com/html_docs/xilinx2022_1/vitis_doc/vitis_hls_coding_styles.html?hl=convolution#gdu1539734219605
https://xilinx.github.io/XRT/2020.2/html/xbutil2.html#xbutil-validate
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=231

- Memory resources include PLRAM (small size but fast access with the lowest latency),
HBM (moderate size and access speed with some latency), and DRAM (large size but
slow access with high latency).

- Given the asynchronous nature of reads, distributed RAMs are ideal for fast buffers. You
can use the read value immediately, rather than waiting for the next clock cycle. You can
also use distributed RAM to create small ROMs. However, distributed ram is not suited
for large memories, and you’ll get better performance (and lower power consumption)
for memories larger than about 128 bits using block RAM or UltraRAM.

• Decide on the optimal number of concurrent ports, i.e., the number of concurrent AXI
(memory-mapped) ports

○ If the Load task needs to get multiple input data sets to feed to the Compute task, it can
choose to use multiple interface ports to access this data in parallel.

○ However, the data needs to be stored in different memory banks or the accesses will be
sequentialized. There is a maximum of 4 DDR banks on FPGAs while there are 32 HBM
channels.

○ When multiple processes are accessing the same memory port or memory bank, an arbiter
will sequentialize these concurrent accesses to the same memory port or bank.

• Setting the right burst length i.e., the maximum burst access length (in terms of the number of
elements) for each AXI port.

○ Set the burst length equivalent to the maximum 4k bytes transfer. For example, using AXI
data width of 512-bit (64 bytes), the burst length should be set to 64.

○ Transferring data in bursts hides the memory access latency and improves bandwidth usage
and efficiency of the memory controller

○ Write application code in such a way to infer the maximal length bursts for both reads and
writes to/from global memory

• Setting the number of outstanding memory requests that an AXI port can sustain before
stalling

○ Setting a reasonable number of outstanding requests allows the system to submit multiple
memory requests before stalling - this pipelining of requests allows the system to hide
some of the memory latency at the cost of additional BRAM/URAM resources.

Section II: HLS Programmers Guide
Chapter 9: Creating Efficient HLS Designs

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 232Send Feedback

https://github.com/Xilinx/Vitis-Tutorials/blob/c6226467aff75d9647c45ef82e918e585496b76c/Runtime_and_System_Optimization/Feature_Tutorials/01-mult-ddr-banks/README.md
https://github.com/Xilinx/Vitis-Tutorials/tree/c6226467aff75d9647c45ef82e918e585496b76c/Runtime_and_System_Optimization/Feature_Tutorials/04-using-hbm
https://github.com/Xilinx/Vitis-Tutorials/tree/c6226467aff75d9647c45ef82e918e585496b76c/Runtime_and_System_Optimization/Feature_Tutorials/04-using-hbm
https://www.xilinx.com/html_docs/xilinx2022_1/vitis_doc/vitis_hls_optimization_techniques.html#ddw1586913493144__section_ogb_tkf_jlb
https://www.xilinx.com/products/intellectual-property/axi_perf_mon.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=232

Chapter 10

Optimizing Techniques and
Troubleshooting Tips

This section outlines the various optimization techniques you can use to direct Vitis™ HLS to
produce a micro-architecture that satisfies the desired performance and area goals. Using Vitis
HLS, you can apply different optimization directives to the design, including:

• Pipelining tasks, allowing the next execution of the task to begin before the current execution
is complete.

• Specifying a target latency for the completion of functions, loops, and regions.

• Specifying a limit on the number of resources used.

• Overriding the inherent or implied dependencies in the code to permit specific operations. For
example, if it is acceptable to discard or ignore the initial data values, such as in a video
stream, allow a memory read before write if it results in better performance.

• Specifying the I/O protocol to ensure function arguments can be connected to other
hardware blocks with the same I/O protocol.

Note: Vitis HLS automatically determines the I/O protocol used by any sub-functions. You cannot
control these ports except to specify whether the port is registered.

It helps to understand the process used to synthesize RTL hardware description from C/C++
source code. The Understanding High-Level Synthesis Scheduling and Binding describes some of
the important details of this process to help you better understand how you can optimize for it.

You can add optimization directives directly into the source code as compiler pragmas using
various HLS pragmas, or you can use Tcl set_directive commands to apply optimization
directives in a Tcl script to be used by a solution during compilation as discussed in Adding
Pragmas and Directives. The following table lists the optimization directives provided by Vitis
HLS as either pragma or Tcl directive.

Table 14: Vitis HLS Optimization Directives

Directive Description
AGGREGATE The AGGREGATE pragma is used for grouping all the elements of a struct into a single wide

vector to allow all members of the struct to be read and written to simultaneously.

ALIAS The ALIAS pragma enables data dependence analysis in Vitis HLS by defining the distance
between multiple pointers accessing the same DRAM buffer.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 233Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=233

Table 14: Vitis HLS Optimization Directives (cont'd)

Directive Description
ALLOCATION Specify a limit for the number of operations, implementations, or functions used. This can

force the sharing or hardware resources and may increase latency.

ARRAY PARTITION Partitions large arrays into multiple smaller arrays or into individual registers, to improve
access to data and remove block RAM bottlenecks.

ARRAY_RESHAPE Reshape an array from one with many elements to one with greater word-width. Useful for
improving block RAM accesses without using more block RAM.

BIND_OP Define a specific implementation for an operation in the RTL.

BIND_STORAGE Define a specific implementation for a storage element, or memory, in the RTL.

DATAFLOW Enables task level pipelining, allowing functions and loops to execute concurrently. Used to
optimize throughput and/or latency.

DEPENDENCE Used to provide additional information that can overcome loop-carried dependencies and
allow loops to be pipelined (or pipelined with lower intervals).

DISAGGREGATE Break a struct down into its individual elements.

EXPRESSION_BALANCE Allows automatic expression balancing to be turned off.

INLINE Inlines a function, removing function hierarchy at this level. Used to enable logic
optimization across function boundaries and improve latency/interval by reducing function
call overhead.

INTERFACE Specifies how RTL ports are created from the function description.

LATENCY Allows a minimum and maximum latency constraint to be specified.

LOOP_FLATTEN Allows nested loops to be collapsed into a single loop with improved latency.

LOOP_MERGE Merge consecutive loops to reduce overall latency, increase sharing and improve logic
optimization.

LOOP_TRIPCOUNT Used for loops which have variables bounds. Provides an estimate for the loop iteration
count. This has no impact on synthesis, only on reporting.

OCCURRENCE Used when pipelining functions or loops, to specify that the code in a location is executed
at a lesser rate than the code in the enclosing function or loop.

PERFORMANCE Specify the desired transaction interval for a loop and let the tool to determine the best way
to achieve the result.

PIPELINE Reduces the initiation interval by allowing the overlapped execution of operations within a
loop or function.

PROTOCOL This commands specifies a region of code, a protocol region, in which no clock operations
will be inserted by Vitis HLS unless explicitly specified in the code.

RESET This directive is used to add or remove reset on a specific state variable (global or static).

STABLE Indicates that a variable input or output of a dataflow region can be ignored when
generating the synchronizations at entry and exit of the dataflow region.

STREAM Specifies that a specific array is to be implemented as a FIFO or RAM memory channel
during dataflow optimization. When using hls::stream, the STREAM optimization directive is
used to override the configuration of the hls::stream.

TOP The top-level function for synthesis is specified in the project settings. This directive may be
used to specify any function as the top-level for synthesis. This then allows different
solutions within the same project to be specified as the top-level function for synthesis
without needing to create a new project.

UNROLL Unroll for-loops to create multiple instances of the loop body and its instructions that can
then be scheduled independently.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 234Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=234

In addition to the optimization directives, Vitis HLS provides a number of configuration
commands that can influence the performance of synthesis results. Details on using
configurations commands can be found in Setting Configuration Options. The following table
reflects some of these commands.

Table 15: Vitis HLS Configurations

GUI Directive Description
Config Array Partition Determines how arrays are partitioned, including global arrays and if the partitioning

impacts array ports.

Config Compile Controls synthesis specific optimizations such as the automatic loop pipelining and floating
point math optimizations.

Config Dataflow Specifies the default memory channel and FIFO depth in dataflow optimization.

Config Interface Controls I/O ports not associated with the top-level function arguments and allows unused
ports to be eliminated from the final RTL.

Config Op Configures the default latency and implementation of specified operations.

Config RTL Provides control over the output RTL including file and module naming, and reset controls.

Config Schedule Determines the effort level to use during the synthesis scheduling phase and the verbosity
of the output messages

Config Storage Configures the default latency and implementation of specified storage types.

Config Unroll Configures the default tripcount threshold for unrolling loops.

Understanding High-Level Synthesis
Scheduling and Binding

High-Level Synthesis tools transform an untimed high-level specification into a fully timed
implementation. During this transformation, a custom architecture is implemented to meet the
specification requirements. The architecture generated contains the data path, control logic,
memory interfaces, and how the RTL communicates with the external world. A data path consists
of a set of storage elements such as (registers, register files, or memories), a set of functional
units (such as ALUs, multipliers, shifters, and other custom functions), and interconnect elements
(such as tristate drivers, multiplexers, and buses). Each component can take one or more clock
cycles to execute, can be pipelined, and can have input or output registers. In addition, the entire
data path and controller can be pipelined in several stages.

The designers should invest the early part of the project in redefining the architecture of the
algorithm to meet the performance while keeping the algorithm at a higher level. For any specific
HLS tool, there are design principles and best practices that are required to be followed to
generate the optimized RTL that meets the expected performance.

The HLS Tool executes the following tasks as shown in the diagram below.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 235Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=235

Figure 50: HLS Tasks

1. Compile the algorithm written to meet specifications: This step includes several code
optimizations such as dead-code elimination, constant folding, reporting unsupported
constructs, etc.

2. Schedule the operations for given clock cycles:

a. The "Schedule" phase determines which operations occur during each clock cycle based
on:

• When an operation’s dependencies have been satisfied or are available.

• The length of the clock cycle or clock frequency.

• The time it takes for the operation to complete, as defined by the target device. More
operations can be completed in a single clock cycle for longer clock periods. Some
operations might need to be implemented as multi-cycle resources. HLS automatically
schedules operations over more clock cycles

• The available resources.

• Incorporation of any user-specified optimization directives.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 236Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=236

b. During the "Schedule" phase, the tool determines what operator will execute in a given
cycle and how many of these components are needed. The next step determines what
operation binds to what resource.

3. Bind the operations to the functional components and variables to the storage elements

a. The binding task assigns hardware resources to implement each scheduled operation and
maps operators (such as addition, multiplication, and shift) to specific RTL
implementations. For example, a mult operation can be implemented in RTL as a
combinational or pipelined multiplier.

b. The binding task assigns memories, registers, or combinations of these to the array
variables inside the function to meet the desired performance.

c. If multiple operations use the same resource, this step can perform the resource sharing if
not used in the same cycle.

4. Control logic extraction creates a finite state machine (FSM) that sequences the operations in
the RTL design according to the defined schedule.

5. Creates the logic to communicate with the external world: The RTL generated will be
communicating with the external world like streaming data from the external port or start/
stop logic or accessing external memory. The HLS tool will be generating the

6. Finally, generate the RTL architecture

The next section walks through conceptually, how an HLS tool in general schedules the operators
based on input constraints like a clock cycle and binds them to available hardware resources.

Scheduling and Binding Example
The following figure shows an example of the scheduling and binding phases for this code
example:

int foo(char x, char a, char b, char c) {
 char y;
 y = x*a+b+c;
 return y;
}

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 237Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=237

Figure 51: Scheduling and Binding Example

Target Binding
Phase DSP AddSub

Initial Binding
Phase

Scheduling
Phase

X14220-052220

Clock Cycle

a

x
+

1 2 3

*

b

c

+
y

Mul AddSub

AddSub

In the scheduling phase of this example, high-level synthesis schedules the following operations
to occur during each clock cycle:

• First clock cycle: Multiplication and the first addition

• Second clock cycle: Second addition, if the result of the first addition is available in the second
clock cycle, and output generation

Note: In the preceding figure, the square between the first and second clock cycles indicates when an
internal register stores a variable. In this example, high-level synthesis only requires that the output of the
addition is registered across a clock cycle. The first cycle reads x, a, and b data ports. The second cycle
reads data port c and generates output y.

In the final hardware implementation, high-level synthesis implements the arguments to the top-
level function as input and output (I/O) ports. In this example, the arguments are simple data
ports. Because each input variable is a char type, the input data ports are all 8-bits wide. The
function return is a 32-bit int data type, and the output data port is 32-bits wide.

IMPORTANT! The advantage of implementing the C code in the hardware is that all operations finish in a
shorter number of clock cycles. In this example, the operations complete in only two clock cycles. In a
central processing unit (CPU), even this simple code example takes more clock cycles to complete.

In the initial binding phase of this example, high-level synthesis implements the multiplier
operation using a combinational multiplier (Mul) and implements both add operations using a
combinational adder/subtractor (AddSub).

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 238Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=238

In the target binding phase, high-level synthesis implements both the multiplier and one of the
addition operations using a DSP module resource. Some applications use many binary multipliers
and accumulators that are best implemented in dedicated DSP resources. The DSP module is a
computational block available in the FPGA architecture that provides the ideal balance of high-
performance and efficient implementation.

Extracting Control Logic and Implementing I/O Ports
Example
The following figure shows the extraction of control logic and implementation of I/O ports for
this code example:

void foo(int in[3], char a, char b, char c, int out[3]) {
 int x,y;
 for(int i = 0; i < 3; i++) {
 x = in[i];
 y = a*x + b + c;
 out[i] = y;
 }
}

Figure 52: Control Logic Extraction and I/O Port Implementation Example

Clock

b

c

a

in_data

+

+

*

out_ce

out_we

out_addr

in_addr

in_ce

x

y

Finite State Machine (FSM)

C0 C1 C2 C3
x3

+

X14218-100520

out_data

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 239Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=239

This code example performs the same operations as the previous example. However, it performs
the operations inside a for-loop, and two of the function arguments are arrays. The resulting
design executes the logic inside the for-loop three times when the code is scheduled. High-level
synthesis automatically extracts the control logic from the C code and creates an FSM in the RTL
design to sequence these operations. Top-level function arguments become ports in the final RTL
design. The scalar variable of type char maps into a standard 8-bit data bus port. Array
arguments, such as in and out, contain an entire collection of data.

In high-level synthesis, arrays are synthesized into block RAM by default, but other options are
possible, such as FIFOs, distributed RAM, and individual registers. When using arrays as
arguments in the top-level function, high-level synthesis assumes that the block RAM is outside
the top-level function and automatically creates ports to access a block RAM outside the design,
such as data ports, address ports, and any required chip-enable or write-enable signals.

The FSM controls when the registers store data and controls the state of any I/O control signals.
The FSM starts in the state C0. On the next clock, it enters state C1, then state C2, and then
state C3. It returns to state C1 (and C2, C3) a total of three times before returning to state C0.

Note: This closely resembles the control structure in the C code for-loop. The full sequence of states are:
C0,{C1, C2, C3}, {C1, C2, C3}, {C1, C2, C3}, and return to C0.

The design requires the addition of b and c only one time. High-level synthesis moves the
operation outside the for-loop and into state C0. Each time the design enters state C3, it reuses
the result of the addition.

The design reads the data from in and stores the data in x. The FSM generates the address for
the first element in state C1. In addition, in state C1, an adder increments to keep track of how
many times the design must iterate around states C1, C2, and C3. In state C2, the block RAM
returns the data for in and stores it as variable x.

High-level synthesis reads the data from port a with other values to perform the calculation and
generates the first y output. The FSM ensures that the correct address and control signals are
generated to store this value outside the block. The design then returns to state C1 to read the
next value from the array/block RAM in. This process continues until all outputs are written. The
design then returns to state C0 to read the next values of b and c to start the process again.

Performance Metrics Example
The following figure shows the complete cycle-by-cycle execution for the code in the previous
example, including the states for each clock cycle, read operations, computation operations, and
write operations.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 240Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=240

Figure 53: Latency and Initiation Interval Example

b

+

C0 C1 C2 C3 C1 C2 C3 C1 C2 C3 C0

Read B
and C

Addr
in[0]

Read
in[0]

Calc.
out[0]

Addr
in[1]

Read
in[1]

Calc.
out[1]

Addr
in[2]

Read
in[2]

Calc.
out[2]

Read B
and C

c Addr x=Data a Addr x=Data a Addr x=Data a b c

* + * + * + +

Y[0] Y[1] Y[2]

Function Latency = 9

Function Initiation Interval = 10

Loop Iteration Latency = 3

Loop Iteration Interval = 3

Loop Latency = 9
X14219

The following are performance metrics for this example:

• Latency: It takes the function 9 clock cycles to output all values.

Note: When the output is an array, the latency is measured to the last array value output.

• Initiation Interval (II): The II is 10, which means it takes 10 clock cycles before the function can
initiate a new set of input reads and start to process the next set of input data.

Note: The time to perform one complete execution of a function is referred to as one transaction. In this
example, it takes 11 clock cycles before the function can accept data for the next transaction.

• Loop iteration latency: The latency of each loop iteration is 3 clock cycles.

• Loop II: The interval is 3.

• Loop latency: The latency is 9 clock cycles.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 241Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=241

Optimizing Logic
Inferring Shift Registers
Vitis HLS will now infer a shift register when encountering the following code:

int A[N]; // This will be replaced by a shift register

for(...) {
 // The loop below is the shift operation
 for (int i = 0; i < N-1; ++i)
 A[i] = A[i+1];
 A[N] = ...;

 // This is an access to the shift register
 ... A[x] ...
}

Shift registers can perform a one shift operation per cycle, and also allows a random read access
per cycle anywhere in the shift register, thus it is more flexible than a FIFO.

Optimizing Logic Expressions
During synthesis several optimizations, such as strength reduction and bit-width minimization are
performed. Included in the list of automatic optimizations is expression balancing.

Expression balancing rearranges operators to construct a balanced tree and reduce latency.

• For integer operations expression balancing is on by default but may be disabled using the
EXPRESSION_BALANCE pragma or directive.

• For floating-point operations, expression balancing is off by default but may be enabled using
using the config_compile -unsafe_math_optimizations command, as discussed
below.

Given the highly sequential code using assignment operators such as += and *= in the following
example (or resulting from loop unrolling):

data_t foo_top (data_t a, data_t b, data_t c, data_t d)
{
 data_t sum;

 sum = 0;
 sum += a;
 sum += b;
 sum += c;
 sum += d;
 return sum;

}

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 242Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=242

Without expression balancing, and assuming each addition requires one clock cycle, the complete
computation for sum requires four clock cycles shown in the following figure.

Figure 54: Adder Tree

Cycle 1

Cycle 2

+

+

c

Cycle 3

Cycle 4 +

+

sum

b a
“0”

X14250-100620

d

However additions a+b and c+d can be executed in parallel allowing the latency to be reduced.
After balancing the computation completes in two clock cycles as shown in the following figure.
Expression balancing prohibits sharing and results in increased area.

Figure 55: Adder Tree After Balancing

Cycle 1

Cycle 2

+ +

+

b d

sum
X14249-100620

a c

For integers, you can disable expression balancing using the EXPRESSION_BALANCE
optimization directive with the off option. By default, Vitis HLS does not perform the
EXPRESSION_BALANCE optimization for operations of type float or double. When
synthesizing float and double types, Vitis HLS maintains the order of operations performed in
the C/C++ code to ensure that the results are the same as the C/C++ simulation. For example, in
the following code example, all variables are of type float or double. The values of O1 and O2
are not the same even though they appear to perform the same basic calculation.

A=B*C; A=B*F;
D=E*F; D=E*C;
O1=A*D O2=A*D;

This behavior is a function of the saturation and rounding in the C/C++ standard when
performing operation with types float or double. Therefore, Vitis HLS always maintains the
exact order of operations when variables of type float or double are present and does not
perform expression balancing by default.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 243Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=243

You can enable expression balancing for specific operations, or you can configure the tool to
enable expression balancing with float and double types using the config_compile -
unsafe_math_optimizations command as follows:

1. In the Vitis HLS IDE, select Solution → Solution Settings.

2. In the Solution Settings dialog box, click the General category, select config_compile, and
enable unsafe_math_optimizations.

With this setting enabled, Vitis HLS might change the order of operations to produce a more
optimal design. However, the results of C/RTL co-simulation might differ from the C/C++
simulation.

The unsafe_math_optimizations feature also enables the no_signed_zeros
optimization. The no_signed_zeros optimization ensures that the following expressions used
with float and double types are identical:

x - 0.0 = x;
x + 0.0 = x;
0.0 - x = -x;
x - x = 0.0;
x*0.0 = 0.0;

Without the no_signed_zeros optimization the expressions above would not be equivalent
due to rounding. The optimization may be optionally used without expression balancing by
selecting only this option in the config_compile command.

TIP: When the unsafe_math_optimizations  and no_signed_zero  optimizations are used, the
RTL implementation will have different results than the C/C++ simulation. The test bench should be
capable of ignoring minor differences in the result: check for a range, do not perform an exact comparison.

Optimizing AXI System Performance
Introduction

A Vitis accelerated system includes a global memory subsystem that is used to share data
between the kernels and the host application. Global memory available on the host system,
outside of the Xilinx device, provides very large amounts of storage space but at the cost of
longer access time compared to local memory on the Xilinx device. One of the measurements of
the performance of a system/application is throughput, which is defined as the number of bytes
transferred in a given time frame. Therefore, inefficient data transfers from/to the global memory
will have a long memory access time which can adversely affect system performance and kernel
execution time.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 244Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=244

Development of accelerated applications in Vitis HLS should include two phases: kernel
development, and improving system performance. Design Principles suggested a kernel
development approach implementing a cache-like Load-Compute-Store structure where the
load-store functions read/write data to the global memory. Improving system performance
involves implementing an efficient load and store design that can improve the kernel execution
time. This chapter describes the features and metrics that can impact and improve the
throughput of the load-store (LS) functions. Refer to Vitis-HLS-Introductory-Examples/Interface/
Memory on Github for examples of some of the following concepts.

AXI Burst Transfers
Overview of Burst Transfers

Bursting is an optimization that tries to intelligently aggregate your memory accesses to the DDR
to maximize the throughput bandwidth and/or minimize the latency. Bursting is one of many
possible optimizations to the kernel. Bursting typically gives you a 4-5x improvement while other
optimizations, like access widening or ensuring there are no dependencies through the DDR, can
provide even bigger performance improvements. Typically, bursting is useful when you have
contention on the DDR ports from multiple competing kernels.

The burst feature of the AXI4 protocol improves the throughput of the load-store functions by
reading/writing chunks of data to or from the global memory in a single request. The larger the
size of the data, the higher the throughput. This metric is calculated as follows ((#of bytes
transferred)* (kernel frequency)/(Time)). The maximum kernel interface bitwidth is 512 bits, and if
the kernel is compiled to run at 300 MHz then it can theoretically achieve (512* 300 Mhz)/1 sec
= ~17 GB/s for a DDR.

Figure 56: AXI Protocol

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 245Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Memory
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Memory
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=245

The figure above shows how the AXI protocol works. The HLS kernel sends out a read request
for a burst of length 8 and then sends a write request burst of length 8. The read latency is
defined as the time taken between the sending of the read request burst to when the data from
the first read request in the burst is received by the kernel. Similarly, the write latency is defined
as the time taken between when data for the last write in the write burst is sent and the time the
write acknowledgment is received by the kernel. Read requests are usually sent at the first
available opportunity while write requests get queued until the data for each write in the burst
becomes available.

To understand the underlying semantics of burst transfers consider the following code snippet:

for(size_t i = 0; i < size; i++) {
 out[f(i)] = in[f(i)]);
}

Vitis HLS performs automatic burst optimization, which intelligently aggregates the memory
accesses inside the loops/functions from the user code and performs read/write to the global
memory of a particular size. These read/writes are converted into a read request, write request,
and write response to the global memory. Depending on the memory access pattern Vitis HLS
automatically inserts these read and write requests either outside the loop bound or inside the
loop body. Depending on the placement of these requests, Vitis HLS defines two types of burst
requests: sequential burst and pipelined burst.

Burst Semantics

For a given kernel, the HLS compiler implements the burst analysis optimization as a multi-pass
optimization, but on a per function basis. Bursting is only done for a function and bursting across
functions is not supported. The burst optimizations are reported in the Synthesis Summary
report, and missed burst opportunities are also reported to help you improve burst optimization.

At first, the HLS compiler looks for memory accesses in the basic blocks of the function, such as
memory accesses in a sequential set of statements inside the function. Assuming the
preconditions of bursting are met, each burst inferred in these basic blocks is referred to as
sequential burst. The compiler will automatically scan the basic block to build the longest
sequence of accesses into a single sequential burst.

The compiler then looks at loops and tries to infer what are known as pipeline bursts. A pipeline
burst is the sequence of reads/writes across the iterations of a loop. The compiler tries to infer
the length of the burst by analyzing the loop induction variable and the trip count of the loop. If
the analysis is successful, the compiler can chain the sequences of reads/writes in each iteration
of the loop into one long pipeline burst. The compiler today automatically infers a pipeline or a
sequential burst, but there is no way to request a specific type of burst. The code needs to be
written so as to cause the tool to infer the pipeline or sequential burst.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 246Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=246

Pipeline Burst

Pipeline burst improves the throughput of the functions by reading or writing large amounts, or
the maximum amount of data in a single request. The advantage of the pipeline burst is that the
future requests (i+1) do not have to wait for the current request (i) to finish because the read
request, write request, and write response are outside the loop body and performs the requests
as soon as possible, as shown in the code example below. This significantly improves the
throughput of the functions as it takes less time to read/write the whole loop bound.

rb = ReadReq(i, size);
wb = WriteReq(i, size);
for(size_t i = 0; i < size; i++) {
 Write(wb, i) = f(Read(rb, i));
}
WriteResp(wb);

Figure 57: Pipeline Burst

If the compiler can successfully deduce the burst length from the induction variable (size) and
the trip count of the loop, it will infer one big pipeline burst and will move the ReadReq,
WriteReq and WriteResp calls outside the loop, as shown in the Pipeline Burst code example.
So, the read requests for all loop iterations are combined into one read request and all the write
requests are combined into one write request. Note that all read requests are typically sent out
immediately while write requests are only sent out after the data becomes available.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 247Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=247

However, if any of the preconditions of bursting are not met, as described in Preconditions and
Limitations of Burst Transfer, the compiler may not infer a pipeline burst but will instead try and
infer a sequential burst where the ReadReq, WriteReg and WriteResp are alongside the read/
write accesses being burst optimized, as shown in the Sequential Burst code example. In this
case, the read and write requests for each loop iteration are combined into one read or write
request.

Sequential Burst

A sequential burst consists of smaller data sizes where the read requests, write requests, and
write responses are inside a loop body as shown in the following code example.

for(size_t i = 0; i < size; i++) {
 rb = ReadReq(i, 1);
 wb = WriteReq(i, 1);
 Write(wb, i) = f(Read(rb, i));
 WriteResp(wb);
}

The drawback of sequential burst is that a future request (i+1) depends on the current request (i)
finishing because it is waiting for the read request, write request, and write response to
complete. This will create gaps between requests as shown in the figure below.

Figure 58: Sequential Burst

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 248Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=248

A sequential burst is not as effective as pipeline burst because it is reading or writing a small data
size multiple times to compensate for the loop bounds. Although this will have a significant
impact on the throughput, sequential burst is still better than no burst. Vitis HLS uses this burst
technique if your code does not adhere to the Preconditions and Limitations of Burst Transfer.

TIP: The size of burst requests can be further partitioned into multiple requests of user-specified size,
which is controlled using the max_read_burst_length  and max_write_burst_length  of the
INTERFACE pragma or directive, as discussed in Options for Controlling AXI4 Burst Behavior.

Preconditions and Limitations of Burst Transfer

Bursting Preconditions

Bursting is about aggregating successive memory access requests. Here are the set of
preconditions that these successive accesses must meet for the bursting optimization to launch
successfully:

• Must be all reads, or all writes – bursting reads and writes is not possible.

• Must be a monotonically increasing order of access (both in terms of the memory location
being accessed as well as in time). You cannot access a memory location that is in between
two previously accessed memory locations.

• Must be consecutive in memory – one next to another with no gaps or overlap and in forward
order.

• The number of read/write accesses (or burst length) must be determinable before the request
is sent out. This means that even if the burst length is computed at runtime, it must be
computed before the read/write request is sent out.

• If bundling two arrays to the same M-AXI port, bursting will be done only for one array, at
most, in each direction at any given time.

• There must be no dependency issues from the time a burst request is initiated and finished.

TIP: The volatile  qualifier prevents burst access to or from the variable.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 249Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=249

Outer Loop Burst Failure Due to Overlapping Memory Accesses

Outer loop burst inference will fail in the following example because both iteration 0 and
iteration 1 of the loop L1 access the same element in arrays a and b. Burst inference is an all or
nothing type of optimization - the tool will not infer a partial burst. It is a greedy algorithm that
tries to maximize the length of the burst. The auto-burst inference will try to infer a burst in a
bottom up fashion - from the inner loop to the outer loop, and will stop when one of the
preconditions is not met. In the example below the burst inference will stop when it sees that
element 8 is being read again, and so an inner loop burst of length 9 will be inferred in this case.

L1: for (int i = 0; i < 8; ++i)
 L2: for (int j = 0; j < 9; ++j)
 b[i*8 + j] = a[i*8 + j];

itr 0: |0 1 2 3 4 5 6 7 8|
itr 1: | 8 9 10 11 12 13 14 15 16|

Usage of ap_int/ap_uint Types as Loop Induction Variables

Because the burst inference depends on the loop induction variable and the trip count, using
non-native types can hinder the optimization from firing. It is recommended to always use
unsigned integer type for the loop induction variable.

Must Enter Loop at Least Once

In some cases, the compiler can fail to infer that the max value of the loop induction variable can
never be zero – that is, if it cannot prove that the loop will always be entered. In such cases, an
assert statement will help the compiler infer this.

assert (N > 0);
L1: for(int a = 0; a < N; ++a) { … }

Inter or Intra Loop Dependencies on Arrays

If you write to an array location and then read from it in the same iteration or the next, this type
of array dependency can be hard for the optimization to decipher. Basically, the optimization will
fail for these cases because it cannot guarantee that the write will happen before the read.

Conditional Access to Memory

If the memory accesses are being made conditionally, it can cause the burst inferencing algorithm
to fail as it cannot reason through the conditional statements. In some cases, the compiler will
simplify the conditional and even remove it but it is generally recommended to not use
conditional statements around the memory accesses.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 250Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=250

M-AXI Accesses Made from Inside a Function Called from a Loop

Cross-functional array access analysis is not a strong suit for compiler transformations such as
burst inferencing. In such cases, users can inline the function using the INLINE pragma or
directive to avoid burst failures.

void my_function(hls::stream<T> &out_pkt, int *din, int input_idx) {
 T v;
 v.data = din[input_idx];
 out_pkt.write(v);
}

void my_kernel(hls::stream<T> &out_pkt,
 int *din,
 int num_512_bytes,
 int num_times) {
#pragma HLS INTERFACE mode=m_axi port = din offset=slave bundle=gmem0
#pragma HLS INTERFACE mode=axis port=out_pkt
#pragma HLS INTERFACE mode=s_axilite port=din bundle=control
#pragma HLS INTERFACE mode=s_axilite port=num_512_bytes bundle=control
#pragma HLS INTERFACE mode=s_axilite port=num_times bundle=control
#pragma HLS INTERFACE mode=s_axilite port=return bundle=control

unsigned int idx = 0;
L0: for (int i = 0; i < ntimes; ++i) {
 L1: for (int j = 0; j < num_512_bytes; ++j) {
#pragma HLS PIPELINE
 my_function(out_pkt, din, idx++);
 }
}

Burst inferencing will fail because the memory accesses are being made from a called function.
For the burst inferencing to work, it is recommended that users inline any such functions that are
making accesses to the M-AXI memory.

An additional reason the burst inferencing will fail in this example is that the memory accessed
through din in my_function, is defined by a variable (idx) which is not a function of the loop
induction variables i and j, and therefore may not be sequential or monotonic. Instead of
passing idx, use (i*num_512_bytes+j).

Pipelined Burst Inference on a Dataflow Loop

Burst inference is not supported on a loop that has the DATAFLOW pragma or directive.
However, each process/task inside the dataflow loop can have bursts. Also, sharing of M-AXI
ports is not supported inside a dataflow region because the tasks can execute in parallel.

Options for Controlling AXI4 Burst Behavior

An optimal AXI4 interface is one in which the design never stalls while waiting to access the bus,
and after bus access is granted, the bus never stalls while waiting for the design to read/write.
There are many elements of the design that affect the system performance and burst transfer,
such as the following:

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 251Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=251

• Latency

• Port Width

• Multiple Ports

• Specified Burst Length

• Number of Outstanding Reads/Writes

Latency

The read latency is defined as the time taken between sending the burst read request to when
the kernel receives the data from the first read request in the burst. Similarly, the write latency is
defined as the time it takes between when data for the last write in the burst is sent and the time
the write response is received by the kernel. These latencies can be non-deterministic since they
depend on system characteristics such as congestion on the DDR access. Because of this Vitis
HLS can not accurately determine the memory read/write latency during synthesis, and so uses a
default latency of 64 kernel cycles to schedule the requests and operations as below.

• It schedules the read/write requests and waits for the data, in parallel perform memory-
independent operations, such as working on streams or compute

• Wait to schedule new read/write requests

TIP: The default tool latency can be changed using the LATENCY pragma or directive.

To help you understand the various latencies that are possible in the system, the following figure
shows what happens when an HLS kernel sends a burst to the DDR.

Figure 59: Burst Transaction Diagram

HLS Kernel

Vivado HLS IP

M-AXI Adapter

Addr

Data

AXI
Interconnect MIG DDR

5 to 7 cycles ~30 cycles 9 to 14 cycles

#pragma HLS INTERFACE m_axi...latency = ?

X24687-100620

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 252Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=252

When your design makes a read/write request, the request is sent to the DDR through several
specialized helper modules. First, the M-AXI adapter serves as a buffer for the requests created
by the HLS kernel. The adapter contains logic to cut large bursts into smaller ones (which it needs
to do to prevent hogging the channel or if the request crosses the 4 KB boundary, see Vivado
Design Suite: AXI Reference Guide (UG1037)), and can also stall the sending of burst requests
(depending on the maximum outstanding requests parameter) so that it can safely buffer the
entirety of the data for each kernel. This can slightly increase write latency but can resolve
deadlock due to concurrent requests (read or write) on the memory subsystem. You can
configure the M-AXI interface to hold the write request until all data is available using
config_interface-m_axi_conservative_mode.

Getting through the adapter will cost a few cycles of latency, typically 5 to 7 cycles. Then, the
request goes to the AXI interconnect that routes the kernel’s request to the MIG and then
eventually to the DDR. Getting through the interconnect is expensive in latency and can take
around 30 cycles. Finally, getting to the DDR and back can cost anywhere from 9 to 14 cycles.
These are not precise measurements of latency but rather estimates provided to show the
relative latency cost of these specialized modules. For more precise measurements, you can test
and observe these latencies using the Application Timeline report for your specific system, as
described in AXI Performance Case Study.

TIP: For information about the Application Timeline report, see Application Timeline in the Vitis Unified
Software Platform Documentation.

Another way to view the latencies in the system is as follows: the interconnect has an average II
of 2 while the DDR controller has an average II of 4-5 cycles on requests (while on the data they
are both II=1). The interconnect arbitration strategy is based on the size of read/write requests,
and so data requested with longer burst lengths get prioritized over requests with shorter bursts
(thus leading to a bigger channel bandwidth being allocated to longer bursts in case of
contention). Of course, a large burst request has the side-effect of preventing anyone else from
accessing the DDR, and therefore there must be a compromise between burst length and
reducing DDR port contention. Fortunately, the large latencies help prevent some of this port
contention, and effective pipelining of the requests can significantly improve the bandwidth
throughput available in the system.

Latency does not affect loops/functions with pipelined bursts since the burst requests the
maximum size in a single request.

Latency effects loops/functions with sequential burst in two possible ways:

• If the system read/write latency is larger than the default tool latency, Vitis HLS has to wait
for the data. Changing the LATENCY pragma or directive will not improve the performance of
the system.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 253Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://docs.xilinx.com/access/sources/dita/topic?resourceid=prd1522349552911.html&Doc_Version=2022.2%20English&url=ug1393-vitis-application-acceleration
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=253

• If the read/write latency is less than the tool default, then Vitis HLS sits in an idle state and
wastes the remaining kernel cycles. This can impact the performance of the design because
during this idle state it does not perform tasks. As you can see from the figure below the
difference between the system latency and the default latency parameter will cause the
sequential requests to be delayed further in time. This causes a significant loss of throughput.

Figure 60: Default Tool Latency

However, when you reduce the tool latency using the LATENCY pragma or directive, Vitis HLS
will tightly pack the requests for a sequential burst, as shown in the following figure.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 254Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=254

Figure 61: Adjusted Tool Latency

RECOMMENDED: Latency has a significant impact on sequential burst. Decreasing the default tool
latency can improve the system performance.

Port Width

The throughput of load-store functions can be further improved by maximizing the number of
bytes transferred. Vitis HLS supports kernel ports up to 512 bits wide, which means that a kernel
can read or write up to 64 bytes per clock cycle per port.

RECOMMENDED: You should maximize the port width of the interface, i.e., the bit-width of each AXI
port, by setting it to 512 bits (64 bytes).

Vitis HLS also supports automatic port width optimization by analyzing the memory access
pattern of the source code. If the code satisfies the preconditions and limitations for burst
access, it will automatically resize the port to 512 bit width in the Vitis kernel flow.

IMPORTANT! If the size and number of iterations are variable at compile time, then the tool will not
automatically widen port widths.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 255Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=255

If the tool cannot automatically widen the port, you can manually change the port width by using
Vector Data Types or Arbitrary Precision (AP) Data Types as the data type of the port.

Multiple Ports

The throughput of load-store functions can be further improved by maximizing concurrent read/
writes. In Vitis HLS, the function arguments by default are bundled/mapped/grouped to a single
port. Bundling ports into a single port helps save resources. However, a single port can limit the
performance of the kernel because all the memory transfers have to go through a single port. The
m_axi interface has independent READ and WRITE channels, so a single port can read and write
simultaneously.

Using multiple ports lets you increase the bandwidth and throughput of the kernel by creating
multiple interfaces to connect to different memory banks, as shown in the Multi-DDR tutorial, or
the accesses will be sequential. When multiple arguments are accessing the same memory port
or memory bank, an arbiter will sequence the concurrent accesses to the same memory port or
bank. Having multiple ports connected to different memory banks increases the throughput of
the load and store functions, and as a result, the compute block should also be equally scaled to
meet the throughput demand from the load and store functions otherwise it will put back-
pressure or stalls on the load-store functions.

RECOMMENDED: Analyze the concurrent memory reads/writes and have a dedicated/independent port
for concurrent accesses.

Number of Outstanding Reads/Writes

The throughput of load-store functions can be further improved by allowing the system to hide
some of the memory latency. The m_axi_num_read_outstanding and
m_axi_num_write_outstanding options of the config_interface command, or of the
INTERFACE pragma or directive, lets the Kernel control the number of pipelined memory
requests sent to the global memory without waiting for the previous request to complete.

Increasing the number of pipelined requests increases the pipeline depth of the read/write
requests, which will cost additional BRAM/URAM resources.

Note: In most cases where burst length >=16, the default number of outstanding reads/writes should be
sufficient. For a burst of size less than 16, Xilinx recommends doubling the size of the number of
outstanding from the default of 16.

Defining Burst Attributes with the INTERFACE Pragma

To create the optimal AXI4 interface, the following command options are provided in the
INTERFACE directive to specify the behavior of the bursts and optimize the efficiency of the
AXI4 interface.

Note that some of these options can use internal storage to buffer data and this may have an
impact on area and resources:

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 256Send Feedback

https://github.com/Xilinx/Vitis-Tutorials/tree/2021.1/Hardware_Acceleration/Feature_Tutorials/04-mult-ddr-banks
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=256

• latency: Specifies the expected latency of the AXI4 interface, allowing the design to initiate
a bus request several cycles (latency) before the read or write is expected. If this figure it too
low, the design will be ready too soon and may stall waiting for the bus. If this figure is too
high, bus access may be granted but the bus may stall waiting on the design to start the
access. Default latency in Vitis HLS is 64.

• max_read_burst_length: Specifies the maximum number of data values read during a
burst transfer. Default value is 16.

• num_read_outstanding: Specifies how many read requests can be made to the AXI4 bus,
without a response, before the design stalls. This implies internal storage in the design: a FIFO
of size num_read_outstanding*max_read_burst_length*word_size. Default value
is 16.

• max_write_burst_length: Specifies the maximum number of data values written during a
burst transfer. Default value is 16.

• num_write_outstanding: Specifies how many write requests can be made to the AXI4
bus, without a response, before the design stalls. This implies internal storage in the design: a
FIFO of size num_read_outstanding*max_read_burst_length*word_size. Default
value is 16.

The following INTERFACE pragma example can be used to help explain these options:

#pragma HLS interface mode=m_axi port=input offset=slave
bundle=gmem0
depth=1024*1024*16/(512/8) latency=100 num_read_outstanding=32
num_write_outstanding=32
max_read_burst_length=16 max_write_burst_length=16

• The interface is specified as having a latency of 100. The HLS compiler seeks to schedule the
request for burst access 100 clock cycles before the design is ready to access the AXI4 bus.

• To further improve bus efficiency, the options num_write_outstanding and
num_read_outstanding ensure the design contains enough buffering to store up to 32
read and/or write accesses. Each request will require its own buffer. This allows the design to
continue processing until the bus requests are serviced.

• Finally, the options max_read_burst_length and max_write_burst_length ensure
the maximum burst size is 16 and that the AXI4 interface does not hold the bus for longer
than this. The HLS tool will partition longer bursts according to the specified burst length, and
report this condition with a message like the following:

Multiple burst reads of length 192 and bit width 128 in loop
'VITIS_LOOP_2'(./src/filter.cpp:247:21)has been inferred on port
'mm_read'.
These burst requests might be further partitioned into multiple requests
during RTL generation based on the max_read_burst_length settings.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 257Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=257

Commands to Configure the Burst

These commands configure global settings for the tool to optimize the AXI4 interface for the
system in which it will operate. The efficiency of the operation depends on these values being set
accurately. The provided default values are conservative, and may require changing depending on
the memory access profile of your design.

Table 16: Vitis HLS Controls

Vitis HLS Command Value Description
config_rtl -
m_axi_conservative_mode

bool
default=true

Delay M-AXI each write request until
the associated write data are entirely
available (typically, buffered into the
adapter or already emitted). This can
slightly increase write latency but can
resolve deadlock due to concurrent
requests (read or write) on the memory
subsystem.

config_interface -
m_axi_latency

uint
0 is auto
default=0 (for Vivado IP flow)
default=64 (for Vitis Kernel flow)

Provide the scheduler with an expected
latency for M-AXI accesses. Latency is
the delay between a read request and
the first read data, or between the last
write data and the write response.
Note that this number need not be
exact, underestimation makes for a
lower-latency schedule, but with longer
dynamic stalls. The scheduler will
account for the additional adapter
latency and add a few cycles.

config_interface -
m_axi_min_bitwidth

uint
default=8

Minimum bitwidth for M-AXI interfaces
data channels. Must be a power-of-two
between 8 and 1024. Note that this
does not necessarily increase
throughput if the actual accesses are
smaller than the required interface.

config_interface -
m_axi_max_bitwidth

uint
default=1024

Minimum bitwidth for M-AXI interfaces
data channels. Must be a power-of-two
between 8 and 1024. Note that this
does decrease throughput if the actual
accesses are bigger than the required
interface as they will be split into a
multi-cycle burst of accesses.

config_interface -
m_axi_max_widen_bitwidth

uint
default=0 (for Vivado IP flow)
default=512 (for Vitis Kernel flow)

Allow the tool to automatically widen
bursts on M-AXI interfaces up to the
chosen bitwidth. Must be a power-of-
two between 8 and 1024. Note that
burst widening requires strong
alignment properties (in addition to
burst).

config_interface -
m_axi_auto_max_ports

bool
default=false

If the option is false, all the M-AXI
interfaces that are not explicitly
bundled will be bundled into a single
common interface, thus minimizing
resource usage (single adapter). If the
option is true, all the M-AXI interfaces
that are not explicitly bundled will be
mapped into individual interfaces, thus
increasing the resource usage (multiple
adapters).

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 258Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=258

Table 16: Vitis HLS Controls (cont'd)

Vitis HLS Command Value Description
config_interface -
m_axi_alignment_byte_size

uint
default=1 (for Vivado IP flow)
default=64 (for Vitis Kernel flow)

Assume top function pointers that are
mapped to M-AXI interfaces are at least
aligned to the provided width in byte
(power of two). This can help automatic
burst widening. Warning: behavior will
be incorrect if the pointers are not
actually aligned at runtime.

config_interface -
m_axi_num_read_outstanding

uint
default=16

Default value for M-AXI
num_read_outstanding interface
parameter.

config_interface -
m_axi_num_write_outstanding

uint
default=16

Default value for M-AXI
num_write_outstanding interface
parameter.

config_interface -
m_axi_max_read_burst_length

uint
default=16

Default value for M-AXI
max_read_burst_length interface
parameter.

config_interface -
m_axi_max_write_burst_length

uint
default=16

Default value for M-AXI
max_write_burst_length interface
parameter.

Examples of Recommended Coding Styles

As described in Synthesis Summary, Vitis HLS issues a report summarizing burst activities and
also identifying burst failures. If bursts of variable lengths are done, then the report will mention
that bursts of variable lengths were inferred. The compiler also provides burst messages that can
be found in the compiler log, vitis_hls.log. These messages are issued before the
scheduling step.

Simple Read/Write Burst Inference

The following example is the standard way of reading and writing to the DDR and inferring a read
and write burst. The Vitis HLS compiler will report the following burst inferences for the example
below:

INFO: [HLS 214-115] Burst read of variable length and bit width 32 has been
inferred on port 'gmem'
INFO: [HLS 214-115] Burst write of variable length and bit width 32 has
been inferred on port 'gmem' (./src/vadd.cpp:75:9).

The code for this example follows:

/****** BEGIN EXAMPLE *******/

#define DATA_SIZE 2048
// Define internal buffer max size
#define BURSTBUFFERSIZE 256

//TRIPCOUNT identifiers
const unsigned int c_min = 1;
const unsigned int c__max = BURSTBUFFERSIZE;
const unsigned int c_chunk_sz = DATA_SIZE;

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 259Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=259

extern "C" {
void vadd(int *a, int size, int inc_value) {
 // Map pointer a to AXI4-master interface for global memory access
#pragma HLS INTERFACE mode=m_axi port=a offset=slave bundle=gmem
max_read_burst_length=256 max_write_burst_length=256
 // We also need to map a and return to a bundled axilite slave interface
#pragma HLS INTERFACE mode=s_axilite port=a bundle=control
#pragma HLS INTERFACE mode=s_axilite port=size bundle=control
#pragma HLS INTERFACE mode=s_axilite port=inc_value bundle=control
#pragma HLS INTERFACE mode=s_axilite port=return bundle=control

 int burstbuffer[BURSTBUFFERSIZE];

 // Per iteration of this loop perform BURSTBUFFERSIZE vector addition
 for (int i = 0; i < size; i += BURSTBUFFERSIZE) {
#pragma HLS LOOP_TRIPCOUNT min=c_min*c_min max=c_chunk_sz*c_chunk_sz/
(c_max*c_max)
 int chunk_size = BURSTBUFFERSIZE;
 //boundary checks
 if ((i + BURSTBUFFERSIZE) > size)
 chunk_size = size - i;

 // memcpy creates a burst access to memory
 // multiple calls of memcpy cannot be pipelined and will be
scheduled sequentially
 // memcpy requires a local buffer to store the results of the
memory transaction
 memcpy(burstbuffer, &a[i], chunk_size * sizeof(int));

 // Calculate and write results to global memory, the sequential write
in a for loop can be
 // inferred as a memory burst access
 calc_write:
 for (int j = 0; j < chunk_size; j++) {
 #pragma HLS LOOP_TRIPCOUNT min=c_size_max max=c_chunk_sz
 #pragma HLS PIPELINE II=1
 burstbuffer[j] = burstbuffer[j] + inc_value;
 a[i + j] = burstbuffer[j];
 }
 }
}

Pipelining Between Bursts

The following example will infer bursts of length N:

for(int x=0; x < k; ++x) {
 int off = f(x);
 for(int i = 0; i < N; ++i) {
 #pragma HLS PIPELINE II=1
 ... = gmem[off + i];
 }
}

But notice that the outer loop is not pipelined. This means that while there is pipelining inside
bursts, there won't be any pipelining between bursts.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 260Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=260

To remedy this you can unroll the inner loop and pipeline the outer loop to get pipelining
between bursts as well. The following example will still infer bursts of length N, but now there
will also be pipelining between bursts leading to higher throughput:

for(int x=0; x < k; ++x) {
 #pragma HLS PIPELINE II=N
 int off = f(x);
 for(int i = 0; i < N; ++i) {
 #pragma HLS UNROLL
 ... = gmem[off + i];
 }
}

Accessing Row Data from a Two-Dimensional Array

The following is an example of reading/writing to/from a two dimensional array. Vitis HLS infers
read and write bursts and issues the following messages:

INFO: [HLS 214-115] Burst read of length 256 and bit width 512 has been
inferred on port 'gmem' (./src/row_array_2d.cpp:43:5)
INFO: [HLS 214-115] Burst write of length 256 and bit width 512 has been
inferred on port 'gmem' (./src/row_array_2d.cpp:56:5)

Notice that a bit width of 512 is achieved in this example. This is more efficient than the 32 bit
width achieved in the simple example above. Bursting wider bit widths is another way bursts can
be optimized as discussed in Automatic Port Width Resizing.

The code for this example follows:

/****** BEGIN EXAMPLE *******/
// Parameters Description:
// NUM_ROWS: matrix height
// WORD_PER_ROW: number of words in a row
// BLOCK_SIZE: number of words in an array
#define NUM_ROWS 64
#define WORD_PER_ROW 64
#define BLOCK_SIZE (WORD_PER_ROW*NUM_ROWS)

// Default datatype is integer
typedef int DTYPE;
typedef hls::stream<DTYPE> my_data_fifo;

// Read data function: reads data from global memory
void read_data(DTYPE *inx, my_data_fifo &inFifo) {
read_loop_i:
 for (int i = 0; i < NUM_ROWS; ++i) {
 read_loop_jj:
 for (int jj = 0; jj < WORD_PER_ROW; ++jj) {
 #pragma HLS PIPELINE II=1
 inFifo << inx[WORD_PER_ROW * i + jj];
 ;
 }
 }
}

// Write data function - writes results to global memory
void write_data(DTYPE *outx, my_data_fifo &outFifo) {

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 261Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=261

write_loop_i:
 for (int i = 0; i < NUM_ROWS; ++i) {
 write_loop_jj:
 for (int jj = 0; jj < WORD_PER_ROW; ++jj) {
 #pragma HLS PIPELINE II=1
 outFifo >> outx[WORD_PER_ROW * i + jj];
 }
 }
}

// Compute function is pretty simple because this example is focused on
efficient
// memory access pattern.
void compute(my_data_fifo &inFifo, my_data_fifo &outFifo, int alpha) {
compute_loop_i:
 for (int i = 0; i < NUM_ROWS; ++i) {
 compute_loop_jj:
 for (int jj = 0; jj < WORD_PER_ROW; ++jj) {
 #pragma HLS PIPELINE II=1
 DTYPE inTmp;
 inFifo >> inTmp;
 DTYPE outTmp = inTmp * alpha;
 outFifo << outTmp;
 }
 }
}

extern "C" {
 void row_array_2d(DTYPE *inx, DTYPE *outx, int alpha) {
 // AXI master interface
 #pragma HLS INTERFACE mode=m_axi port = inx offset = slave bundle = gmem
 #pragma HLS INTERFACE mode=m_axi port = outx offset = slave bundle =
gmem
 // AXI slave interface
 #pragma HLS INTERFACE mode=s_axilite port = inx bundle = control
 #pragma HLS INTERFACE mode=s_axilite port = outx bundle = control
 #pragma HLS INTERFACE mode=s_axilite port = alpha bundle = control
 #pragma HLS INTERFACE mode=s_axilite port = return bundle = control

 my_data_fifo inFifo;
 // By default the FIFO depth is 2, user can change the depth by
using
 // #pragma HLS stream variable=inFifo depth=256
 my_data_fifo outFifo;

 // Dataflow enables task level pipelining, allowing functions and
loops to execute
 // concurrently. For more details please refer to UG902.
 #pragma HLS DATAFLOW
 // Read data from each row of 2D array
 read_data(inx, inFifo);
 // Do computation with the acquired data
 compute(inFifo, outFifo, alpha);
 // Write data to each row of 2D array
 write_data(outx, outFifo);
 return;
 }
}

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 262Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=262

Summary

Write code in such a way that bursting can be inferred. Ensure that none of the preconditions are
violated.

Bursting does not mean that you will get all your data in one shot – it is about merging the
requests together into one request, but the data will arrive sequentially, one after another.

Burst length of 16 is ideal, but even burst lengths of 8 are enough. Bigger bursts have more
latency while shorter bursts can be pipelined. Do not confuse bursting with pipelining, but note
that bursts can be pipelined with other bursts.

If your bursts are of fixed length, you can unroll the inner loop where bursts are inferred and
pipeline the outer loop. This will achieve the same burst length, but also pipelining between the
bursts to enable higher throughput.

For greater throughput, focus on widening the interface up to 512 bits rather than simply
achieving longer bursts.

Bigger bursts have higher priority with the AXI interconnect. No dynamic arbitration is done
inside the kernel.

You can have two m_axi ports connected to same DDR to model mutually exclusive access
inside kernel, but the AXI interconnect outside the kernel will arbitrate competing requests.

One way to get around the out-of-order access restriction is to create your own buffer in BRAM,
store the bursts in this buffer and then use this buffer to do out of order accesses. This is
typically called a line buffer and is a common optimization used in video processing.

Review the Burst Optimization section of the Synthesis Summary report to learn more about
burst optimizations in the design, and missed burst opportunities. If automatic burst is not
occurring in your design, you may want to use the hls::burst_maxi data type for manual
burst, as described in Using Manual Burst.

Using Manual Burst
Burst transfers improve the throughput of the I/O of the kernel by reading or writing large
chunks of data to the global memory. The larger the size of the burst, the higher the throughput,
this metric is calculated as follows ((# of bytes transferred)* (kernel frequency)/(Time)). The
maximum kernel interface bitwidth is 512 bits and if the kernel is compiled at 300 MHz, then it
can theoretically achieve = (80-95% efficiency of the DDR)*(512* 300 Mhz)/1 sec = ~17-19
GB/s for a DDR. As explained, Vitis HLS performs automatic burst optimizations which
intelligently aggregates the memory accesses of the loops/functions from the user code and
performs read/write of a particular size in a single burst request. However, burst transfer also has
requirements that can sometimes be overburdening or difficult to meet, as discussed in

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 263Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=263

Preconditions and Limitations of Burst Transfer. In such cases, if you are familiar with the AXI4
m_axi protocol and understand hardware transaction modeling you can implement manual
burst transfers using the hls::burst_maxi class as described below. Refer to Vitis-HLS-
Introductory-Examples/Interface/Memory/manual_burst on Github for examples of these
concepts.

hls::burst_maxi Class

The hls::burst_maxi class provides a mechanism to perform read/write access to the DDR.
These methods will translate the class methods usage behavior into respective AXI4 protocol and
send and receive requests on the AXI4 bus signals - AW, AR, WDATA, BVALID, RDATA. These
methods control the burst behavior of the HLS scheduler. The adapter, which receives the
commands from the scheduler, is responsible for sending the data to the DDR. These requests
will adhere to the user specified INTERFACE pragma options, such as
max_read_burst_length and max_write_burst_length. The class methods should only
be used in the kernel code, and not in the test bench (except for the class constructor as
described below).

• Constructors:

○ burst_maxi(const burst_maxi &B) : Ptr(B.Ptr) {}

○ burst_maxi(T *p) : Ptr(p) {}

IMPORTANT! The HLS design and test bench must be in different files, because the constructor
burst_maxi(T *p)  is only available in C-simulation model.

• Read Methods:

○ void read_request(size_t offset, size_t len);

This method is used to perform a read request to the m_axi adapter. The function returns
immediately if the read request queue inside m_axi adapter is not full, otherwise it waits
until space becomes available.

• offset: Specify the memory offset from which to read the data

• len: Specify the scheduler burst length. This burst length is sent to the adapter, which
can then convert it to the standard AXI AMBA protocol

○ T read();

This method is used to transfer the data from the m_axi adapter to the scheduler FIFO. If
the data is not available, read() will be blocking. The read() method should be called
len number of times, as specified in the read_request().

• Write Methods:

○ void write_request(size_t offset, size_t len);

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 264Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Memory/manual_burst
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Memory/manual_burst
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=264

This method is used to perform a write request to the m_axi adapter. The function returns
immediately if the write request queue inside m_axi adapter is not full.

• offset: Specify the memory offset into which the data should be written

• len: Specify the scheduler burst length. This burst length is sent to the adapter, which
can then convert it to the standard AXI AMBA protocol

○ void write(const T &val, ap_int<sizeof(T)> byteenable_mask = -1);

This method is used to transfer data from the internal buffer of the scheduler to the m_axi
adapter. It blocks if the internal write buffer is full. The byteenable_mask is used to enable
the bytes in the WDATA. By default it will enable all the bytes of the transfer. The
write() method should be called len number of times, as specified in the
write_request().

○ void write_response();

This method blocks until all write responses are back from the global memory. This method
should be called the same number of times as write_request().

Using Manual Burst in HLS Design

In the HLS design, when you find that automatic burst transfers are not working as desired, and
you cannot optimize the design as needed, you can implement the read and write transactions
using the hls::burst_maxi object. In this case, you will need to modify your code to replace
the original pointer argument with burst_maxi as a function argument. These arguments must
be accessed by the explicit read and write methods of the burst_maxi class, as shown in the
following examples.

The following shows an original code sample, which uses a pointer argument to read data from
global memory.

void dut(int *A) {
 for (int i = 0; i < 64; i++) {
 #pragma pipeline II=1
 ... = A[i]
 }
}

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 265Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=265

In the modified code below, the pointer is replaced with the hls::burst_maxi<> class objects
and methods. In the example, the HLS scheduler puts 4 requests of len 16 from port A to the
m_axi adapter. The Adapter stores them inside a FIFO and whenever the AW/AR bus is
available it will send the request to the global memory. In the 64 loop iterations, the read()
command issues a blocking call that will wait for the data to come back from the global memory.
After the data becomes available the HLS scheduler will read it from the m_axi adapter FIFO.

#include "hls_burst_maxi.h"
void dut(hls::burst_maxi<int> A) {
 // Issue 4 burst requests
 A.read_request(0, 16); // request 16 elements, starting from A[0]
 A.read_request(128, 16); // request 16 elements, starting from A[128]
 A.read_request(256, 16); // request 16 elements, starting from A[256]
 A.read_request(384, 16); // request 16 elements, starting from A[384]
 for (int i = 0; i < 64; i++) {
 #pragma pipeline II=1
 ... = A.read(); // Read the requested data
 }
}

In example 2 below, the HLS scheduler/kernel puts 2 requests from port A to the adapter, the
first request of len 2, and the second request of len 1, for a total of 2 write requests. It then
issues corresponding, since the total burst length is 3 write commands. The Adapter stores these
requests inside a FIFO and whenever the AW, W bus is available it will send the request and data
to the global memory. Finally, two write_response commands are used, to await response for
the two write_requests.

void trf(hls::burst_maxi<int> A) {
 A.write_request(0, 2);
 A.write(x); // write A[0]
 A.write_request(10, 1);
 A.write(x, 2); // write A[1] with byte enable 0010
 A.write(x); // write A[10]
 A.write_response(); // response of write_request(0, 2)
 A.write_response(); // response of write_request(10, 1)
}

Using Manual Burst in C-Simulation

You can pass a regular array to the top function, and the array will be transformed to
hls::burst_maxi automatically by the constructor.

IMPORTANT! The HLS design and test bench must be in different files, because the burst_maxi(T
*p)  constructor is only valid for use in C simulation model.

#include "hls_burst_maxi.h"
void dut(hls::burst_maxi<int> A);

int main() {
 int Array[1000];
 dut(Array);

}

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 266Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=266

Using Manual Burst to Optimize Performance

Vitis HLS characterizes two types of burst behaviors: pipeline burst, and sequential burst.

• Pipeline Burst: Pipeline Burst improves throughput by reading or writing the maximum
amount of data in a single request. The compiler infers pipeline burst if the read_request,
write_request and write_response calls are outside the loop, as shown in the following
code example. In the below example the size is a variable that is sent from the testbench.

9 int buf[8192];
10 in.read_request(0, size);
11 for (int i = 0; i < size; i++) {
12 #pragma HLS PIPELINE II=1
13 buf[i] = in.read();
14 out.write_request(0, size*NT);
17 for (int i = 0; i < NT; i++) {
19 for (int j = 0; j < size; j++) {
20 #pragma HLS PIPELINE II=1
21 int a = buf[j];
22 out.write(a);
23 }
24 }
25 out.write_response();

Figure 62: Synthesis Results

As you can see from the figure above, the tool has inferred the burst from the user code and
length is mentioned as variable at compile time.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 267Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=267

Figure 63: Performance Benefits

During the run time the HLS compiler sends a burst request of length = size and the
adapter will partition them into the user-specified burst_length pragma option. In this case
the default burst length is set to 16, which is used in the ARlen and AWlen channels. The
read/write channel achieved maximum throughput since there are no bubbles during the
transfer.

Figure 64: Co-sim Results

• Sequential Burst:

This burst is a sequential burst of smaller data sizes, where the read requests, write requests
and write responses are inside the loop body as shown in the below snippet. The drawback of
the sequential burst is that the future request (i+1) depends on the previous request (i) to
finish since it is waiting for the read request, write request and write response to complete,
this will cause gaps between requests. Sequential burst is not as effective as pipeline burst
because it is reading or writing a small data size multiple times to compensate for the loop
bounds. Although this will limit the improvement to throughput, sequential burst is still better
than no burst.

 void transfer_kernel(hls::burst_maxi<int> in,hls::burst_maxi<int> out,
const int size)
{
 #pragma HLS INTERFACE m_axi port=in depth=512 latency=32 offset=slave
 #pragma HLS INTERFACE m_axi port=out depth=5120 offset=slave latency=32

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 268Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=268

 int buf[8192];

 for (int i = 0; i < size; i++) {
 in.read_request(i, 1);
 #pragma HLS PIPELINE II=1
 buf[i] = in.read();
 }

 for (int i = 0; i < NT; i++) {
 for (int j = 0; j < size; j++) {
 out.write_request(j, 1);
#pragma HLS PIPELINE II=1
 int a = buf[j];
 out.write(a);
 out.write_response();

 }

 }

 }

Figure 65: Synthesis Results

As you can see from the report sample above, the tool achieved a burst of length =1.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 269Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=269

Figure 66: Performance Impacts

The read/write loop R/WDATA channel has gaps equal to read/write latency, as discussed in
AXI4 Master Interface. For the read channel, the loop waits for all the read data to come back
from the global memory. For the write channel, the innermost loop waits for the response
(BVALID) to come back from the global memory. This results in performance degradation. The
co-sim results also show that a 2x degradation in performance for this burst semantics.

Figure 67: Performance Estimates

Features and Limitations

1. If the m_axi element is a struct:

• The struct will be packed into a wide int. Disaggregation of the struct is not allowed.

• The size of struct must be a power-of-2, and should not exceed 1024 bits or the max
width specified by the config_interface -m_axi_max_bitwidth command.

2. ARRAY_PARTITION and ARRAY_RESHAPE of burst_maxi ports is not allowed.

3. You can apply the INTERFACE pragma or directive to hls::burst_maxi, defining an
m_axi interface. If the burst_maxi port is bundled with other ports, all ports in this bundle
must be hls::burst_maxi and must have the same element type.

void dut(hls::burst_maxi<int> A, hls::burst_maxi<int> B, int *C,
hls::burst_maxi<short> D) {
 #pragma HLS interface m_axi port=A offset=slave bundle=gmem // OK
 #pragma HLS interface m_axi port=B offset=slave bundle=gmem // OK
 #pragma HLS interface m_axi port=C offset=slave bundle=gmem // Bad. C

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 270Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=270

must also be hls::burst_maxi type, because it shares the same bundle
'gmem' with A and B
 #pragma HLS interface m_axi port=D offset=slave bundle=gmem // Bad. D
should have 'int' element type, because it shares the same bundle
'gmem' with A and B
}

4. You can use the INTERFACE pragma or directive to specify the num_read_outstanding
and num_write_outstanding, and the max_read_burst_length and
max_write_burst_length to define the size of the internal buffer of the m_axi adapter.

void dut(hls::burst_maxi<int> A) {
 #pragma HLS interface m_axi port=A num_read_outstanding=32
num_write_outstanding=32 max_read_burst_length=16
max_write_burst_length=16
}

5. The INTERFACE pragma or directive max_widen_bitwidth is not supported, because HLS
will not change the bit width of hls::burst_maxi ports.

6. You must make a read_request before read, or write_request before write:

void dut(hls::burst_maxi<int> A) {
 ... = A.read(); // Bad because read() before read_request(). You can
catch this error in C-sim.
 A.read_request(0, 1);
}

7. If the address and life time of the read group (read_request() > read()) and write group
(write_request() > write() > write_response()) overlap, the tool cannot
guarantee the access order. C-simulation will report an error.

void dut(hls::burst_maxi<int> A) {
 A.write_request(0, 1);
 A.write(x);
 A.read_request(0, 1);
 ... = A.read(); // What value is read? It is undefined. It could be
original A[0] or updated A[0].
 A.write_response();
}

void dut(hls::burst_maxi<int> A) {
 A.write_request(0, 1);
 A.write(x);
 A.write_response();
 A.read_request(0, 1);
 ... = A.read(); // this will read the updated A[0].
}

8. If multiple hls::burst_maxi ports are bundled to same m_axi adapter and their
transaction lifetimes overlap, the behavior is unexpected.

void dut(hls::burst_maxi<int> A, hls::burst_maxi<int> B) {
 #pragma HLS INTERFACE m_axi port=A bundle=gmem depth = 10
 #pragma HLS INTERFACE m_axi port=B bundle=gmem depth = 10
 A.read_request(0, 10);
 B.read_request(0, 10);

 for (int i = 0; i < 10; i++) {

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 271Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=271

 #pragma HLS pipeline II=1
 …… = A.read(); // get value of A[0], A[2], A[4] …
 …… = B.read(); // get value of A[1], A[3], A[5] …
 }
}

9. Read or write requests and read or writes in different dataflow process are not supported.
Dataflow checker will report an error: multiple writes in different dataflow
processes are not allowed.

For example:

void transfer(hls::burst_maxi<int> A) {
#pragma HLS dataflow
 IssueRequests(A); // issue multiple wirte_request() of A
 Write(A); // multiple writes to A
 GetResponse(A); // write_response() of A
}

Potential Pitfalls

The following are some concerns you must be aware of when implementing manual burst
techniques:

• Deadlock: Improper use of manual burst can lead to deadlocks.

Too many read_requests before read() commands will cause deadlock because the
read_request loop will push the request into the read requests FIFO, and this FIFO will
only be emptied after the read from the global memory is completed. The job of the read()
command is to read the data from the adapter FIFO and mark the request done, after which
the read_request will be popped from the FIFO and a new request can be pushed onto it.

//reads/writes. will deadlock if N is larger
for (i = 0; i < N; i++)
 { A.read_request(i * 128, 16);}
for (i = 0; i < 16 *N; i++) { … = A.read();}

for (int i = 0; i < N; i++) {
 p.write_request(i * 128, 16);
 }

 for (int i = 0; i < N * 16; i++) {
 p.write(i);
 }

 for (int i = 0; i < N; i++) {
 p.write_response();
 }

In the example above, if N is large then the read_request and read FIFO will be full as it
tends to N/2. The read request loop would not finish, and the read command loop wouldn't
start, which results in deadlock.

Note: This is case also true for write_request() and write() commands.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 272Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=272

• AXI protocol violation: There should be an equal number of write requests and write
responses. An unequal number of requests and responses would lead to AXI protocol violation

AXI Performance Case Study
Introduction

The objective of the case study is to show a step-by-step optimization to improve the
throughput of the read/write loops/functions using HLS metrics. These optimizations will
improve the kernel time and throughput of the system by performing efficient data transfers
from global memory to the kernel. The transfer_kernel example below performs a DDR
simple read/write (of variable size and NUM_ITERATIONS).

TIP: The host code, which is not shown, only transfers the data and enqueues the kernel in an in-order
queue.

1 #include "config.h"
 2 #include "assert.h"
 3 extern "C" {
 4 void transfer_kernel(wd* in,wd* out, const int size, const int iter)
{
 5 ···
 6 wd buf[256];
 7 int off = (size/16);
 8
 9 read_loop: for (int i = 0; i <off; i++)
10 {
11 buf[i] = in[i];
12 }
13
14 write_loop: L1: for (int i = 0; i < iter; i++) {
15 L2: for (int j = 0; j <off; j++) {
16 #pragma HLS PIPELINE II=1
17 out[j+off*i] = buf[j];
18 }
19 }
20 ···
21 }
22 }

This case study is divided into 4 steps:

1. Baseline kernel run time with port width set to 512-bit width

2. Improve performance by changing latency parameter

3. Improve the auto burst inference of the write loop.

4. No further improvements using multiple ports and number write outstanding

Step 1: Baseline the Kernel with 512-bit Port Width

Baseline the kernel time using the default settings. During this run, the auto burst inferences the
following for the read and write loops:

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 273Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=273

• The Read loop achieves the pipeline burst since the tool can predict the consecutive memory
access pattern. So the pipelined requests to read from the DDR of variable size.

• The Write outer loop, L1, gets sequential burst because the compiler iterates over all the
combinations and identifies that since the size is unknown at compile-time, it inserts an if
condition in the L1 loop before the start of the L2 loop. At the same time, the inner-most loop
- L2 achieves pipeline burst. The L2 loop requests a write request of variable size, while L1
waits for all the data of L2 Loop to come back from the DDR to start the next iteration of L1.

After building and running the application, the performance can be evaluated using the Vitis
Analyzer tool to view the reports generated by the build process or the run summary. Review the
Burst Summary available in the Synthesis Report from Vitis HLS. It confirms the success and
failures of the burst for the Read loop and Write loops.

Figure 68: Synthesis Report - Burst Summary

In Vitis Analyzer, the Profile Summary and Timeline Trace reports are also useful tools to analyze
the performance of the FPGA-accelerated application. In the Profile Summary the Kernels &
Compute Unit: Kernel Execution reports the total time required by the transfer_kernel in
the baseline build.

Figure 69: Profile Summary - Kernel Execution

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 274Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=274

Step 2: Improve Performance Latency

Vitis HLS uses the default latency of 64 kernel cycles, which in some cases may be too high. The
latency depends on the system characteristics. For this example, the latency is reduced from the
default to 21 kernel cycles. The code can be changed to specify the latency using the
INTERFACE pragma or directive as shown in the following example:

1 #include "config.h"
 2 #include "assert.h"
 3 extern "C" {
 4 void transfer_kernel(wd* in,wd* out, const int size, const int iter)
{
 5 #pragma HLS INTERFACE m_axi port=in0_index offset=slave latency=21
 6 #pragma HLS INTERFACE m_axi port=out offset=slave latency=21

 7 ...

Build and run the application and use Vitis Analyzer to review the reports generated by the build
process or the run summary. Review the Synthesis Report from Vitis HLS, and examine the HW
Interface table to see the specified latency has been applied.

Figure 70: Synthesis Report - HW Interface

Review the Burst Summary to examine the success or failures of that process.

Figure 71: Synthesis Report - Burst Summary 2

Examine the Kernel Execution in the Profile Summary report, and notice the performance
improvement due to setting the latency for the interface.

Figure 72: Profile Summary - Kernel Execution 2

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 275Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=275

Step 3: Improve the Automatic Burst Inference of the Write Loop

The compiler is pessimistic in auto burst inference because size and loop trip counts are
unknown at compile time. You can modify the code to help the compiler infer pipelined burst, as
shown below.

1 #include "config.h"
 2 #include "assert.h"
 3 extern "C" {
 4 void transfer_kernel(wd* in,wd* out, const int size, const int
iter) {
 5 #pragma HLS INTERFACE m_axi port=in offset=slave latency=21
 6 #pragma HLS INTERFACE m_axi port=out offset=slave latency=21
 7
 8 int k=0;
 9 wd buf[256];
 10 int off = (size/16);
 11
 12 read_loop: for (int i = 0; i <off; i++)
 13 {
 14 buf[i] = in[i];
 15 }
 16
 17 write_loop: for (int j = 0; j <off*iter; j++) {
 18 #pragma HLS PIPELINE II=1
 19 out[k++] = buf[j%off];
 20 }
 21 }
 22 }

Build and run the application and use Vitis Analyzer to review the reports generated by the build
process or the run summary. The Synthesis Report confirms that the burst hints to the compiler
fixed the sequential burst of the write loop. The Burst and Widening Missed messages are
related to widening ports to 512 bits. Since this example already has a 512 port width, it can be
ignored. If the width isn't 512-bi in your code, you might need to focus on resolving these
messages.

Figure 73: Synthesis Report - Burst Summary 3

Examine the Kernel Execution in the Profile Summary report, and notice the performance
improvement due to the latency change from Step 2, and the pipeline burst for the write loop in
the current step.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 276Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=276

Figure 74: Profile Summary - Kernel Execution 3

Summary

There are no further improvements that can be made from the Vitis HLS interface metrics. The
case study example does not have concurrent read or write, so targeting multiple ports will not
help in this case. In this example the tool has achieved pipeline burst for the maximum
throughput, so the number of outstanding reads and writes can also be ignored. No further
improvements can be confirmed from the kernel time.

As seen in the case study, implementing efficient load-store functions is dependent on the HLS
interface metrics of port width, burst access, latency, multiple ports, and the number of
outstanding reads and writes. Xilinx recommends the following guidelines for improving your
system performance:

• Port width: Maximize the port width of the interface, i.e., the bit-width of each AXI port, by
using hls::vector or ap_(u)int<512> as the data type of the port.

• Multiple ports: Analyze the concurrent memory reads/writes and have a dedicated/
independent port for concurrent accesses.

• Pipeline burst: The AXI latency parameter does not have an impact on pipelined burst, the
user is advised to write code to achieve the pipelined burst which can significantly improve
the performance.

• Sequential burst: The AXI latency parameter has a significant impact on sequential burst,
decreasing the latency number from the default latency of the tool will improve the
performance.

• Num outstanding: In most of the cases of burst length >=16, the default num outstanding
should be sufficient. For a burst of size less than 16, Xilinx recommends doubling the size of
the num outstanding from the default(=16).

• Data Re-ordering: Achieving pipelined burst is always recommended, but at times because of
the memory access pattern compiler can achieve only a sequential burst. In order to improve
the performance, the developer can also consider different ways of storing the data in
memory. For instance, accessing data in DRAM in a column-major fashion can be very
inefficient. Rather than implementing a dedicated data-mover in the kernel, it may be better to
transpose the data in SW and store in row-major order instead which will greatly simply HW
access patterns.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 277Send Feedback

https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/vitis_hls_coding_styles.html?hl=hls%3A%3Avector#hjd1600374477961
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/vitis_hls_coding_styles.html?hl=convolution#gdu1539734219605
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=277

Managing Area and Hardware Resources
During synthesis, Vitis HLS performs the following basic tasks:

• Elaborates the C, C++ source code into an internal database containing the operators in the C
code, such as additions, multiplications, array reads, and writes.

• Maps the operators onto implementations in the hardware.

Implementations are the specific hardware components used to create the design (such as
adders, multipliers, pipelined multipliers, and block RAM).

Commands, pragmas and directives provide control over each of these steps, allowing you to
control the hardware implementation at a fine level of granularity.

Limiting the Number of Operators
Explicitly limiting the number of operators to reduce area may be required in some cases: the
default operation of Vitis HLS is to first maximize performance. Limiting the number of operators
in a design is a useful technique to reduce the area of the design: it helps reduce area by forcing
the sharing of operations. However, this might cause a decline in performance.

The ALLOCATION directive allows you to limit how many operators are used in a design. For
example, if a design called foo has 317 multiplications but the FPGA only has 256 multiplier
resources (DSP macrocells). The ALLOCATION pragma shown below directs Vitis HLS to create a
design with a maximum of 256 multiplication (mul) operators:

dout_t array_arith (dio_t d[317]) {
 static int acc;
 int i;
#pragma HLS ALLOCATION instances=fmul limit=256 operation

 for (i=0;i<317;i++) {
#pragma HLS UNROLL
 acc += acc * d[i];
 }
 rerun acc;
}

Note: If you specify an ALLOCATION limit that is greater than needed, Vitis HLS attempts to use the
number of resources specified by the limit, or the maximum necessary, which reduces the amount of
sharing.

You can use the type option to specify if the ALLOCATION directives limits operations,
implementations, or functions. The following table lists all the operations that can be controlled
using the ALLOCATION directive.

Note: The operations listed below are supported by the ALLOCATION pragma or directive. The BIND_OP
pragma or directive supports a subset of operators as described in the command syntax.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 278Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=278

Table 17: Vitis HLS Operators

Operator Description
add Integer Addition

ashr Arithmetic Shift-Right

dadd Double-precision floating-point addition

dcmp Double-precision floating-point comparison

ddiv Double-precision floating-point division

dmul Double-precision floating-point multiplication

drecip Double-precision floating-point reciprocal

drem Double-precision floating-point remainder

drsqrt Double-precision floating-point reciprocal square root

dsub Double-precision floating-point subtraction

dsqrt Double-precision floating-point square root

fadd Single-precision floating-point addition

fcmp Single-precision floating-point comparison

fdiv Single-precision floating-point division

fmul Single-precision floating-point multiplication

frecip Single-precision floating-point reciprocal

frem Single-precision floating point remainder

frsqrt Single-precision floating-point reciprocal square root

fsub Single-precision floating-point subtraction

fsqrt Single-precision floating-point square root

icmp Integer Compare

lshr Logical Shift-Right

mul Multiplication

sdiv Signed Divider

shl Shift-Left

srem Signed Remainder

sub Subtraction

udiv Unsigned Division

urem Unsigned Remainder

Controlling Hardware Implementation
When synthesis is performed, Vitis HLS uses the timing constraints specified by the clock, the
delays specified by the target device together with any directives specified by you, to determine
which hardware implementations to use for various operators in the code. For example, to
implement a multiplier operation, Vitis HLS could use the combinational multiplier or use a
pipeline multiplier.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 279Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=279

The implementations which are mapped to operators during synthesis can be limited by
specifying the ALLOCATION pragma or directive, in the same manner as the operators. Instead
of limiting the total number of multiplication operations, you can choose to limit the number of
combinational multipliers, forcing any remaining multiplications to be performed using pipelined
multipliers (or vice versa).

The BIND_OP or BIND_STORAGE pragmas or directives are used to explicitly specify which
implementations to use for specific operations or storage types. The following command informs
Vitis HLS to use a two-stage pipelined multiplier using fabric logic for variable c. It is left to Vitis
HLS which implementation to use for variable d.

int foo (int a, int b) {
 int c, d;
#pragma HLS BIND_OP variable=c op=mul impl=fabric latency=2
 c = a*b;
 d = a*c;

 return d;
}

In the following example, the BIND_OP pragma specifies that the add operation for variable
temp is implemented using the dsp implementation. This ensures that the operation is
implemented using a DSP module primitive in the final design. By default, add operations are
implemented using LUTs.

void apint_arith(dinA_t inA, dinB_t inB,
 dout1_t *out1
) {

 dout2_t temp;
#pragma HLS BIND_OP variable=temp op=add impl=dsp

 temp = inB + inA;
 *out1 = temp;

}

Refer to the BIND_OP or BIND_STORAGE pragmas or directives to obtain details on the
implementations available for assignment to operations or storage types.

In the following example, the BIND_OP pragma specifies the multiplication for out1 is
implemented with a 3-stage pipelined multiplier.

void foo(...) {
#pragma HLS BIND_OP variable=out1 op=mul latency=3

 // Basic arithmetic operations
 *out1 = inA * inB;
 *out2 = inB + inA;
 *out3 = inC / inA;
 *out4 = inD % inA;

}

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 280Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=280

If the assignment specifies multiple identical operators, the code must be modified to ensure
there is a single variable for each operator to be controlled. For example, in the following code, if
only the first multiplication (inA * inB) is to be implemented with a pipelined multiplier:

*out1 = inA * inB * inC;

The code should be changed to the following with the pragma specified on the Result_tmp
variable:

#pragma HLS BIND_OP variable=Result_tmp op=mul latency=3
 Result_tmp = inA * inB;
 *out1 = Result_tmp * inC;

Controlling Operator Pipelining

Vitis HLS automatically determines the level of pipelining to use for internal operations. You can
use the BIND_OP or BIND_STORAGE pragmas with the -latency option to explicitly specify
the number of pipeline stages and override the number determined by Vitis HLS.

RTL synthesis might use the additional pipeline registers to help improve timing issues that might
result after place and route. Registers added to the output of the operation typically help
improve timing in the output datapath. Registers added to the input of the operation typically
help improve timing in both the input datapath and the control logic from the FSM.

You can use the config_op command to pipeline all instances of a specific operation used in
the design that have the same pipeline depth. Refer to config_op for more information.

Unrolling Loops in C++ Classes
IMPORTANT! When loops are used in C++ classes, care should be taken to ensure that the loop induction
variable is not a data member of the class as this prevents the loop from being unrolled.

In this example, loop induction variable k is a member of class loop_class.

template <typename T0, typename T1, typename T2, typename T3, int N>
class loop_class {
private:
 pe_mac<T0, T1, T2> mac;
public:
 T0 areg;
 T0 breg;
 T2 mreg;
 T1 preg;
 T0 shift[N];
 int k; // Class Member
 T0 shift_output;
 void exec(T1 *pcout, T0 *dataOut, T1 pcin, T3 coeff, T0 data, int col)
 {
Function_label0:;

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 281Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=281

#pragma HLS inline off
 SRL:for (k = N-1; k >= 0; --k) {
#pragma HLS unroll // Loop will fail UNROLL
 if (k > 0)
 shift[k] = shift[k-1];
 else
 shift[k] = data;
 }

 *dataOut = shift_output;
 shift_output = shift[N-1];
 }

 *pcout = mac.exec1(shift[4*col], coeff, pcin);
};

For Vitis HLS to be able to unroll the loop as specified by the UNROLL pragma directive, the
code should be rewritten to remove k as a class member and make it local to the exec function.

Limitations of Control-Driven Task-Level
Parallelism

TIP: Control-driven TLP requires the DATAFLOW pragma or directive to be specified in the appropriate
location of the code.

The control-driven TLP model optimizes the flow of data between tasks (functions and loops),
and ideally pipelined functions and loops for maximum performance. It does not require these
tasks to be chained, one after the other, however there are some limitations in how the data is
transferred. The following behaviors can prevent or limit the overlapping that Vitis HLS can
perform in the dataflow model:

• Reading from function inputs or writing to function outputs in the middle of the dataflow
region

• Single-producer-consumer violations

• Conditional execution of tasks

• Loops with multiple exit conditions

IMPORTANT! If any of these coding styles are present, Vitis HLS issues a message describing the
situation.

Reading from Inputs/Writing to Outputs

Reading of inputs of the function should be done at the start of the dataflow region, and writing
to outputs should be done at the end of the dataflow region. Reading/writing to the ports of the
function can cause the processes to be executed in sequence rather than in an overlapped
fashion, adversely impacting performance.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 282Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=282

Single-producer-consumer Violations

For Vitis HLS to use the dataflow model, all elements passed between tasks must follow a single-
producer-consumer model. Each variable must be driven from a single task and only be
consumed by a single task. In the following code example, temp1 fans out and is consumed by
both Loop2 and Loop3. This violates the single-producer-consumer model.

void foo(int data_in[N], int scale, int data_out1[N], int data_out2[N]) {
 int temp1[N];

 Loop1: for(int i = 0; i < N; i++) {
 temp1[i] = data_in[i] * scale;
 }
 Loop2: for(int j = 0; j < N; j++) {
 data_out1[j] = temp1[j] * 123;
 }
 Loop3: for(int k = 0; k < N; k++) {
 data_out2[k] = temp1[k] * 456;
 }
}

A modified version of this code uses function Split to create a single-producer-consumer
design. The following code block example shows how the data flows with the function Split.
The data now flows between all four tasks, and Vitis HLS can use the dataflow model.

void Split (in[N], out1[N], out2[N]) {
// Duplicated data
 L1:for(int i=1;i<N;i++) {
 out1[i] = in[i];
 out2[i] = in[i];
 }
}
void foo(int data_in[N], int scale, int data_out1[N], int data_out2[N]) {

 int temp1[N], temp2[N]. temp3[N];
 Loop1: for(int i = 0; i < N; i++) {
 temp1[i] = data_in[i] * scale;
 }
 Split(temp1, temp2, temp3);
 Loop2: for(int j = 0; j < N; j++) {
 data_out1[j] = temp2[j] * 123;
 }
 Loop3: for(int k = 0; k < N; k++) {
 data_out2[k] = temp3[k] * 456;
 }
}

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 283Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=283

Bypassing Tasks and Channel Sizing

In addition, data should generally flow from one task to another. If you bypass tasks, this can
reduce the performance of the dataflow model. In the following example, Loop1 generates the
values for temp1 and temp2. However, the next task, Loop2, only uses the value of temp1. The
value of temp2 is not consumed until after Loop2. Therefore, temp2 bypasses the next task in
the sequence, which can limit the performance of the dataflow model.

void foo(int data_in[N], int scale, int data_out1[N], int data_out2[N]) {
 int temp1[N], temp2[N]. temp3[N];
 Loop1: for(int i = 0; i < N; i++) {
 temp1[i] = data_in[i] * scale;
 temp2[i] = data_in[i] >> scale;
 }
 Loop2: for(int j = 0; j < N; j++) {
 temp3[j] = temp1[j] + 123;
 }
 Loop3: for(int k = 0; k < N; k++) {
 data_out[k] = temp2[k] + temp3[k];
 }
}

In this case, you should increase the depth of the PIPO buffer used to store temp2 to be 3,
instead of the default depth of 2. This lets the buffer store the value intended for Loop3, while
Loop2 is being executed. Similarly, a PIPO that bypasses two processes should have a depth of
4. Set the depth of the buffer with the STREAM pragma or directive:

#pragma HLS STREAM type=pipo variable=temp2 depth=3

IMPORTANT! Channel sizing can also similarly affect performance. Having mismatched FIFO/PIPO
depths can inadvertently cause synchronization points inside the dataflow region because of back pressure
from the FIFO/PIPO.

Feedback between Tasks

Feedback occurs when the output from a task is consumed by a previous task in the dataflow
region. Feedback between tasks is not recommended in a dataflow region. When Vitis HLS
detects feedback, it issues a warning, depending on the situation, and might not use the dataflow
model.

However, dataflow can support feedback when used with hls::streams. The following
example demonstrates this exception.

#include "ap_axi_sdata.h"
#include "hls_stream.h"

void firstProc(hls::stream<int> &forwardOUT, hls::stream<int> &backwardIN) {
 static bool first = true;
 int fromSecond;

 //Initialize stream
 if (first)
 fromSecond = 10; // Initial stream value

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 284Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=284

 else
 //Read from stream
 fromSecond = backwardIN.read(); //Feedback value
 first = false;

 //Write to stream
 forwardOUT.write(fromSecond*2);
}

void secondProc(hls::stream<int> &forwardIN, hls::stream<int> &backwardOUT)
{
 backwardOUT.write(forwardIN.read() + 1);
}

void top(...) {
#pragma HLS dataflow
 hls::stream<int> forward, backward;
 firstProc(forward, backward);
 secondProc(forward, backward);
}

In this simple design, when firstProc is executed, it uses 10 as an initial value for input.
Because hls::streams do not support an initial value, this technique can be used to provide
one without violating the single-producer-consumer rule. In subsequent iterations firstProc
reads from the hls::stream through the backwardIN interface.

firstProc processes the value and sends it to secondProc, via a stream that goes forward in
terms of the original C++ function execution order. secondProc reads the value on
forwardIN, adds 1 to it, and sends it back to firstProc via the feedback stream that goes
backwards in the execution order.

From the second execution, firstProc uses the value read from the stream to do its
computation, and the two processes can keep going forever, with both forward and feedback
communication, using an initial value for the first execution.

Conditional Execution of Tasks

The dataflow model does not optimize tasks that are conditionally executed. The following
example highlights this limitation. In this example, the conditional execution of Loop1 and
Loop2 prevents Vitis HLS from optimizing the data flow between these loops, because the data
does not flow from one loop into the next.

void foo(int data_in1[N], int data_out[N], int sel) {

 int temp1[N], temp2[N];

 if (sel) {
 Loop1: for(int i = 0; i < N; i++) {
 temp1[i] = data_in[i] * 123;
 temp2[i] = data_in[i];
 }
 } else {
 Loop2: for(int j = 0; j < N; j++) {
 temp1[j] = data_in[j] * 321;
 temp2[j] = data_in[j];

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 285Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=285

 }
 }
 Loop3: for(int k = 0; k < N; k++) {
 data_out[k] = temp1[k] * temp2[k];
 }
}

To ensure each loop is executed in all cases, you must transform the code as shown in the
following example. In this example, the conditional statement is moved into the first loop. Both
loops are always executed, and data always flows from one loop to the next.

void foo(int data_in[N], int data_out[N], int sel) {

 int temp1[N], temp2[N];

 Loop1: for(int i = 0; i < N; i++) {
 if (sel) {
 temp1[i] = data_in[i] * 123;
 } else {
 temp1[i] = data_in[i] * 321;
 }
 }
 Loop2: for(int j = 0; j < N; j++) {
 temp2[j] = data_in[j];
 }
 Loop3: for(int k = 0; k < N; k++) {
 data_out[k] = temp1[k] * temp2[k];
 }
}

Loops with Multiple Exit Conditions

Loops with multiple exit points cannot be used in a dataflow region. In the following example,
Loop2 has three exit conditions:

• An exit defined by the value of N; the loop will exit when k>=N.

• An exit defined by the break statement.

• An exit defined by the continue statement.

#include "ap_int.h"
#define N 16

typedef ap_int<8> din_t;
typedef ap_int<15> dout_t;
typedef ap_uint<8> dsc_t;
typedef ap_uint<1> dsel_t;

void multi_exit(din_t data_in[N], dsc_t scale, dsel_t select, dout_t
data_out[N]) {
 dout_t temp1[N], temp2[N];
 int i,k;

 Loop1: for(i = 0; i < N; i++) {
 temp1[i] = data_in[i] * scale;
 temp2[i] = data_in[i] >> scale;
 }

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 286Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=286

 Loop2: for(k = 0; k < N; k++) {
 switch(select) {
 case 0: data_out[k] = temp1[k] + temp2[k];
 case 1: continue;
 default: break;
 }
 }
}

Because a loop’s exit condition is always defined by the loop bounds, the use of break or
continue statements will prohibit the loop being used in a DATAFLOW region.

Finally, the dataflow model has no hierarchical implementation. If a sub-function or loop
contains additional tasks that might benefit from dataflow, you must apply the dataflow model
to the loop, the sub-function, or inline the sub-function.

You can also use std::complex inside the dataflow region. However, they should be used with
an __attribute__((no_ctor)) as shown in the following example:

void proc_1(std::complex<float> (&buffer)[50], const std::complex<float>
*in);
void proc_2(hls::Stream<std::complex<float>> &fifo, const
std::complex<float> (&buffer)[50], std::complex<float> &acc);
void proc_3(std::complex<float> *out, hls::Stream<std::complex<float>>
&fifo, const std::complex<float> acc);

void top(std::complex<float> *out, const std::complex<float> *in) {
#pragma HLS DATAFLOW

 std::complex<float> acc __attribute((no_ctor)); // Here
 std::complex<float> buffer[50] __attribute__((no_ctor)); // Here
 hls::Stream<std::complex<float>, 5> fifo; // Not here

 proc_1(buffer, in);
 proc_2(fifo, buffer, acc);
 proc_3(out, fifo, acc);
}

Limitations of Pipelining with Static Variables
Static variables are used to keep data between loop iterations, often resulting in registers in the
final implementation. If this is encountered in pipelined functions, Vitis HLS might not be able to
optimize the design sufficiently, which would result in initiation intervals longer than required.

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 287Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=287

The following is a typical example of this situation:

function_foo()
{
 static bool change = 0
 if (condition_xyz){
 change = x; // store
 }
 y = change; // load
}

If Vitis HLS cannot optimize this code, the stored operation requires a cycle and the load
operation requires an additional cycle. If this function is part of a pipeline, the pipeline has to be
implemented with a minimum initiation interval of 2 as the static change variable creates a loop-
carried dependency.

One way the user can avoid this is to rewrite the code, as shown in the following example. It
ensures that only a read or a write operation is present in each iteration of the loop, which
enables the design to be scheduled with II=1.

function_readstream()
{
 static bool change = 0
 bool change_temp = 0;
 if (condition_xyz)
 {
 change = x; // store
 change_temp = x;
 }
 else
 {
 change_temp = change; // load
 }
 y = change_temp;
}

Section II: HLS Programmers Guide
Chapter 10: Optimizing Techniques and Troubleshooting Tips

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 288Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=288

Section III

Using Vitis HLS
This section contains the following chapters:

• Navigating Content by Design Process

• Design Principles

• Vitis HLS Flow Overview

• Launching Vitis HLS

• Creating a New Vitis HLS Project

• Verifying Code with C Simulation

• Synthesizing the Code

• Analyzing the Results of Synthesis

• Optimizing the HLS Project

• C/RTL Co-Simulation in Vitis HLS

• Exporting the RTL Design

• Running Vitis HLS from the Command Line

Section III: Using Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 289Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=289

Chapter 11

Launching Vitis HLS
To launch Vitis™ HLS, you must first configure the environment to run the tool as described in
Setting Up the Environment. This requires setting the environment variables and paths needed
for the tool.

To launch Vitis HLS on a Linux platform, or from the command prompt on Windows, execute the
following:

$ vitis_hls

TIP: You can also launch Vitis HLS by double-clicking the application from the Windows desktop.

The Vitis HLS GUI opens as shown in the following figure.

Figure 75: Vitis HLS GUI Welcome Page

Under Project, you have the following options.

Section III: Using Vitis HLS
Chapter 11: Launching Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 290Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=290

• Create Project: Launch the project setup wizard to create a new project. Refer to Creating a
New Vitis HLS Project for more information.

• Open Project: Navigate to an existing project.

• Clone Examples: Clone Example projects from GitHub repository to create a local copy for
your use. See Tutorials and Examples.

Under Resources, you will find documentation and tutorials to help you work with the tool.

If you have previously launched Vitis HLS to create a project, you can also select from a list of
recent projects under Open Recent.

Setting Up the Environment
Vitis HLS is delivered as part of the Vitis unified software platform. For instructions on installing
the tool, refer to Installation in Vitis Unified Software Platform Documentation: Application
Acceleration Development (UG1393).

TIP: For information on the Vitis HLS release, and known limitations of the release refer to AR# 75342.

After you have installed the elements of the Vitis software platform, you need to setup the
operating environment to run Vitis HLS in a specific command shell by running the
settings64.sh bash script, or settings64.csh script:

#setup XILINX_VITIS and XILINX_VIVADO variables
 source <Vitis_install_path>/settings64.sh

TIP: While the Vitis unified software platform also requires the installation and setup of the Xilinx runtime
(XRT) and hardware platforms, these elements are not required for the use of Vitis HLS.

Overview of the Vitis HLS IDE
The toolbar menu shown below provides access to the primary commands for using Vitis HLS.
The main menu provides access to all available commands for creating and managing designs.
Each of the buttons on the toolbar menu has an equivalent command in the main menu.

TIP: Project control ensures that only commands that can be currently executed are highlighted. For
example, synthesis must be performed before C/RTL co-simulation can be executed.

Section III: Using Vitis HLS
Chapter 11: Launching Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 291Send Feedback

https://www.xilinx.com/html_docs/xilinx2022_1/vitis_doc/acceleration_installation.html#vhc1571429852245
https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.2%20English&url=ug1393-vitis-application-acceleration
https://www.xilinx.com/support/answers/75342.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=291

Figure 76: Vitis HLS Toolbar and Main Menus

In the toolbar menu, the buttons are (from left to right):

• Open Project: Opens a file browser to let you locate and open an HLS project.The drop-down
menu also provides access to the New File command, which lets you create a new file to open
in the text editor.

• Solution Settings: Opens the Solution Settings dialog box to modify the settings of the active
solution.The drop-down menu also provides access to:

• Project Settings to let you configure the settings of the open project.

• New Solution to let you define a new solution for the open project.

• C Synthesis: Starts C source code to RTL synthesis in Vitis HLS as described in Synthesizing
the Code. The drop-down menu provides a process overview of Vitis HLS, including:

• C Simulation to let you launch C simulation of the open project as described in Verifying
Code with C Simulation.

• Co-Simulation to let you launch C/RTL Co-Simulation in Vitis HLS.

• Export RTL to let you export the open project as explained in Exporting the RTL Design.

• Open Analysis Viewer: Displays various analysis reports when they have been generated
during simulation, synthesis, or C/RTL co-simulation.The drop-down menu also provides
access to:

• Open Pre-Synthesis Control Flow to display the Pre-Synthesis Control Flow report when it
has been generated during simulation.

• Open Dataflow View to display the Dataflow Viewer report when it has been generated
during C/RTL co-simulation.

• Open Schedule Viewer when the Schedule Viewer has been generated during C synthesis.

• Open Report: Displays the report generated during C synthesis.The drop-down menu also
provides access to:

• Synthesis to display the report generated during C synthesis.

Section III: Using Vitis HLS
Chapter 11: Launching Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 292Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=292

• Co-Simulation to display the report generated during C/RTL co-simulation.

• Export RTL to display the report generated while exporting the RTL.

• Open Wave Viewer: Displays the Waveform Viewer when the C/RTL Co-simulation includes
the waveform from the Vivado simulator.

In addition, Vitis HLS IDE provides three perspectives. When you select a perspective, the
windows automatically adjust to a more suitable layout for the selected task.

• The Debug perspective opens the C debugger.

• The Synthesis perspective is the default perspective and arranges the windows for performing
synthesis.

• The Analysis perspective is used after synthesis completes to analyze the design in detail.

Customizing the Vitis HLS IDE Behavior
The behavior of the Vitis HLS IDE can be customized using settings available from the Windows 
→ Preferences menu, and user-defined preferences saved.

Reviewing the different sub-menus in the Preferences dialog box allows most elements of the
Vitis HLS environment to be customized.

Customizing the Console View

The Console view displays the messages issued during tool operations such as synthesize and
verification. The default buffer size for this windows is 80,000 characters and can be changed, or
the limit can be removed, to ensure all messages can be reviewed.

Change the Console settings using Window → Preferences → Run/Debug → Console. You can
change the Console buffer size in characters, or disable the Limit console output checkbox to
remove the limit. There are additional settings that can be modified as well.

Customizing Keyboard Shortcuts

The Vitis HLS tool comes with default keyboard shortcuts for the various editors and windows.
These can be viewed and modified from the Window → Preferences → General → Keys menu.

Section III: Using Vitis HLS
Chapter 11: Launching Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 293Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=293

Figure 77: Keyboard Shortcuts

For instance, as shown in the figure above, to change the size of the font in the text editor
window you can use the keyboard shortcut Ctrl + = to zoom in and make the text larger, or use
Ctrl + - to zoom out, and make the text smaller.

You can use the Binding field as shown above to change the keyboard shortcut for specific
commands or activities. If you define a keyboard shortcut that conflicts with another command it
will be reported in the Conflicts window. You can save any custom keyboard shortcuts by using
the Apply button. You can restore the tool defaults by using the Restore Defaults button.

The window has a search bar that displays the phrase type filter text when not in use, as shown
above. You can type a phrase or keyword to locate a specific keyboard shortcut.

Section III: Using Vitis HLS
Chapter 11: Launching Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 294Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=294

Unbind Command will remove the keyboard shortcut for a specific command. Restore Command
will restore the original binding.

For example, the key combination Ctrl + Tab toggles between the source code and the header file
in the text editor. You can change this keyboard shortcut to make each tab active using the
following steps:

1. In Window → Preferences → General → Keys search for and select Toggle Source/Headerand
remove the binding by using the Unbind Command button.

2. Search for and select Next Tab, place the cursor in the Binding field and press backspace to
clear the current binding, and then press the Ctrl and Tab keys together to define the new
keyboard binding for the command.

3. Click Apply, or Apply and Close.

You can change the key-binding scheme from the tool default to make it more like a familiar tool.
The two supported schemes are Microsoft Visual Studio and Emacs. Changing the scheme will
change the keyboard shortcuts accordingly.

Section III: Using Vitis HLS
Chapter 11: Launching Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 295Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=295

Chapter 12

Creating a New Vitis HLS Project
To create a new project, click the Create New Project link on the Welcome page, or select the
File → New Project menu command. This opens the New Vitis HLS Project wizard, as shown in
the following figure.

Figure 78: New Vitis HLS Project Wizard

Create a new Vitis™ HLS project using the following steps:

1. Specify the project name, which is also the name of the directory in which the project files
and folders are written.

2. Specify the location where the project is written.

IMPORTANT! The Windows operating system has a 255-character limit for path lengths, which can
affect the Vitis tools. To avoid this issue, use the shortest possible names and directory locations when
creating projects, or adding new files.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 296Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=296

3. Click Next to proceed to the Add/Remove Design Files page.

The Add/Remove Design Files page lets you add C/C++ source files to your project, as shown
in the following figure:

4. Click Add Files, and navigate to the location of the source code files to add to your project.

Do not add header files (with the .h suffix) to the project using the Add Files button, or the
add_files Tcl command. Vitis HLS automatically adds the following directories to the
compilation search path:

• Working directory, which contains the Vitis HLS project directory.

• Any directory that contains C/C++ files that have been added to the project.

Header files that reside in these directories are automatically included in the project during
compilation. However, you can specify other include paths using the Edit CFLAGS function.

5. Optionally, click New File to create a new source file to add to your project. The File Browser
dialog box opens to let you specify the file name and location to store the new file.

TIP: If you want to write the new file to the directory that will be created for your new project, you
must wait to create the new file until after the project has been created.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 297Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=297

6. You can select a file, and click Edit CFLAGS or Edit CSIMFLAGS to open a dialog box letting
you add one or more compiler or simulation flags for the selected file.

The following figure shows example CFLAGS:

Compiler flags are standard compiler options for gcc or g++. For a complete list of options,
refer to http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html on the GNU Compiler
Collection (GCC) website. The following are some example CFLAGS:

• -I/source/header_files: Provides the search path to associated header files. You can
specify absolute or relative paths to files.

IMPORTANT! You must specify relative paths in relation to the working directory, not the project
directory.

• -DMACRO_1: Defines macro MACRO_1 during compilation.

• -fnested-functions: Defines directives required for any design that contains nested
functions.

TIP: You can use $::env(MY_ENV_VAR)  to specify environment variables in CFLAGS. For
example, to include the directory $MY_ENV_VAR/include  for compilation, you can specify the
CFLAG as -I$::env(MY_ENV_VAR)/include.

7. Click Remove to delete any files from your project that are not needed or were added by
mistake.

8. Next to the Top Function field, click Browse to list the functions and sub-functions found in
the added files.

The Select Top Function dialog box is opened as shown below. This dialog box lists the
functions found in the added files, and lets you specify which of these is the top function for
the purposes of HLS.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 298Send Feedback

http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=298

TIP: You can simply type the name of top-level function in the available field. However, after source
files have been added to the project, the tool lists the available functions for you to choose from.

9. In the Add/Remove Design Files page, with files added and the top function specified, click
Next to proceed.

In the Add/Remove Testbench Files dialog box, you can add test bench files and other
required files to your project, as shown in the following figure.

TIP: There is no requirement to add a test bench to the project. You can simply click Next to skip this
step if you prefer.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 299Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=299

10. As with the C source files, click Add Files to add the test bench. Click Edit CFLAGS or Edit
CSIMFLAGS to include any compiler options.

11. In addition to the C source files, all files read by the test bench must be added to the project.
In the example shown in the figure above, the test bench opens file in.dat to supply input
stimuli to the design, and reads out.golden.dat to read the expected results. Because the
test bench accesses these files, both files must be included in the project.

TIP: If the test bench files exist in a directory, you can add the entire directory to the project, rather
than the individual files, by clicking Add Folder.

12. Click Next to proceed and the Solution Configuration dialog box is displayed, letting you
configure the initial solution for your project.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 300Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=300

13. Specify a Solution Name to collect the directives, the results, and the reports for a specific
configuration of the project. Multiple solutions let you create different project configurations
to quickly find the best solution.

14. Under Clock, specify the Period in units of ns, or as a frequency value specified with the MHz
suffix (for example, 150 MHz). Refer to Specifying the Clock Frequency for more information.

15. Specify the Uncertainty used for synthesis as the clock period minus the clock uncertainty.
Vitis HLS uses internal models to estimate the delay of the operations for each device. The
clock uncertainty value provides a controllable margin to account for any increases in net
delays due to RTL logic synthesis, place, and route. Specify as a value in nanoseconds (ns), or
as a percentage of the clock period. The default clock uncertainty is 27% of the clock period.

16. Complete Part Selection for your project by clicking the browse button (…) to display the
Device Selection Dialog box, as shown below.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 301Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=301

The Device Selection Dialog box lets you select the device for your project as a part, or as a
board, such as an Alveo™ Data Center accelerator card. You can click the Search filter to
reduce the number of devices in the device list.

17. Vitis HLS supports two primary output flows: the Vivado IP flow, and the Vitis Kernel flow.
The Flow Target drop-down menu lets you enable one of these flows as described in Vitis
HLS Flow Overview.

18. Click Finish to create and open the new Vitis HLS project as shown in the following figure.

By default the Vitis HLS IDE initially displays four panes:

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 302Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=302

• In the upper left-hand side, the Explorer view lets you navigate through the project hierarchy.
A similar hierarchy exists in the project directory on the disk.

• In the center, the Information area displays report summaries and open files. Files can be
opened by double-clicking them in the Explorer view.

• At the bottom, the Console view displays the output when Vitis HLS is running synthesis or
simulation.

• In the lower left-hand side, the Flow Navigator view which provides access to commands and
processes as described in Using the Flow Navigator to take your source code through
simulation, synthesis, and exported output.

• Though not displayed by default, when source code is opened in the Information area the
Outline and Directive views are displayed on the right-side, and show information related to
the hierarchy of the code.

In addition to the views displayed by default, there are additional views that are opened by
launching specific processes such as C/RTL co-simulation, or opening source files or reports.
Additional views can be opened using the Window → Show View command from the main menu.

Working with Sources
The following figure illustrates the Vitis HLS design flow, showing the inputs and output files.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 303Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=303

Figure 79: Vitis HLS Design Flow

Test
Bench

Constraints/
Directives

Vitis HLS

C Simulation C Synthesis

RTL
Adapter

VHDL
Verilog

RTL Simulation Packaged IP

Vivado
Design
Suite

System
Generator

Xilinx
Platform

Studio
X14309-061720

C, C++

Vitis HLS inputs include:

• C functions written in C and C++11/C++14. This is the primary input to Vitis HLS. The
function can contain a hierarchy of sub-functions.

• C functions with RTL blackbox content as described in Adding RTL Blackbox Functions.

• Design Constraints that specify the clock period, clock uncertainty, and the device target.

• Directives are optional and direct the synthesis process to implement a specific behavior or
optimization.

• C test bench and any associated files needed to simulate the C function prior to synthesis, and
to verify the RTL output using C/RTL Co-simulation.

You can add the C input files, directives, and constraints to a project using the Vitis HLS graphical
user interface (GUI), or using Tcl commands from the command prompt, as described in Running
Vitis HLS from the Command Line. You can also create a Tcl script, and execute the commands in
batch mode.

The following are Vitis HLS outputs:

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 304Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=304

• Compiled object files (.xo).

This output lets you create compiled hardware functions for use in the Vitis application
acceleration development flow. Vitis HLS produces this output when called as part of the
compilation process from the Vitis tool flow, or when invoked as a stand-alone tool in the
bottom up flow.

• RTL implementation files in hardware description language (HDL) formats.

This is a primary output from Vitis HLS. This flow lets you use C/C++ code as a source for
hardware design in the Vitis tool flow. RTL IP produced by Vitis HLS is available in both
Verilog (IEEE 1364-2001), and VHDL (IEEE 1076-2000) standards, and can be synthesized and
implemented into Xilinx devices using the Vivado Design Suite.

• Report files.

Reports generated as a result of simulation, synthesis, C/RTL co-simulation, and generating
output.

Coding C/C++ Functions
Coding Style

In any C program, the top-level function is called main(). In the Vitis HLS design flow, you can
specify any sub-function below main() as the top-level function for synthesis. You cannot
synthesize the top-level function main(). Following are additional rules:

• Only one function is allowed as the top-level function for synthesis.

• Any sub-functions in the hierarchy under the top-level function for synthesis are also
synthesized.

• If you want to synthesize functions that are not in the hierarchy under the top-level function
for synthesis, you must merge the functions into a single top-level function for synthesis.

C/C++ Language Support

Vitis HLS supports the C/C++ 11/14 for compilation/simulation. Vitis HLS supports many C and
C++ language constructs, and all native data types for each language, including float and double
types. However, synthesis is not supported for some constructs, including:

• Dynamic memory allocation: An FPGA has a fixed set of resources, and the dynamic creation
and freeing of memory resources is not supported.

• Operating system (OS) operations: All data to and from the FPGA must be read from the input
ports or written to output ports. OS operations, such as file read/write or OS queries like time
and date, are not supported. Instead, the host application or test bench can perform these
operations and pass the data into the function as function arguments.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 305Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=305

Accessing Source Files in Git Repositories

When adding source files to your project, Vitis HLS offers an integrated view of GitHub
repositories integrated into the tool. You can use this feature to work with your own repositories
for managing source code for the project, or for linking to external repositories to download files
for your design.

At the bottom of the Vitis HLS GUI, where the Console view is located, you will see the Git
Repositories view.

TIP: If this view is not open, you can enable it using the Window → Show View → Git Repository menu
command.

Clone a repository using the following steps.

1. Select the Clone a Git Repository command. This opens the Clone Git Repository wizard as
shown in the following figure.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 306Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=306

2. In the Source Git Repository page of the wizards, enter the following in for URL: https://
github.com/Xilinx/HLS-Tiny-Tutorials/tree/master

This sets up the Tiny Tutorials repository as described in Tutorials and Examples. Click Next to
proceed.

3. In the Branch Selection page, select the master branch of the repository, or another branch
as appropriate. Click Next to proceed.

4. In the Local Destination page, specify the Destination Directory where the repository will be
cloned. Click Next to proceed.

At this time you should see the list of examples from the Tiny Tutorials repository. You can now
use these files as source files for your own projects. You can also add an existing local repository
to the Vitis HLS GUI, or create a new repository to help you manage projects.

Using Libraries in Vitis HLS

Vitis HLS Libraries

Vitis HLS provides foundational C libraries allowing common hardware design constructs and
functions to be easily modeled in C and synthesized to RTL. The following C libraries are
provided with Vitis HLS:

• Arbitrary Precision Data Types Library: Arbitrary precision data types let your C code use
variables with smaller bit-widths than standard C or C++ data types, to enable improved
performance and reduced area in hardware.

• Vitis HLS Math Library: Used to specify standard math operations for synthesis into RTL and
implementation on Xilinx devices.

• HLS Stream Library: For modeling and compiling streaming data structures.

You can use each of the C libraries in your design by including the library header file in your code.
These header files are located in the include directory in the Vitis HLS installation area.

IMPORTANT! The header files for the Vitis HLS C libraries do not have to be in the include path if the
design is used in Vitis HLS. The paths to the library header files are automatically added.

Vitis Libraries

In addition, the Vitis accelerated libraries are available for use with Vitis HLS, including common
functions of math, statistics, Linear algebra and DSP; and also supporting domain specific
applications, like vision and image processing, quantitative finance, database, data analytics, and
data compression. Documentation for the libraries can be found at https://xilinx.github.io/
Vitis_Libraries/. The libraries can be downloaded from https://github.com/Xilinx/Vitis_Libraries.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 307Send Feedback

https://github.com/Xilinx/HLS-Tiny-Tutorials/tree/master
https://github.com/Xilinx/HLS-Tiny-Tutorials/tree/master
https://xilinx.github.io/Vitis_Libraries/
https://xilinx.github.io/Vitis_Libraries/
https://github.com/Xilinx/Vitis_Libraries
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=307

The Vitis™ libraries contain functions and constructs that are optimized for implementation on
Xilinx devices. Using these libraries helps to ensure high quality of results (QoR); that the results
of synthesis are a high-performance design that optimizes resource usage. Because the libraries
are provided in C and C++, you can incorporate the libraries into your top-level function and
simulate them to verify the functional correctness before synthesis.

TIP: The Vitis application acceleration libraries are not available for use on the Windows operating system.

Resolving References and Viewing #include Files

By default, the Vitis HLS GUI continually parses all header files to resolve coding references.
Valid references allow the code to compile correctly of course, but also let you right-click on an
#include statement to use the Open Declaration command to open the included file. You can
also select a function name, variable, or data type and use the Open Declaration command to
view its definition.

The GUI highlights unresolved references, as shown in the following figure:

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 308Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=308

Figure 80: Unresolved References

• Left sidebar: Highlights unresolved references at the line number of the source code.

• Right sidebar: Displays unresolved references relative to the whole file.

Unresolved references occur when code defined in a header file (.h or .hpp extension) cannot
be resolved. The primary causes of unresolved references are:

• The code was recently added to the file.

If the code is new, ensure the header file is saved. After saving the header file, Vitis HLS
automatically indexes the header files and updates the code references.

• The header file is not in the search path.

Ensure the header file is included in the C code using an #include statement, and the
header file is found in the same directory as the source C file, or the location to the header file
is in the search path.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 309Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=309

TIP: To explicitly add the search path for a source file, select Project → Project Settings, click Synthesis
or Simulation, and use the Edit CFLAGs or Edit CFLAGs commands for the source file as discussed in
Creating a New Vitis HLS Project.

• Automatic indexing has been disabled.

Ensure that Vitis HLS is parsing all header files automatically. Select Project → Project
Settings, click General, and make sure Disable Parsing All Header Files is deselected.

TIP: To manually force Vitis HLS to index all C files, select the Project → Index C Source command from the
main menu. This enables the tool to open the declaration of a selected function, variable, or data type if it
occurs in an included file.

Resolving Comments in the Source Code

In some localizations, non-English comments in the source file appears as strange characters. This
can be corrected using the following steps:

1. Right-click the project in the Explorer view and select the Properties menu command.

2. Select the Resource section in the left side of the dialog box.

3. Under Text file encoding, select the Other radio button, and choose appropriate encoding
from the drop-down menu.

4. Select Apply and Close to accept the change.

Adding RTL Blackbox Functions
The RTL blackbox enables the use of existing Verilog RTL IP in an HLS project. This lets you add
RTL code to your C/C++ code for synthesis of the project by Vitis HLS. The RTL IP can be used in
a sequential, pipeline, or dataflow region. Refer to Vitis-HLS-Introductory-Examples/Misc/
rtl_as_blackbox on Github for examples of this technique.

TIP: Adding an RTL blackbox to your design will restrict the tool from outputting VHDL code, Because the
RTL blackbox must be Verilog, the output will be Verilog only.

Integrating RTL IP into a Vitis HLS project requires the following files:

• C function signature for the RTL code. This can be placed into a header (.h) file.

• Blackbox JSON description file as discussed in JSON File for RTL Blackbox.

• RTL IP files.

To use the RTL blackbox in an HLS project, use the following steps.

1. Call the C function signature from within your top-level function, or a sub-function in the
Vitis HLS project.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 310Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Misc/rtl_as_blackbox
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Misc/rtl_as_blackbox
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=310

2. Add the blackbox JSON description file to your HLS project using the Add Files command
from the Vitis HLS IDE as discussed in Creating a New Vitis HLS Project, or using the
add_files command:

add_files –blackbox my_file.json

TIP: As explained in the next section, the new RTL Blackbox wizard can help you generate the JSON
file and add the RTL IP to your project.

3. Run the Vitis HLS design flow for simulation, synthesis, and co-simulation as usual.

Requirements and Limitations

RTL IP used in the RTL blackbox feature have the following requirements:

• Should be Verilog (.v) code.

• Must have a unique clock signal, and a unique active-High reset signal.

• Must have a CE signal that is used to enable or stall the RTL IP.

• Must use the ap_ctrl_chain protocol as described in Block-Level Control Protocols.

Within Vitis HLS, the RTL blackbox feature:

• Supports only C++.

• Cannot connect to top-level interface I/O signals.

• Cannot directly serve as the design-under-test (DUT).

• Does not support struct or class type interfaces.

• Supports the following interface protocols as described in JSON File for RTL Blackbox:

• hls::stream: The RTL blackbox IP supports the hls::stream interface. When this data
type is used in the C function, use a FIFO RTL port protocol for this argument in the RTL
blackbox IP.

• Arrays: The RTL blackbox IP supports RAM interface for arrays. For array arguments in the
C function, use one of the following RTL port protocols for the corresponding argument in
the RTL blackbox IP:

• Single port RAM – RAM_1P

• Dual port RAM – RAM_T2P

• Scalars and Input Pointers: The RTL Blackbox IP supports C scalars and input pointers only
in sequential and pipeline regions. They are not supported in a dataflow region. When
these constructs are used in the C function, use wire port protocol in the RTL IP.

• Inout and Output Pointers: The RTL blackbox IP supports inout and output pointers only in
sequential and pipeline regions. They are not supported in a dataflow region. When these
constructs are used in the C function, the RTL IP should use ap_vld for output pointers,
and ap_ovld for inout pointers.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 311Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=311

TIP: All other Vitis HLS design restrictions also apply when using RTL blackbox in your project.

Using the RTL Blackbox Wizard

Navigate to the project, right-click to open the RTL Blackbox Wizard as shown in the following
figure:

Figure 81: Opening RTL Blackbox Wizard

The Wizard is organized into pages that break down the process for creating a JSON file. To
navigate between pages, click Next and select Back. Once the options are finalized, you can
generate a JSON by clicking OK. Each of the following section describes each page and its input
options.

C++ Model and Header Files

In the Blackbox C/C++ files page, you provide the C++ files which form the functional model of
the RTL IP. This C++ model is only used during C++ simulation and C++/RTL co-simulation. The
RTL IP is combined with Vitis HLS results to form the output of synthesis.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 312Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=312

Figure 82: Blackbox C/C++ files Page

In this page, you can perform the following:

• Click Add Files to add files.

• Click Edit CFLAGS to provide a linker flag to the functional C model.

• Click Next to proceed.

The C File Wizard page lets you specify the values used for the C functional model of the RTL IP.
The fields include:

• C Function: Specify the C function name of the RTL IP.

• C Argument Name: Specify the name(s) of the function arguments. These should relate to the
ports on the IP.

• C Argument Type: Specify the data type used for each argument.

• C Port Direction: Specify the port direction of the argument, corresponding to the port in the
IP.

• RAM Type: Specify the RAM type used at the interface.

• RTL Group Configuration: Specifies the corresponding RTL signal name.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 313Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=313

Figure 83: C File Wizard Page

Click Next to proceed.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 314Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=314

RTL IP Definition

Figure 84: RTL Blackbox Wizard

The RTL Wizard page lets you define the RTL source for the IP. The fields to define include:

• RTL Files: This option is used to add or remove the pre existing RTL IP files.

• RTL Module Name: Specify the top level RTL IP module name in this field.

• Performance: Specify performance targets for the IP.

• Latency: Latency is the time required for the design to complete. Specify the Latency
information in this field.

• II: Define the target II (Initiation Interval). This is the number of clocks cycles before new
input can be applied.

• Resource: Specify the device resource utilization for the RTL IP. The resource information
provided here will be combined with utilization from synthesis to report the overall design
resource utilization. You should be able to extract this information from the Vivado Design
Suite

Click Next to proceed to the RTL Common Signal page, as shown below.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 315Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=315

Figure 85: RTL Common Signals

• module_clock: Specify the name the of the clock used in the RTL IP.

• module_reset: Specify the name of the reset signal used in the IP.

• module_clock_enable: Specify the name of the clock enable signal in the IP.

• ap_ctrl_chain_protocol_start: Specify the name of the block control start signal used in the IP.

• ap_ctrl_chain_protocol_ready: Specify the name of the block control ready signal used in the
IP.

• ap_ctrl_chain_protocol_done: Specify the name of the block control done signal used in the IP.

• ap_ctrl_chain_protocol_continue: Specify the name of the block control continue signal used
in the RTL IP.

Click Finish to automatically generate a JSON file for the specified IP. This can be confirmed
through the log message as shown below.

Log Message:

"[2019-08-29 16:51:10] RTL Blackbox Wizard Information: the "foo.json" file
has been created in the rtl_blackbox/Source folder."

The JSON file can be accessed through the Source file folder, and will be generated as described
in the next section.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 316Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=316

JSON File for RTL Blackbox

JSON File Format

The following table describes the JSON file format:

Table 18: JSON File Format

Item Attribute Description
c_function_name The C++ function name for the blackbox. The

c_function_name must be consistent with the C
function simulation model.

rtl_top_module_name The RTL function name for the blackbox. The
rtl_top_module_name must be consistent with the
c_function_name.

c_files c_file Specifies the C file used for the blackbox module.

cflag Provides any compile option necessary for the
corresponding C file.

rtl_files Specifies the RTL files for the blackbox module.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 317Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=317

Table 18: JSON File Format (cont'd)

Item Attribute Description
c_parameters c_name Specifies the name of the argument used for the black

box C++ function.
Unused c_parameters should be deleted from the
template.

c_port_direction The access direction for the corresponding C argument.
• in: Read only by blackbox C++ function.

• out: Write only by blackbox C++ function.

• inout: Will both read and write by blackbox C++
function.

RAM_type Specifies the RAM type to use if the corresponding C
argument uses the RTL RAM protocol. Two type of RAM
are used:
• RAM_1P: For 1 port RAM module
• RAM_T2P: For 2 port RAM module
Omit this attribute when the corresponding C argument
is not using RTL 'RAM' protocol.

rtl_ports Specifies the RTL port protocol signals for the
corresponding C argument (c_name). Every
c_parameter should be associated with an rtl_port.
Five type of RTL port protocols are used. Refer to the RTL
Port Protocols table for additional details.
• wire: An argument can be mapped to wire if it is a

scalar or pointer with 'in' direction.
• ap_vld: An argument can be mapped to ap_vld if it

uses pointer with 'out' direction.
• ap_ovld: An argument can be mapped to ap_ovld

if it use a pointer with an inout direction.
• FIFO: An argument can be mapped to FIFO if it uses

the hls::stream data type.

• RAM: An argument can be mapped to RAM if it uses
an array type. The array type supports inout
directions.

The specified RTL port protocols have associated control
signals, which also need to be specified in the JSON file.

c_return c_port_direction It must be out.

rtl_ports Specifies the corresponding RTL port name used in the
RTL blackbox IP.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 318Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=318

Table 18: JSON File Format (cont'd)

Item Attribute Description
rtl_common_signal module_clock The unique clock signal for RTL blackbox module.

module_reset Specifies the reset signal for RTL blackbox module. The
reset signal must be active-High or positive valid.

module_clock_enable Specifies the clock enable signal for the RTL blackbox
module. The enable signal must be active-High or
positive valid.

ap_ctrl_chain_protocol_idle The ap_idle signal in the ap_ctrl_chain protocol for
the RTL blackbox module.

ap_ctrl_chain_protocol_start The ap_start signal in the ap_ctrl_chain protocol
for the RTL blackbox module.

ap_ctrl_chain_protocol_ready The ap_ready signal in the ap_ctrl_chain protocol
for the RTL blackbox IP.

ap_ctrl_chain_protocol_done The ap_done signal in the ap_ctrl_chain protocol for
blackbox RTL module.

ap_ctrl_chain_protocol_continue The ap_continue signal in the ap_ctrl_chain
protocol for RTL blackbox module.

rtl_performance latency Specifies the Latency of the RTL blackbox module. It
must be a non-negative integer value. For Combinatorial
RTL IP specify 0, otherwise specify the exact latency of
the RTL module.

II Number of clock cycles before the function can accept
new input data. It must be non-negative integer value. 0
means the blackbox can not be pipelined. Otherwise, it
means the blackbox module is pipelined.

rtl_resource_usage FF Specifies the register utilization for the RTL blackbox
module.

LUT Specifies the LUT utilization for the RTL blackbox
module.

BRAM Specifies the block RAM utilization for the RTL blackbox
module.

URAM Specifies the URAM utilization for the RTL blackbox
module.

DSP Specifies the DSP utilization for the RTL blackbox
module.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 319Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=319

Table 19: RTL Port Protocols

RTL Port
Protocol RAM Type C Port Direction Attribute User-Defined

Name Notes

wire in data_read_in Specifies a user
defined name used in
the RTL blackbox IP.
As an example for
wire, if the RTL port
name is "flag" then
the JSON FILE format
is "data_read-
in" : "flag".

ap_vld out data_write_out

data_write_valid

ap_ovld inout data_read_in

data_write_out

data_write_valid

FIFO in FIFO_empty_flag Must be negative
valid.

FIFO_read_enable

FIFO_data_read_in

out FIFO_full_flag Must be negative
valid.

FIFO_write_enable

FIFO_data_write_out

RAM RAM_1P in RAM_address

RAM_clock_enable

RAM_data_read_in

out RAM_address

RAM_clock_enable

RAM_write_enable

RAM_data_write_out

inout RAM_address

RAM_clock_enable

RAM_write_enable

RAM_data_write_out

RAM_data_read_in

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 320Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=320

Table 19: RTL Port Protocols (cont'd)

RTL Port
Protocol RAM Type C Port Direction Attribute User-Defined

Name Notes

RAM RAM_T2P in RAM_address Specifies a user
defined name used in
the RTL blackbox IP.
As an example for
wire, if the RTL port
name is "flag" then
the JSON FILE format
is "data_read-
in" : "flag".

Signals with _snd
belong to the second
port of the RAM.
Signals without _snd
belong to the first
port.

RAM_clock_enable

RAM_data_read_in

RAM_address_snd

RAM_clock_enable_snd

RAM_data_read_in_snd

out RAM_address

RAM_clock_enable

RAM_write_enable

RAM_data_write_out

RAM_address_snd

RAM_clock_enable_snd

RAM_write_enable_snd

RAM_data_write_out_snd

inout RAM_address

RAM_clock_enable

RAM_write_enable

RAM_data_write_out

RAM_data_read_in

RAM_address_snd

RAM_clock_enable_snd

RAM_write_enable_snd

RAM_data_write_out_snd

RAM_data_read_in_snd

Note: The behavioral C-function model for the RTL blackbox must also adhere to the recommended HLS
coding styles.

JSON File Example

This section provides details on manually writing the JSON file required for the RTL blackbox.
The following is an example of a JSON file:

{
"c_function_name" : "foo",
"rtl_top_module_name" : "foo",
"c_files" :
 [
 {
 "c_file" : "../../a/top.cpp",
 "cflag" : ""
 },
 {

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 321Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=321

 "c_file" : "xx.cpp",
 "cflag" : "-D KF"
 }
],
"rtl_files" : [
 "../../foo.v",
 "xx.v"
],
"c_parameters" : [{
 "c_name" : "a",
 "c_port_direction" : "in",
 "rtl_ports" : {
 "data_read_in" : "a"
 }
 },
 {
 "c_name" : "b",
 "c_port_direction" : "in",
 "rtl_ports" : {
 "data_read_in" : "b"
 }
 },
 {
 "c_name" : "c",
 "c_port_direction" : "out",
 "rtl_ports" : {
 "data_write_out" : "c",
 "data_write_valid" : "c_ap_vld"
 }
 },
 {
 "c_name" : "d",
 "c_port_direction" : "inout",
 "rtl_ports" : {
 "data_read_in" : "d_i",
 "data_write_out" : "d_o",
 "data_write_valid" : "d_o_ap_vld"
 }
 },
 {
 "c_name" : "e",
 "c_port_direction" : "in",
 "rtl_ports" : {
 "FIFO_empty_flag" : "e_empty_n",
 "FIFO_read_enable" : "e_read",
 "FIFO_data_read_in" : "e"
 }
 },
 {
 "c_name" : "f",
 "c_port_direction" : "out",
 "rtl_ports" : {
 "FIFO_full_flag" : "f_full_n",
 "FIFO_write_enable" : "f_write",
 "FIFO_data_write_out" : "f"
 }
 },
 {
 "c_name" : "g",
 "c_port_direction" : "in",
 "RAM_type" : "RAM_1P",
 "rtl_ports" : {
 "RAM_address" : "g_address0",

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 322Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=322

 "RAM_clock_enable" : "g_ce0",
 "RAM_data_read_in" : "g_q0"
 }
 },
 {
 "c_name" : "h",
 "c_port_direction" : "out",
 "RAM_type" : "RAM_1P",
 "rtl_ports" : {
 "RAM_address" : "h_address0",
 "RAM_clock_enable" : "h_ce0",
 "RAM_write_enable" : "h_we0",
 "RAM_data_write_out" : "h_d0"
 }
 },
 {
 "c_name" : "i",
 "c_port_direction" : "inout",
 "RAM_type" : "RAM_1P",
 "rtl_ports" : {
 "RAM_address" : "i_address0",
 "RAM_clock_enable" : "i_ce0",
 "RAM_write_enable" : "i_we0",
 "RAM_data_write_out" : "i_d0",
 "RAM_data_read_in" : "i_q0"
 }
 },
 {
 "c_name" : "j",
 "c_port_direction" : "in",
 "RAM_type" : "RAM_T2P",
 "rtl_ports" : {
 "RAM_address" : "j_address0",
 "RAM_clock_enable" : "j_ce0",
 "RAM_data_read_in" : "j_q0",
 "RAM_address_snd" : "j_address1",
 "RAM_clock_enable_snd" : "j_ce1",
 "RAM_data_read_in_snd" : "j_q1"
 }
 },
 {
 "c_name" : "k",
 "c_port_direction" : "out",
 "RAM_type" : "RAM_T2P",
 "rtl_ports" : {
 "RAM_address" : "k_address0",
 "RAM_clock_enable" : "k_ce0",
 "RAM_write_enable" : "k_we0",
 "RAM_data_write_out" : "k_d0",
 "RAM_address_snd" : "k_address1",
 "RAM_clock_enable_snd" : "k_ce1",
 "RAM_write_enable_snd" : "k_we1",
 "RAM_data_write_out_snd" : "k_d1"
 }
 },
 {
 "c_name" : "l",
 "c_port_direction" : "inout",
 "RAM_type" : "RAM_T2P",
 "rtl_ports" : {
 "RAM_address" : "l_address0",
 "RAM_clock_enable" : "l_ce0",
 "RAM_write_enable" : "l_we0",

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 323Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=323

 "RAM_data_write_out" : "l_d0",
 "RAM_data_read_in" : "l_q0",
 "RAM_address_snd" : "l_address1",
 "RAM_clock_enable_snd" : "l_ce1",
 "RAM_write_enable_snd" : "l_we1",
 "RAM_data_write_out_snd" : "l_d1",
 "RAM_data_read_in_snd" : "l_q1"
 }
 }],
"c_return" : {
 "c_port_direction" : "out",
 "rtl_ports" : {
 "data_write_out" : "ap_return"
 }
 },
"rtl_common_signal" : {
 "module_clock" : "ap_clk",
 "module_reset" : "ap_rst",
 "module_clock_enable" : "ap_ce",
 "ap_ctrl_chain_protocol_idle" : "ap_idle",
 "ap_ctrl_chain_protocol_start" : "ap_start",
 "ap_ctrl_chain_protocol_ready" : "ap_ready",
 "ap_ctrl_chain_protocol_done" : "ap_done",
 "ap_ctrl_chain_protocol_continue" : "ap_continue"
 },
"rtl_performance" : {
 "latency" : "6",
 "II" : "2"
 },
"rtl_resource_usage" : {
 "FF" : "0",
 "LUT" : "0",
 "BRAM" : "0",
 "URAM" : "0",
 "DSP" : "0"
 }
}

Setting Configuration Options
After the project and solution have been created, you can configure default settings of the Vitis
HLS tool using the Solution → Solution Settings menu command. This command opens the
Solution Settings dialog box for the currently active solution.

TIP: If you have created multiple solutions for your project, as described in Creating Additional Solutions,
you can make a solution active by right clicking on a solution in the Explorer view and using the Set Active
Solution command. You can also open the Solution Settings dialog box for a specific solution by right-
clicking the solution and using the Solution Settings command.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 324Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=324

Figure 86: Solution Settings Dialog Box

The Solutions Setting dialog box provides access to the following settings:

• General: Displays the Configuration Settings page for the current solution, listing settings that
generally apply to the Vitis HLS tool overall.

• Synthesis: Synthesis settings are initially defined when the project is created as described in
Creating a New Vitis HLS Project.

• Cosimulation: These settings control the C/RTL Co-simulation feature as described in C/RTL
Co-Simulation in Vitis HLS.

• Export: These settings affect the output generated by Vitis HLS as described in Exporting the
RTL Design.

• RTL Synthesis: These settings affect the results and reports generated by Vivado synthesis as
described in Exporting the RTL Design.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 325Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=325

• Place and Route: These settings affect the results and reports generated by Vivado
implementation as described in Exporting the RTL Design.

Configuration Settings

On the Configuration Settings page, as displayed in the figure above, you have access to the
various configuration commands like config_compile and config_interface. These
commands are described in detail in Configuration Commands.

Select one of the listed configuration commands, and click the Expand All (+) command to
expand the selected configuration command to view the available options. You can edit the
options for the selected command, or use the Reset all (X) command to restore the selected
configuration to its default setting.

Use the Collapse All (-) command to collapse any selected configuration command.

Use the Help (?) command to open a window that provides a text description of the selected
configuration command and all its options.

Enable the Show only non-defaults check box to only display the configuration commands that
have been modified from their default values.

Click OK to confirm the settings of the various configuration commands and close the Solution
Settings dialog box. Click Cancel to cancel any changes and close the dialog box.

Synthesis Settings

On the Synthesis Settings page, as shown in the following figure, you have access to the various
settings to drive the synthesis process, such as the target Xilinx device, the clock period and
uncertainty, and the target flow for the solution.

Figure 87: Synthesis Settings Page

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 326Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=326

• Specify the clock period in units of nanoseconds (ns), or as a frequency value specified with
the MHz suffix (for example, 150 MHz). Refer to Specifying the Clock Frequency for more
information.

• Specify the clock uncertainty used for synthesis as the clock period minus the clock
uncertainty. Vitis HLS uses internal models to estimate the delay of the operations for each
device. The clock uncertainty value provides a controllable margin to account for any
increases in net delays due to RTL logic synthesis, place, and route. Specify as a value in ns, or
as a percentage of the clock period. The default clock uncertainty is 27% of the clock period.

• Specify the target device (Part) for your project by clicking the Browse button (…) to open the
Device Selection Dialog box to select a device or board for the solution. You can click the
Search filter to reduce the number of devices listed.

• Select the Flow Target as explained in Vitis HLS Flow Overview.

Specifying the Clock Frequency
For C and C++ designs only a single clock is supported. The same clock is applied to all functions
in the design.

The clock period, in ns, is set in the Solutions → Solutions Setting. The default clock period is 10
ns. Vitis HLS uses the concept of a clock uncertainty to provide a user defined timing margin. You
can define the clock uncertainty for your design using the Solutions Setting dialog box as well.
The default clock uncertainty, when it is not specified, is 27% of the clock period.

TIP: You can also set the clock period using the create_clock Tcl command, and the clock uncertainty using
the set_clock_uncertainty Tcl command.

Using the clock frequency and device target information Vitis HLS estimates the timing of
operations in the design but it cannot know the final component placement and net routing:
these operations are performed by logic synthesis of the output RTL. As such, Vitis HLS cannot
know the exact delays.

To calculate the clock period used for synthesis, Vitis HLS subtracts the clock uncertainty from
the clock period, as shown in the following figure.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 327Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=327

Figure 88: Clock Period and Margin

Clock Period

Effective Clock Period
Used by Vivado HLS

Clock Uncertainty

Margin for Logic
Synthesis and P&R

X14263-100520

This provides a user specified margin to ensure downstream processes, such as logic synthesis
and place & route, have enough timing margin to complete their operations. If the FPGA is
mostly used the placement of cells and routing of nets to connect the cells might not be ideal and
might result in a design with larger than expected timing delays. For a situation such as this, an
increased timing margin ensures Vitis HLS does not create a design with too much logic packed
into each clock cycle and allows RTL synthesis to satisfy timing in cases with less than ideal
placement and routing options.

Vitis HLS aims to satisfy all constraints: timing, throughput, latency. However, if a constraints
cannot be satisfied, Vitis HLS always outputs an RTL design.

If the timing constraints inferred by the clock period cannot be met Vitis HLS issues message
SCHED-644, as shown below, and creates a design with the best achievable performance.

@W [SCHED-644] Max operation delay (<operation_name> 2.39ns) exceeds the
effective
cycle time

Even if Vitis HLS cannot satisfy the timing requirements for a particular path, it still achieves
timing on all other paths. This behavior allows you to evaluate if higher optimization levels or
special handling of those failing paths by downstream logic syntheses can pull-in and ultimately
satisfy the timing.

IMPORTANT! It is important to review the constraint report after synthesis to determine if all constraints
is met: the fact that Vitis HLS produces an output design does not guarantee the design meets all
performance constraints. Review the Performance Estimates section of the design report.

A design report is generated for each function in the hierarchy when synthesis completes and
can be viewed in the solution reports folder. The worse case timing for the entire design is
reported as the worst case in each function report. There is no need to review every report in the
hierarchy.

If the timing violations are too severe to be further optimized and corrected by downstream
processes, review the techniques for specifying an exact latency and specifying exact
implementation cores before considering a faster target technology.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 328Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=328

Clock and Reset Ports
If the design takes more than 1 cycle to complete operation, a clock-enable port (ap_ce) can
optionally be added to the entire block using the config_interface command, or in the Vitis
HLS GUI using the Solution → Solution Settings → General command.

The operation of the reset is described in Controlling Initialization and Reset Behavior, and can
be modified using the config_rtl command, also available in the Solutions Settings dialog box.

Using the Flow Navigator
The Flow Navigator is a process flow representation of the Vitis HLS design flow. Each step in
the process is represented by actions that you can launch to work through the flow. All viewers
and reports are also available through the Flow Navigator as each step is completed.

Figure 89: Flow Navigator

The different steps represented in the Flow Navigator include:

• C SIMULATION: opens the C Simulation dialog box, and lists the available reports after
simulation has been run, as described in Verifying Code with C Simulation.

• C SYNTHESIS: opens the C Synthesis dialog box, and lists the available reports after synthesis
has been run, as discussed in Synthesizing the Code.

• C/RTL COSIMULATION: opens the C/RTL Cosimulation dialog box, and lists the available
reports after simulation has been run, as described in C/RTL Co-Simulation in Vitis HLS.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 329Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=329

• IMPLEMENTATION: lets you specify the format and location of the exported RTL file from
Vitis HLS as discussed in Exporting the RTL Design, and also run Vivado synthesis and
implementation to generate more detailed utilization and timing reports.

TIP: You can cancel Simulation, Synthesis, C/RTL Cosimulation, or Implementation using the Stop
command from the Flow Navigator.

Vitis HLS Flow Overview
Vitis HLS is project based and can contain multiple variations of a project called "solutions" to
drive synthesis and simulation. Each solution can target either the Vivado IP flow, or the Vitis
Kernel flow.

The Vivado IP flow produces an RTL IP files for use in the Vivado Design Suite, for inclusion in
the IP catalog, and for use in block designs of the IP integrator tool. The IP can be used for
hardware design in the IP integrator feature of Vivado, or for RTL design.

The Vitis Kernel flow is a structured hardware development environment that lets you quickly
expand custom hardware platforms using PL kernels developed in Vitis HLS. Vitis kernels can be
used in application acceleration for Data Center applications, or in embedded system design for
heterogeneous compute systems.

Vitis HLS implements the solution based on the target flow, default tool configuration, design
constraints, and any optimization pragmas or directives you specify. You can use optimization
directives to modify and control the implementation of the internal logic and I/O ports,
overriding the default behaviors of the tool.

Enabling the Vivado IP Flow
When you select the Vivado IP Flow Target on the Solution Settings dialog box you are
configuring Vitis HLS to generate RTL IP files for use in the Vivado Design Suite.

TIP: The flow target can also be enabled using the open_solution -flow_target vivado  Tcl
command.

The exported Vivado IP can be included in the IP catalog, and used in block designs of the IP
integrator tool or in RTL-based design. HLS synthesis transforms your C or C++ code into register
transfer level (RTL) code that you can synthesize and implement into the programmable logic
region of a Xilinx device. The Vivado IP flow lets you develop and export IP as part of a larger
hardware design, and provides hardware drivers to let you perform traditional embedded
software design as described in Vitis Unified Software Platform Documentation: Embedded Software
Development (UG1400). The Vivado IP flow provides greater flexibility in your design choices,
however it leaves the integration and management of the IP to you as well.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 330Send Feedback

https://docs.xilinx.com/r/en-US/ug1400-vitis-embedded/Getting-Started-with-Vitis
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=330

The Vivado IP flow can support a wide variety of interface specifications and data transfer
protocols, but has default interfaces assigned to function arguments as described in Interfaces
for Vivado IP Flow. You can also override the default settings by manually assigning the interface
specification for your function argument, using the INTERFACE pragma or
set_directive_interface command, to meet the needs of your Vivado design.

Enabling the Vitis Kernel Flow
When you select the Vitis Kernel Flow Target on the Solution Settings dialog box, as discussed in
Creating a New Vitis HLS Project, you are configuring Vitis HLS to generate the compiled kernel
object (.xo) for the Vitis application acceleration flow, or heterogeneous compute flow.

TIP: The flow target can also be enabled using the open_solution -flow_target vitis  Tcl
command.

The Vitis Kernel flow is more restrictive than the Vivado IP flow, and the kernels produced by the
HLS tool must meet the specific requirements of the platforms and Xilinx runtime (XRT), as
described in Kernel Properties in the Vitis Unified Software Platform Documentation.

When specifying open_solution -flow_target vitis, or enabling the Vitis Kernel Flow
in the IDE, Vitis HLS implements interface ports using the AXI standard as described in Interfaces
for Vitis Kernel Flow. If there are no existing INTERFACE pragmas or directives in the code, then
the following interface protocols will be applied by default.

• AXI4-Lite interfaces (s_axilite) are assigned to scalar arguments, control signals for arrays,
and the return value of the software function.

• AXI4 Master interfaces (m_axi) are assigned to pointer and array arguments of the C/C++
function.

• Vitis HLS automatically tries to infer BURST transactions whenever possible to aggregate
memory accesses to maximize the throughput bandwidth and/or minimize the latency.

• Defining a software function argument using an hls::stream data type implies an AXI4-
Stream (axis) port.

Default Settings of Vivado/Vitis Flows
The open_solution target will configure the compiler for either the Vivado IP flow or the Vitis
Kernel flow. This will change the default behavior of the tool according to the flow specified. The
following table shows the default settings of both flows so that you can quickly determine the
differences in the default configuration.

TIP: Beyond the default configuration, there are additional features of the Vitis HLS tool that support one
flow, but not the other, or are configured differently between the two flows. Those differences are
highlighted throughout this document.

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 331Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=fiv1568160307462.html&Doc_Version=2022.2%20English&url=ug1393-vitis-application-acceleration
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=331

Table 20: Default Configuration

Configuration Vivado Vitis
set_clock_uncertainty 27% 27%

config_compile -pipeline_loops 64 64

config_compile -name_max_length 255 255

config_export -vivado_optimization_level 0 0

config_export -vivado_phys_opt none none

config_rtl -module_auto_prefix true true

config_rtl -register_reset_num 0 3

config_schedule -enable_dsp_full_reg true true

INTERFACE pragma defaults IP mode Kernel mode

config_interface -m_axi_addr64 true true

config_interface -m_axi_latency 0 64

config_interface -
m_axi_alignment_byte_size

1 64

config_interface -
m_axi_max_widen_bitwidth

0 512

config_interface -default_slave_interface s_axilite s_axilite

config_interface -m_axi_offset slave slave

Section III: Using Vitis HLS
Chapter 12: Creating a New Vitis HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 332Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=332

Chapter 13

Verifying Code with C Simulation
Verification in the Vitis HLS flow can be separated into two distinct processes.

• Pre-synthesis validation that the C program correctly implements the required functionality.

• Post-synthesis verification that the generated RTL code performs as expected.

Both processes are referred to as simulation: C simulation and C/RTL co-simulation.

Before synthesis, the function to be synthesized should be validated with a test bench using C
simulation. A C test bench includes a main() top-level function, that calls the function to be
synthesized by the Vitis HLS project. The test bench can also include other functions. An ideal
test bench has the following features:

• The test bench is self-checking, and validates that the results from the function to be
synthesized are correct.

• If the results are correct the test bench returns a value of 0 to main(). Otherwise, the test
bench should return any non-zero value.

In the Vitis HLS GUI, clicking the Run C Simulation toolbar button opens the C Simulation
Dialog box, as shown in the following figure:

Section III: Using Vitis HLS
Chapter 13: Verifying Code with C Simulation

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 333Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=333

Figure 90: C Simulation Dialog Box

The options for the C Simulation Dialog box include the following:

• Launch Debugger: This compiles the C code and automatically opens the Debug perspective.
From within the Debug perspective, the Synthesis perspective button (top left) can be used to
return the windows to the Synthesis perspective.

• Build Only: Compiles the source code and test bench, but does not run simulation. This option
can be used to test the compilation process and resolve any issues with the build prior to
running simulation. It generates a csim.exe file that can be used to launch simulation from a
command shell.

• Clean Build: Remove any existing executable and object files from the project before
compiling the code.

• Optimizing Compile: By default the design is compiled with debug information enabled,
allowing the compilation to be analyzed and debugged. The Optimizing Compile option uses a
higher level of optimization effort when compiling the design, but does not add information
required by the debugger. This increases the compile time but should reduce the simulation
runtime.

TIP: The Launch Debugger and Optimizing Compile options are mutually exclusive. Selecting one in the
C Simulation Dialog box disables the other.

Section III: Using Vitis HLS
Chapter 13: Verifying Code with C Simulation

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 334Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=334

• Enable Pre-Synthesis Control Flow Viewer: Generates the Pre-synthesis Control Flow report
as described in Pre-Synthesis Control Flow.

• Input Arguments: Specify any inputs required by your test bench main() function.

• Do not show this dialog box again: Lets you disable the display of the C Simulation Dialog
box.

TIP: You can re-enable the display of the C Simulation Dialog box by selecting Project → Project
Settings and selecting the Simulation settings.

After clicking OK in the dialog box, the C code is compiled and the C simulation is run. As the
simulation runs, the console displays any printf statements from the test bench, or
hls::print statements from the kernel or IP. When the simulation completes successfully, the
following message is also returned to the console:

INFO: [SIM 211-1] CSim done with 0 errors.
INFO: [SIM 211-3] *************** CSIM finish ***************
Finished C simulation.

When the simulation fails, an error is returned:

@E Simulation failed: Function 'main' returns nonzero value '1'.
ERROR: [SIM 211-100] 'csim_design' failed: nonzero return value.
INFO: [SIM 211-3] *************** CSIM finish ***************

If you select the Launch Debugger option, the tool automatically switches to the Debug layout
view as shown in the following figure. The simulation is started, but lets you step through the
code to observe and debug the function. This is a full featured debug environment: you can step
into and over code, specify breakpoints, and observe and set the value of variables in the code.

Figure 91: C Debug Environment

Section III: Using Vitis HLS
Chapter 13: Verifying Code with C Simulation

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 335Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=335

TIP: You can return to the Synthesis layout view by selecting the Window → Synthesis.

hls::print Function
The hls::print function is similar to printf in C, because it prints a format string and a
single optional int or double argument to standard output, and to the simulation log in C
simulation, RTL co-simulation and HW emulation in Vitis™.

However, it is limited to printing at most one argument, with a restricted set of datatypes, as
mentioned below. It may also change the initiation interval and latency of a pipeline, so it must
used very sparingly.

hls::print Function Uses:

• Trace the values of some selected variables.

• Trace the order in which code blocks are executed across complex control and concurrent
execution (for example in dataflow). It cannot be used to trace the order in which individual
statements are scheduled within a basic block of code, because the scheduler may
significantly change that order.

When used in this simple example:

#include "hls_print.h"
...
 for (int i=0; i<N; i++) {
#pragma HLS pipeline ii=1
 hls::print("loop %d\n", i);
...

It prints the value of "i" at each iteration of the loop in both C simulation, SW emulation, RTL co-
simulation, and HW emulation (it is currently ignored when the target is a HW implementation).

Note the following:

• For now the functionality is supported only in Verilog RTL.

• The only supported format specifiers are:

○ %d for integer or unsigned

○ %f for float or double

• Values of type long and long long, and the unsigned variants, must be cast to int or unsigned
int (due to the argument promotion rules of C++).

• By adding an "observation" point, insertion of hls::print may alter the optimizations
performed by HLS. Thus it can change the behavior of the RTL (just like a printf in SW can
alter the behavior of the binary, but much more dramatically due to the nature of HLS).

Section III: Using Vitis HLS
Chapter 13: Verifying Code with C Simulation

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 336Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=336

• Only a single int or double value can be passed, in order to minimize the above mentioned
impact.

• The order of execution of different hls::print functions within a code block may change
due to optimizations and scheduling.

• In RTL the current simulation time is printed out as well, in order to ease debugging.

• The amount of data that it may produce may be huge, thus it should not be used to dump
large arrays.

Writing a Test Bench
When using the Vitis HLS design flow, it is time consuming to synthesize an improperly coded C
function and then analyze the implementation details to determine why the function does not
perform as expected. Therefore, the first step in high-level synthesis should be to validate that
the C function is correct, before generating RTL code, by performing simulation using a well
written test bench. Writing a good test bench can greatly increase your productivity, as C
functions execute in orders of magnitude faster than RTL simulations. Using C to develop and
validate the algorithm before synthesis is much faster than developing and debugging RTL code.

Vitis HLS uses the test bench to compile and execute the C simulation. During the compilation
process, you can select the Launch Debugger option to open a full C-debug environment, which
enables you to more closely analyze the C simulation. Vitis HLS also uses the test bench to verify
the RTL output of synthesis as described in C/RTL Co-Simulation in Vitis HLS.

The test bench includes the main() function, as well as any needed sub-functions that are not
in the hierarchy of the top-level function designated for synthesis by Vitis HLS. The main
function verifies that the top-level function for synthesis is correct by providing stimuli and
calling the function for synthesis, and by consuming and validating its output.

IMPORTANT! The test bench can accept input arguments that can be provided when C simulation is
launched, as described in Verifying Code with C Simulation. However, the test bench must not require
interactive user inputs during execution. The Vitis HLS GUI does not have a command console, and
therefore cannot accept user inputs while the test bench executes.

The following code shows the important features of a self-checking test bench, as an example:

int main () {
 //Establish an initial return value. 0 = success
 int ret=0;

 // Call any preliminary functions required to prepare input for the test.

 // Call the top-level function multiple times, passing input stimuli as
needed.
 for(i=0; i<NUM_TRANS; i++){
 top_func(input, output);
 }

Section III: Using Vitis HLS
Chapter 13: Verifying Code with C Simulation

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 337Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=337

 // Capture the output results of the function, write to a file

 // Compare the results of the function against expected results
 ret = system("diff --brief -w output.dat output.golden.dat");

 if (ret != 0) {
 printf("Test failed !!!\n");
 ret=1;
 } else {
 printf("Test passed !\n");
 }

 return ret;
}

The test bench should execute the top-level function for multiple transactions, allowing many
different data values to be applied and verified. The test bench is only as good as the variety of
tests it performs. In addition, your test bench must provide multiple transactions if you want to
calculate II during RTL simulation as described in C/RTL Co-Simulation in Vitis HLS.

This self-checking test bench compares the results of the function, output.dat, against known
good results in output.golden.dat. This is just one example of a self-checking test bench.
There are many ways to validate your top-level function, and you must code your test bench as
appropriate to your code.

In the Vitis HLS design flow, the return value of function main() indicates the following:

• Zero: Results are correct.

• Non-zero value: Results are incorrect.

The test bench can return any non-zero value. A complex test bench can return different values
depending on the type of failure. If the test bench returns a non-zero value after C simulation or
C/RTL co-simulation, Vitis HLS reports an error and simulation fails.

TIP: Because the system environment (for example, Linux, Windows, or Tcl) interprets the return value of
the main()  function, it is recommended that you constrain the return value to an 8-bit range for
portability and safety.

Of course, the results of simulation are only as good as the test bench you provide. You are
responsible for ensuring that the test bench returns the correct result. If the test bench returns
zero, Vitis HLS indicates that the simulation has passed, regardless of what occurred during
simulation.

Example Test Bench
Xilinx recommends that you separate the top-level function for synthesis from the test bench,
and that you use header files. The following code example shows a design in which the top-level
function for the HLS project, hier_func, calls two sub-functions:

Section III: Using Vitis HLS
Chapter 13: Verifying Code with C Simulation

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 338Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=338

• sumsub_func performs addition and subtraction.

• shift_func performs shift.

The data types are defined in the header file (hier_func.h). The code for the function follows:

#include "hier_func.h"

int sumsub_func(din_t *in1, din_t *in2, dint_t *outSum, dint_t *outSub)
{
 *outSum = *in1 + *in2;
 *outSub = *in1 - *in2;
}

int shift_func(dint_t *in1, dint_t *in2, dout_t *outA, dout_t *outB)
{
 *outA = *in1 >> 1;
 *outB = *in2 >> 2;
}

void hier_func(din_t A, din_t B, dout_t *C, dout_t *D)
{
 dint_t apb, amb;

 sumsub_func(&A,&B,&apb,&amb);
 shift_func(&apb,&amb,C,D);
}

As shown, the top-level function can contain multiple sub-functions. There can only be one top-
level function for synthesis. To synthesize multiple functions, group them as sub-functions of a
single top-level function.

The header file (hier_func.h), shown below, demonstrates how to use macros and how
typedef statements can make the code more portable and readable.

TIP: Arbitrary Precision (AP) Data Types discusses arbitrary precision data types, and how the typedef 
statement allows the types and therefore the bit-widths of the variables to be refined for both area and
performance improvements in the final FPGA implementation.

#ifndef _HIER_FUNC_H_
#define _HIER_FUNC_H_

#include <stdio.h>

#define NUM_TRANS 40

typedef int din_t;
typedef int dint_t;
typedef int dout_t;

void hier_func(din_t A, din_t B, dout_t *C, dout_t *D);

#endif

The header file above includes some #define statements, such as NUM_TRANS, that are not
required by the hier_func function, but are provided for the test bench, which also includes
the same header file.

Section III: Using Vitis HLS
Chapter 13: Verifying Code with C Simulation

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 339Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=339

The following code defines a test bench for the hier_func design:

#include "hier_func.h"

int main() {
 // Data storage
 int a[NUM_TRANS], b[NUM_TRANS];
 int c_expected[NUM_TRANS], d_expected[NUM_TRANS];
 int c[NUM_TRANS], d[NUM_TRANS];

 //Function data (to/from function)
 int a_actual, b_actual;
 int c_actual, d_actual;

 // Misc
 int retval=0, i, i_trans, tmp;
 FILE *fp;

 // Load input data from files
 fp=fopen(tb_data/inA.dat,r);
 for (i=0; i<NUM_TRANS; i++){
 fscanf(fp, %d, &tmp);
 a[i] = tmp;
 }
 fclose(fp);

 fp=fopen(tb_data/inB.dat,r);
 for (i=0; i<NUM_TRANS; i++){
 fscanf(fp, %d, &tmp);
 b[i] = tmp;
 }
 fclose(fp);

 // Execute the function multiple times (multiple transactions)
 for(i_trans=0; i_trans<NUM_TRANS-1; i_trans++){

 //Apply next data values
 a_actual = a[i_trans];
 b_actual = b[i_trans];

 hier_func(a_actual, b_actual, &c_actual, &d_actual);

 //Store outputs
 c[i_trans] = c_actual;
 d[i_trans] = d_actual;
 }

 // Load expected output data from files
 fp=fopen(tb_data/outC.golden.dat,r);
 for (i=0; i<NUM_TRANS; i++){
 fscanf(fp, %d, &tmp);
 c_expected[i] = tmp;
 }
 fclose(fp);

 fp=fopen(tb_data/outD.golden.dat,r);
 for (i=0; i<NUM_TRANS; i++){
 fscanf(fp, %d, &tmp);
 d_expected[i] = tmp;
 }
 fclose(fp);

 // Check outputs against expected

Section III: Using Vitis HLS
Chapter 13: Verifying Code with C Simulation

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 340Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=340

 for (i = 0; i < NUM_TRANS-1; ++i) {
 if(c[i] != c_expected[i]){
 retval = 1;
 }
 if(d[i] != d_expected[i]){
 retval = 1;
 }
 }

 // Print Results
 if(retval == 0){
 printf(*** *** *** *** \n);
 printf(Results are good \n);
 printf(*** *** *** *** \n);
 } else {
 printf(*** *** *** *** \n);
 printf(Mismatch: retval=%d \n, retval);
 printf(*** *** *** *** \n);
 }

 // Return 0 if outputs are corre
 return retval;
}

Design Files and Test Bench Files

Because Vitis HLS reuses the C test bench for RTL verification, it requires that the test bench and
any associated files be denoted as test bench files when they are added to the Vitis HLS project.
Files associated with the test bench are any files that are:

• Accessed by the test bench.

• Required for the test bench to operate correctly.

Examples of such files include the data files inA.dat and inB.dat in the example test bench.
You must add these to the Vitis HLS project as test bench files.

The requirement for identifying test bench files in a Vitis HLS project does not require that the
design and test bench be in separate files (although separate files are recommended). To
demonstrate this, a new example is defined from the same code used in Example Test Bench,
except a new top-level function is defined. In this example the function sumsub_func is defined
as the top-level function in the Vitis HLS project.

TIP: You can change the top-level function by selecting the Project Settings command from the Flow
Navigator, selecting the Synthesis settings, and specifying a new Top Function.

With the sumsub_func function defined as the top-level function, the higher-level function,
hier_func becomes part of the test bench, as it is the calling function for sumsub_func. The
peer-level shift_func function is also now part of the test bench, as it is a required part of the
test. Even though these functions are in the same code file as the top-level sumsub_func
function, they are part of the test bench.

Section III: Using Vitis HLS
Chapter 13: Verifying Code with C Simulation

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 341Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=341

Single File Test Bench and Design

You can also include the design and test bench into a single design file. The following example
has the same hier_func function as discussed Example Test Bench, except that everything is
coded in a single file: top-level function, sub functions, and main function for the test bench.

IMPORTANT! Having both the test bench and design in a single file requires you to add that file to the
Vitis HLS project as both a design file, and a test bench file.

#include <stdio.h>

#define NUM_TRANS 40

typedef int din_t;
typedef int dint_t;
typedef int dout_t;

int sumsub_func(din_t *in1, din_t *in2, dint_t *outSum, dint_t *outSub)
{
 *outSum = *in1 + *in2;
 *outSub = *in1 - *in2;
}

int shift_func(dint_t *in1, dint_t *in2, dout_t *outA, dout_t *outB)
{
 *outA = *in1 >> 1;
 *outB = *in2 >> 2;
}

void hier_func(din_t A, din_t B, dout_t *C, dout_t *D)
{
 dint_t apb, amb;

 sumsub_func(&A,&B,&apb,&amb);
 shift_func(&apb,&amb,C,D);
}

int main() {
 // Data storage
 int a[NUM_TRANS], b[NUM_TRANS];
 int c_expected[NUM_TRANS], d_expected[NUM_TRANS];
 int c[NUM_TRANS], d[NUM_TRANS];

 //Function data (to/from function)
 int a_actual, b_actual;
 int c_actual, d_actual;

 // Misc
 int retval=0, i, i_trans, tmp;
 FILE *fp;
 // Load input data from files
 fp=fopen(tb_data/inA.dat,r);
 for (i=0; i<NUM_TRANS; i++){
 fscanf(fp, %d, &tmp);
 a[i] = tmp;
 }
 fclose(fp);

 fp=fopen(tb_data/inB.dat,r);
 for (i=0; i<NUM_TRANS; i++){

Section III: Using Vitis HLS
Chapter 13: Verifying Code with C Simulation

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 342Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=342

 fscanf(fp, %d, &tmp);
 b[i] = tmp;
 }
 fclose(fp);

// Execute the function multiple times (multiple transactions)
for(i_trans=0; i_trans<NUM_TRANS-1; i_trans++){

 //Apply next data values
 a_actual = a[i_trans];
 b_actual = b[i_trans];

 hier_func(a_actual, b_actual, &c_actual, &d_actual);

 //Store outputs
 c[i_trans] = c_actual;
 d[i_trans] = d_actual;
 }

 // Load expected output data from files
 fp=fopen(tb_data/outC.golden.dat,r);
 for (i=0; i<NUM_TRANS; i++){
 fscanf(fp, %d, &tmp);
 c_expected[i] = tmp;
 }
 fclose(fp);

 fp=fopen(tb_data/outD.golden.dat,r);
 for (i=0; i<NUM_TRANS; i++){
 fscanf(fp, %d, &tmp);
 d_expected[i] = tmp;
 }
 fclose(fp);

 // Check outputs against expected
 for (i = 0; i < NUM_TRANS-1; ++i) {
 if(c[i] != c_expected[i]){
 retval = 1;
 }
 if(d[i] != d_expected[i]){
 retval = 1;
 }
 }

 // Print Results
 if(retval == 0){
 printf(*** *** *** *** \n);
 printf(Results are good \n);
 printf(*** *** *** *** \n);
 } else {
 printf(*** *** *** *** \n);
 printf(Mismatch: retval=%d \n, retval);
 printf(*** *** *** *** \n);
 }

 // Return 0 if outputs are correct
 return retval;
}

Section III: Using Vitis HLS
Chapter 13: Verifying Code with C Simulation

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 343Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=343

Using the Debug View Layout
You can view the values of variables and expressions directly in the Debug view layout. The
following figure shows how you can monitor the value of individual variables. In the Variables
view, you can edit the values of variables to force the variable to a specific state for instance.

Figure 92: Monitoring Variables

You can monitor the value of expressions using the Expressions tab.

Figure 93: Monitoring Expressions

Section III: Using Vitis HLS
Chapter 13: Verifying Code with C Simulation

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 344Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=344

Output of C Simulation
When C simulation completes, a csim folder is created inside the solution folder. This folder
contains the following elements:

• csim/build: The primary location for all files related to the C simulation

○ Any files read by the test bench are copied to this folder.

○ The C executable file csim.exe is created and run in this folder.

○ Any files written by the test bench are created in this folder.

○ csim/obj: Contains object files (.o) for the compiled source code, and make dependency
files (.d) for the source code build.

• csim/report: Contains a log file of the C simulation build and run.

Pre-Synthesis Control Flow
IMPORTANT! This feature is only available on Linux platforms, and is not supported on Windows
systems.

You can generate the Pre-Synthesis Control Flow Graph (CFG) as an option from the Run C
Simulation dialog box. Select the Enable Pre-Synthesis Control Flow Viewer check box on the
dialog box to generate the report. After generating the report you can open it by selecting it from
the C Simulation  → Reports & Viewers section of the Flow Navigator.

The Pre-Synthesis Control Flow viewer helps you to identify the hot spots in your function, the
compute-intensive control structures, and to apply pragmas or directives to improve or optimize
the results. The CFG shows the control flow through your C code, as shown in the following
figure, to help you visualize the top-level function. The CFG also provides static profiling, such as
the trip-count of loops, and dynamic profiling information to analyze the design.

Section III: Using Vitis HLS
Chapter 13: Verifying Code with C Simulation

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 345Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=345

Figure 94: Pre-Synthesis Control Flow Viewer

As shown in the figure above, the Pre-Synthesis Control Flow viewer has multiple elements:

• Function Call Tree on the upper left.

• Control Flow Graph (CFG) in the middle.

• Source Code viewer on the upper right.

• Loops view in the lower Console area that is associated with, and provides cross-probing with
the CFG viewer.

Selecting a sub-function or loop in one view, also selects it in other views. This lets you quickly
navigate the hierarchy of your code. Every function call can be further expanded to see the
control structure of the loops and condition statements. Click on the control structure to view
the source code.

Section III: Using Vitis HLS
Chapter 13: Verifying Code with C Simulation

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 346Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=346

Double-clicking on a function in the Function Tree opens that level of the code hierarchy in the
CFG, single clicking in the Function Tree simply selects the function. The CFG can be expanded
to show the hierarchy of the design using the Expand function call command display the function
levels of hierarchy specified.

You can also type in the Search field of the Function Call Tree to highlight the first matching
occurrence of the typed text. You can use this to quickly navigate through your code.

The CFG can help you analyze the dynamic behavior of your function, reporting the number of
times the function or sub-function executed on different control paths. Loops are often a source
of computing intensity, and the Loops window provides statistics such as access time, total and
average loop iterations (tripcount). This information regarding the respective loops can be found
in the Loops view, which has cross-linking capabilities. Clicking on a loop will highlight both the
source code and the control structure.

Memory operations can also be annotated in the CFG viewer, identifying another area for
possible performance optimization.

Section III: Using Vitis HLS
Chapter 13: Verifying Code with C Simulation

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 347Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=347

Chapter 14

Synthesizing the Code
To synthesize the active solution of the project, select the Run C Synthesis command in the Flow

Navigator, or select the command on the toolbar menu.

Note: When your project has multiple solutions as described in Creating Additional Solutions, you can Run
C Synthesis on the active solution, all solutions, or selected solutions using the Solution → Run C Synthesis
from the main menu.

The C/C++ source code is synthesized into an RTL implementation. During the synthesis process
messages are transcripted to the console window, and to the vitis_hls.log file.

INFO: [HLS 200-1470] Pipelining result : Target II = 1, Final II = 4, Depth
= 6.
INFO: [SCHED 204-11] Finished scheduling.
INFO: [HLS 200-111] Elapsed time: 19.38 seconds; current allocated memory:
397.747 MB.
INFO: [BIND 205-100] Starting micro-architecture generation ...
INFO: [BIND 205-101] Performing variable lifetime analysis.
INFO: [BIND 205-101] Exploring resource sharing.
INFO: [BIND 205-101] Binding ...
INFO: [BIND 205-100] Finished micro-architecture generation.
INFO: [HLS 200-111] Elapsed time: 0.57 seconds; current allocated memory:
400.218 MB.
INFO: [HLS 200-10]
--
INFO: [HLS 200-10] -- Generating RTL for module 'dct'

Within the Vitis™ HLS IDE, some messages contain links to additional information. The links are
highlighted in blue underlined text, and open help messages, source code files, or documents
with additional information in some cases. Clicking the messages provides more details on why
the message was issued and possible resolutions.

When synthesis completes, the Simplified Synthesis report for the top-level function opens
automatically in the information pane as shown in the following figure.

Section III: Using Vitis HLS
Chapter 14: Synthesizing the Code

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 348Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=348

Figure 95: Synthesis Summary Report

You can quickly review the performance metrics displayed in the Simplified Synthesis report to
determine if the design meets your requirements. The synthesis report contains information on
the following performance metrics:

• Issue Type: Shows any issues with the results.

• Latency: Number of clock cycles required for the function to compute all output values.

• Initiation interval (II): Number of clock cycles before the function can accept new input data.

• Loop iteration latency: Number of clock cycles it takes to complete one iteration of the loop.

• Loop iteration interval: Number of clock cycles before the next iteration of the loop starts to
process data.

• Loop latency: Number of cycles to execute all iterations of the loop.

• Resource Utilization: Amount of hardware resources required to implement the design based
on the resources available in the FPGA, including look-up tables (LUT), registers, block RAMs,
and DSP blocks.

If you specified the Run C Synthesis command on multiple solutions, the Console view reports
the synthesis transcript for each of the solutions as they are synthesized. After synthesis has
completed, instead of the Simplified Synthesis report, Vitis HLS displays a Report Comparison to
compare the synthesis results for all of the synthesized solutions. A portion of this report is
shown below.

Section III: Using Vitis HLS
Chapter 14: Synthesizing the Code

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 349Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=349

Figure 96: Report Comparison

Synthesis Summary
When synthesis completes, Vitis HLS generates a Synthesis Summary report for the top-level
function that opens automatically in the information pane.

The specific sections of the Synthesis Summary are detailed below.

TIP: Clicking the header line for any of the sections causes the branch to collapse or expand in the report
window.

Section III: Using Vitis HLS
Chapter 14: Synthesizing the Code

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 350Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=350

General Information

Provides information on when the report was generated, the version of the software used, the
project name, the solution name and target flow, and the technology details.

Figure 97: Synthesis Summary Report

Timing Estimate

Displays a quick estimate of the timing specified by the solution, as explained in Specifying the
Clock Frequency. This includes the Target clock period specified, and the period of Uncertainty.
The clock period minus the uncertainty results in the Estimated clock period.

TIP: These values are only estimates provided by the user in the solution settings. More accurate estimates
can be reported by selecting the Run RTL Synthesis command or Run RTL Place and Route from the Flow
Navigator, as explained in Exporting the RTL Design.

Performance & Resource Estimates

The Performance Estimate columns report the latency and initiation interval for the top-level
function and any sub-blocks instantiated in the top-level. Each sub-function called at this level in
the C/C++ source is an instance in the generated RTL block, unless the sub-function was in-lined
into the top-level function using the INLINE pragma or directive, or automatically in-lined.

The Slack column displays any timing issues in the implementation.

The Latency column displays the number of cycles it takes to produce the output, and is also
displayed in time (ns). The Initiation Interval is the number of clock cycles before new inputs can
be applied. In the absence of any PIPELINE directives, the latency is one cycle less than the
initiation interval (the next input is read after the final output is written).

Section III: Using Vitis HLS
Chapter 14: Synthesizing the Code

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 351Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=351

TIP: When latency is displayed as a "?" it means that Vitis HLS cannot determine the number of loop
iterations. If the latency or throughput of the design is dependent on a loop with a variable index, Vitis HLS
reports the latency of the loop as being unknown. In this case, use the LOOP_TRIPCOUNT pragma or
directive to manually specify the number of loop iterations. The LOOP_TRIPCOUNT value is only used to
ensure the generated reports show meaningful ranges for latency and interval and does not impact the
results of synthesis.

The Iteration Latency is the latency of a single iteration for a loop. The Trip Count column
displays the number of iterations a specific loop makes in the implemented hardware. This
reflects any unrolling of the loop in hardware.

The Resource Estimate columns of the report indicates the estimated resources needed to
implement the software function in the RTL code. Estimates of the BRAM, DSP, FFs, and LUTs
are provided.

HW Interfaces

The HW Interfaces section of the synthesis report provides tables for the different hardware
interfaces generated during synthesis. The type of hardware interfaces generated by the tool
depends on the flow target specified by the solution, as well as any INTERFACE pragmas or
directives applied to the code. In the following image, the solution targets the Vitis Kernel flow,
and therefore generates AXI interfaces as required.

Figure 98: HW Interfaces

The following should be observed when reviewing these tables:

• Separate tables are provided for the different interfaces.

• Columns are provided to display different properties of the interface. For the M_AXI interface,
these include the Data Width and Max Widen Bitwidth columns which indicate whether
Automatic Port Width Resizing has occurred, and to what extent. In the example above, you
can see that the port was widened to 512 bits from the 16 bits specified in the software.

• The Latency column displays the latency of the interface:

Section III: Using Vitis HLS
Chapter 14: Synthesizing the Code

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 352Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=352

○ In an ap_memory interface, the column displays the read latency of the RAM resource
driving the interface.

○ For an m_axi interface, the column displays the expected latency of the AXI4 interface,
allowing the design to initiate a bus request a number of cycles (latency) before the read or
write is expected.

• The Bundle column displays any specified bundle names from the INTERFACE pragma or
directive.

• Additional columns display burst and read and write properties of the M_AXI interface as
described in set_directive_interface.

• The Bit Fields column displays the bits used by an the registers in an s_axilite interface.

SW I/O Information

Highlights how the function arguments from the C/C++ source is associated with the port names
in the generated RTL code. Additional details of the software and hardware ports are provided as
shown below. Notice that the SW argument is expanded into multiple HW interfaces. For
example, the input argument is related to three HW interfaces, the m_axi for data, and the
s_axi_lite for required control signals.

Figure 99: SW I/O Information

Section III: Using Vitis HLS
Chapter 14: Synthesizing the Code

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 353Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=353

M_AXI Burst Information

In the M_AXI Burst Information section the Burst Summary table reports the successful burst
transfers, with a link to the associated source code. The reported burst length refers to either
max_read_burst_length or max_write_burst_length and represents the number of
data values read/written during a burst transfer. For example, in a case where the input type is
integer (32 bits), and HLS auto-widens the interface to 512 bits, each burst transfers 1024
integers. Because the widened interface can carry 16 integers at a time, the result is 64 beat
bursts. The Burst Missed table reports why a particular burst transfer was missed with a link to
Guidance messages related to the burst failures to help with resolution.

Figure 100: M_AXI Burst Information

Bind Op and Bind Storage Reports

The Bind Op and Bind Storage reports are added to the Synthesis Summary report. Both reports
can help you understand choices made by Vitis HLS when it maps operations to resources. The
tool will map operations to the right resources with the right latency. You can influence this
process by using the BIND_OP pragma or directive, and requesting a particular resource mapping
and latency. The Bind Op report will show which of the mappings were automatically done
versus those enforced by the use of a pragma. Similarly, the Bind Storage report shows the
mappings of arrays to memory resources on the platform like BRAM/LUTRAM/URAM.

The Bind Op Report displays the implementation details of the kernel or IP. The hierarchy of the
top-level function is displayed and variables are listed with any HLS pragmas or directives
applied, the operation defined, the implementation used by the HLS tool, and any applied
latency.

This report is useful for examining the programmable logic implementation details specified by
the RTL design.

Section III: Using Vitis HLS
Chapter 14: Synthesizing the Code

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 354Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=354

Figure 101: Synthesis Summary

As shown above, the Bind OP report highlights certain important characteristics in your design.
Currently, it calls out the number of DSPs used in the design and shows in a hierarchy where
these DSPs are used in the design. The table also highlights whether the particular resource
allocation was done because of a user-specified pragma and if so, a "yes" entry will be present in
the Pragma column. If no entry exists in the Pragma column, it means that the resource was auto
inferred by the tool. The table also shows the RTL names of the resources allocated for each
module in the user's design and you can hierarchy descend down the hierarchy to see the various
resources.

It does not show all the inferred resources but instead shows resources of interest such as
arithmetic, floating-point, and DSPs. The particular implementation choice of fabric
(implemented using LUTs) or DSP is also shown. Finally, the latency of the resource is also shown.
This is helpful in understand and increasing the latency of resources if needed to add pipeline
stages to the design. This is extremely useful when attempting to break a long combinational
path when trying to solve timing issues during implementation.

Each resource allocation is correlated to the source code line where the corresponding op was
inferred from and the user can right-click on the resource and select the "Goto Source" option to
see this correlation. Finally, the second table below the Bind Op report illustrates any global
config settings that can also alter the resource allocation algorithm used by the tool. In the above
example, the implementation choice for a dadd (double precision floating point addition)
operation has been fixed to a fulldsp implementation. Similarly, the latency of a ddiv
operation has been fixed to 2.

Section III: Using Vitis HLS
Chapter 14: Synthesizing the Code

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 355Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=355

Similar to the BIND_OP pragma, the BIND_STORAGE pragma can be used to select a particular
memory type (such as single port or dual port) and/or a particular memory implementation (such
as BRAM/LUTRAM/URAM/SRL, etc.) and a latency value. The Bind Storage report highlights the
storage mappings used in the design. Currently, it calls out the number of BRAMs and URAMs
used in the design. The table also highlights whether the particular storage resource allocation
was done because of a user-specified pragma and if so, a "yes" entry will be present in the
Pragma column. If no entry exists in the Pragma column, then this means that the storage
resource was auto inferred by the tool. The particular storage type, as well as the implementation
choice, are also shown along with the variable name and latency.

Using this information, you can review the storage resource allocation in the design and make
design choices by altering the eventual storage implementation depending upon availability.
Finally, a second table below the Bind Storage report will be shown if there are any global config
settings that can also alter the storage resource allocation algorithm used by the tool.

User Pragma Report

Displays the ignored and incorrect Pragmas in the design. This report is intended to summarize
issues that can otherwise be found in the Vitis HLS log files. It lets you quickly identify issues
with the pragmas used in your design, to see which ones may not have been used as expected. In
addition, valid pragmas are separately reported so you can see all pragmas in use in the design.

TIP: A link to the source code where the pragma is applied is provided in the report.

Section III: Using Vitis HLS
Chapter 14: Synthesizing the Code

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 356Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=356

Figure 102: Pragma Report

Output of C Synthesis
When synthesis completes, the syn folder is created inside the solution folder. This folder
contains the following elements:

• The verilog and vhdl folders contain the output RTL files.

○ The top-level file has the same name as the top-level function for synthesis.

○ There is one RTL file created for each sub-function that has not been inlined into a higher
level function.

○ There could be additional RTL files to implement sub-blocks of the RTL hierarchy, such as
block RAM, and pipelined multipliers.

• The report folder contains a report file for the top-level function and one for every sub-
function that has not been in-lined into a higher level function by Vitis HLS. The report for the
top-level function provides details on the entire design.

Section III: Using Vitis HLS
Chapter 14: Synthesizing the Code

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 357Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=357

IMPORTANT! You should not use the RTL files generated in the syn/verilog  or syn/vhdl  folder for
synthesis in the Vivado tool. You should instead use the packaged output files for use with the Vitis
application acceleration development flow, or the Vivado Design Suite as described in Exporting the RTL
Design. In cases where Vitis HLS uses Xilinx IP in the generated RTL code, such as with floating point
designs, the verilog  and vhdl  folders contain a script to create that IP during RTL synthesis by the
Xilinx tools. If you use the files in the syn/verilog  or syn/vhdl  folder directly for RTL synthesis, you
must also correctly use any script files present in those folders. If the packaged output is used, this process
is performed automatically by the Xilinx tools.

Improving Synthesis Runtime and Capacity
Vitis HLS schedules operations hierarchically. The operations within a loop are scheduled, then
the loop, the sub-functions and operations with a function are scheduled. Runtime for Vitis HLS
increases when:

• There are more objects to schedule.

• There is more freedom and more possibilities to explore.

Vitis HLS schedules objects. Whether the object is a floating-point multiply operation or a single
register, it is still an object to be scheduled. The floating-point multiply may take multiple cycles
to complete and use many resources to implement but at the level of scheduling it is still one
object.

Unrolling loops and partitioning arrays creates more objects to schedule and potentially increases
the runtime. Inlining functions creates more objects to schedule at this level of hierarchy and also
increases runtime. These optimizations may be required to meet performance but be very careful
about simply partitioning all arrays, unrolling all loops and inlining all functions: you can expect a
runtime increase. Use the optimization strategies provided earlier and judiciously apply these
optimizations.

If the loops must be unrolled, or if the use of the PIPELINE directive in the hierarchy above has
automatically unrolled the loops, consider capturing the loop body as a separate function. This
will capture all the logic into one function instead of creating multiple copies of the logic when
the loop is unrolled: one set of objects in a defined hierarchy will be scheduled faster. Remember
to pipeline this function if the unrolled loop is used in pipelined region.

The degrees of freedom in the code can also impact runtime. Consider Vitis HLS to be an expert
designer who by default is given the task of finding the design with the highest throughput,
lowest latency and minimum area. The more constrained Vitis HLS is, the fewer options it has to
explore and the faster it will run. Consider using latency constraints over scopes within the code:
loops, functions or regions. Setting a LATENCY directive with the same minimum and maximum
values reduces the possible optimization searches within that scope.

Section III: Using Vitis HLS
Chapter 14: Synthesizing the Code

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 358Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=358

Chapter 15

Analyzing the Results of Synthesis
After synthesis completes, Vitis HLS automatically creates synthesis reports to help you
understand and analyze the performance of the implementation. Examples of these reports
include the Synthesis Summary report, Schedule Viewer, Function Call Graph, and Dataflow
Viewer. You can view these reports from the Flow Navigator in the Vitis HLS IDE.

• Schedule Viewer: Shows each operation and control step of the function, and the clock cycle
that it executes in.

• Dataflow Viewer: Shows the dataflow structure inferred by the tool, inspect the channels
(FIFO/PIPO), to let you examine the effect of channel depth on performance

• Function Call Graph Viewer: Displays your full design after C Synthesis or C/RTL Co-
simulation to show the throughput of the design in terms of latency and II.

In addition to the various graphs and viewers described above, the Vitis HLS tool provides
additional views to expand on the information available for analysis of your design.

• Module Hierarchy: Shows the resources and latency contribution for each block in the RTL
hierarchy It also indicates any II or timing violations. In case of timing violations, the hierarchy
window will also show the total negative slack observed in a specific module.

• Performance Profile: Shows details on the performance of the block currently selected in the
Module Hierarchy view. Performance is measured in terms of latency and the initiation
interval, and includes details on whether the block was pipelined or not.

• Resource Profile: Shows the resources used at the selected level of hierarchy, and shows the
control state of the operations used.

• Properties view: Shows the properties of the currently selected control step or operation in
the Schedule Viewer.

Schedule Viewer
The Schedule Viewer provides a detailed view of the synthesized RTL, showing each operation
and control step of the function, and the clock cycle that it executes in. It helps you to identify
any loop dependencies that are preventing parallelism, timing violations, and data dependencies.

Section III: Using Vitis HLS
Chapter 15: Analyzing the Results of Synthesis

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 359Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=359

The Schedule Viewer is displayed by default in the Analysis perspective. You can open it from the
Module Hierarchy window by right-clicking a module and selecting Open Schedule Viewer from
the menu.

In the Schedule Viewer,

• The left vertical axis shows the names of operations and loops in the RTL hierarchy.
Operations are in topological order, implying that an operation on line n can only be driven by
operations from a previous line, and will only drive an operation in a later line. Depending
upon the type of violations found the Schedule Viewer shows additional information for each
operation:

○ Resource limitation: displays the type of operation(read/write), type of memory
used(RAM_1p or RAM_2p). In the image below the vecIn is a memory which is a dual
port ram and trying to perform 3 reads in a single iteration. This causes an II violation
because of a resource limitation and the tool is highlighting the operation which is
scheduled in the next cycle of the load operation.

○ Dependency: displays information related to iterations which have a loop carried
dependency. For example, a read transaction could have a dependency on a prior write
value.

• The top horizontal axis shows the clock cycles in consecutive order.

• The vertical dashed line in each clock cycle shows the reserved portion of the clock period
due to clock uncertainty. This time is left by the tool for the Vivado back-end processes, like
place and route.

• Each operation is shown as a gray box in the table. The box is horizontally sized according to
the delay of the operation as percentage of the total clock cycle. In case of function calls, the
provided cycle information is equivalent to the operation latency.

• Multi-cycle operations are shown as gray boxes with a horizontal line through the center of
the box.

• The Schedule Viewer also displays general operator data dependencies as solid blue lines. As
shown in the figure below, when selecting an operation you can see solid blue arrows
highlighting the specific operator dependencies. This gives you the ability to perform detailed
analysis of data dependencies. The green dotted line indicates an inter-iteration data
dependency.

• Memory dependencies are displayed using golden lines.

• In addition, lines of source code are associated with each operation in the Schedule Viewer
report. Right-click the operation to use the Goto Source command to open the input source
code associated with the operation.

Section III: Using Vitis HLS
Chapter 15: Analyzing the Results of Synthesis

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 360Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=360

In the figure below, the loop called RD_Loop_Row is selected. This is a pipelined loop and the
initiation interval (II) is explicitly stated in the loop bar. Any pipelined loop is visualized unfolded,
meaning one full iteration is shown in the schedule viewer. Overlap, as defined by II, is marked by
a thick clock boundary on the loop marker.

The total latency of a single iteration is equivalent to the number of cycles covered by the loop
marker. In this case, it is three cycles.

Figure 103: Schedule Viewer

The Schedule Viewer displays a menu bar at the top right of the report that includes the
following features:

• A drop-down menu, initially labeled Focus Off, that lets you specify operations or events in
the report to select.

• A text search field to search for specific operations or steps (), and
commands to Scroll Up or Scroll Down through the list of objects that match your search text

• Zoom In, Zoom Out, and Zoom Fit commands ().

• The Filter command () lets you dynamically filter the operations that are displayed in the
viewer. You can filter operations by type, or by clustered operations.

Section III: Using Vitis HLS
Chapter 15: Analyzing the Results of Synthesis

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 361Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=361

○ Filtering by type allows you to limit what operations get presented based on their
functionality. For example, visualizing only adders, multipliers, and function calls will
remove all of the small operations such as “and” and “or”s.

○ Filtering by clusters exploits the fact that the scheduler is able to group basic operations
and then schedule them as one component. The cluster filter setting can be enabled to
color the clusters or even collapse them into one large operation in the viewer. This allows
a more concise view of the schedule.

Figure 104: Operation Causing Violation

You can quickly locate II violations using the drop-down menu in the Schedule Viewer, as shown
in the figure above. You can also select it through the context menu in the Module Hierarchy
view.

To locate the operations causing the violation in the source code, right-click the operation and
use the Goto Source command, or double-click the operation and the source viewer will appear
and identify the root of the object in the source.

Timing violations can also be quickly found from the Module Hierarchy view context menu, or by
using the drop-down menu in the Schedule Viewer menu. A timing violation is a path of
operations requiring more time than the available clock cycle. To visualize this, the problematic
operation is represented in the Schedule Viewer in a red box.

By default all dependencies (blue lines) are shown between each operation in the critical timing
path.

Properties View

At the bottom of the Schedule Viewer, as shown in the top figure, is the Properties view that
displays the properties of a currently selected object in the Schedule Viewer. This lets you see
details of the specific function, loop, or operation that is selected in the Schedule Viewer. The
types of elements that can be selected, and the properties displayed include:

• Functions or Loops

• Initiation Interval (II): The number of clock cycles before the function or loop can accept
new input data.

• Loop Iteration Latency: The number of clock cycles it takes to complete one iteration of
the loop.

Section III: Using Vitis HLS
Chapter 15: Analyzing the Results of Synthesis

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 362Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=362

• Latency: The number of clock cycles required for the function to compute all output values,
or for the loop to complete all iterations.

• Pipelined: Indicates that the function or loop are pipelined in the RTL design.

• Slack: The timing slack for the function or loop.

• Tripcount: The number of iterations a loop completes.

• Resource Utilization: Displays the number of BRAM, DSP, LUT, or FF used to implement
the function or loop.

• Operation and Storage Mapping

• Name: Location which contains the code.

• Op Code: Operation which has been scheduled, for example, add, sub, and mult. For
more information, refer to the BIND_OP or BIND_STORAGE pragmas or directives.

• Op Latency: Displays the default or specified latency for the binding of the operation or
storage.

• Bitwidth: Bitwidth of the Operation.

• Impl: Defines the implementation used for the specified operation or storage.

Function Call Graph Viewer
The new Function Call Graph Viewer, which can be opened from the Flow Navigator, illustrates
your full design after C Synthesis or C/RTL Co-simulation. The goal of this viewer is to show the
throughput of the design in terms of latency and II. It helps identify the critical path in your
design and helps you identify bottlenecks in the design to focus on to improve throughput. It can
also show the paths through the design where throughput may be imbalanced leading to FIFO
stalls and/or deadlock.

Section III: Using Vitis HLS
Chapter 15: Analyzing the Results of Synthesis

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 363Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=363

Figure 105: Performance Metrics Synthesis

In some cases, the displayed hierarchy of the design might not be the same as your source code
as a result of HLS optimizations that convert loops into function pipelines, etc. Functions that are
in-lined will no longer be visible in the call graph, as they are no longer separate functions in the
synthesized code. If multiple instances of a function are created, each unique instance of the
function is shown in the call graph. This lets you see what functions contribute to a calling
function's latency and II.

The graph as shown above displays functions as rectangular boxes, and loops as oval boxes, each
with II, latency, and resource or timing data depending on the specific view. Before C/RTL co-
simulation is completed the performance and resource metrics that are shown in the graph are
from the C Synthesis phase, and are therefore estimates from the HLS tool.

Note: For more accurate resource and timing estimates, logic synthesis or implementation can be
performed as part of Exporting the RTL Design.

After co-simulation, actual II and latency numbers are reported along with stalling percentages,
and this information is back annotated from data collected during co-simulation. You can toggle
between the synthesis performance metrics and co-simulation metrics using the drop-down
menu at the upper-left of the Function Call Graph viewer.

You can also use the Heat Map feature to highlight several metrics of interest:

• II (min, max, avg)

• Latency (min, max, avg)

• Stalling Time Percentage

Section III: Using Vitis HLS
Chapter 15: Analyzing the Results of Synthesis

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 364Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=364

Figure 106: Performance Metrics

The heat map uses color coding to highlight problematic modules. Using a color scale of red to
green where red indicates the high value of the metric (i.e. highest II or highest latency) while
green indicates a low value of the metric in question. The colors that are neither red nor green
represent the range of values that are in between the highest and lowest values. As shown
above, this helps in quickly identifying the modules that need attention. In the example shown
above, a heat map for LATENCY MAX is shown and the path of red modules indicates where the
high latency values are observed.

As mentioned before, the Function Call Graph illustrates at a high level, the throughput numbers
of your design. The user can view the Function Call Graph as a cockpit from which further
investigations can be carried out. Right-click on any of the displayed modules to display a menu
of options that you can use to display additional information. This lets you see the overall design
and then jump into specific parts of the design which need extra attention. Additional reports
include the Schedule Viewer, Synthesis Summary report, Dataflow Viewer, and source files. The
Function Call Graph is the one viewer in Vitis HLS where you can see the full picture of your
design and have the latency and II information of each module available for analysis - this
includes the dataflow modules for whom the performance information can only be obtained after
co-simulation.

TIP: Additional performance and resource metrics are displayed for each function/loop in the Modules/
Loops table under the report.

Dataflow Viewer
The DATAFLOW optimization is a dynamic optimization which can only be fully understood after
the RTL co-simulation is complete. Due to this fact, the Dataflow viewer lets you see the
dataflow structure inferred by the tool, inspect the channels (FIFO/PIPO), and examine the effect
of channel depth on performance. Performance data is back-annotated to the Dataflow viewer
from the co-simulation results.

Section III: Using Vitis HLS
Chapter 15: Analyzing the Results of Synthesis

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 365Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=365

IMPORTANT! You can open the Dataflow viewer without running RTL co-simulation, but your view will
not contain important performance information such as read/write block times, co-sim depth, and stall
times.

You must apply the DATAFLOW pragma or directive to your design for the Dataflow viewer to be
populated. You can apply dataflow to the top-level function, or specify regions of a function, or
loops. The Dataflow viewer displays a representation of the dataflow graph structure, showing
the different processes and the underlying producer-consumer connections.

In the Module Hierarchy view, the icon beside the function indicates that a Dataflow
Viewer report is available. When you see this icon, you can right-click the function and use the
Open Dataflow Viewer command.

Figure 107: Dataflow Viewer

Section III: Using Vitis HLS
Chapter 15: Analyzing the Results of Synthesis

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 366Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=366

Features of the Dataflow viewer include the following:

• Source Code browser.

• Automatic cross-probing from process/channel to source code.

• Filtering of ports and channel types.

• Process and Channel table details the characteristics of the design:

○ Channel Profiling (FIFO sizes etc), enabled from Solution Settings dialog box.

○ Process Read Blocking/Write Blocking/Stalling Time reported after RTL co-simulation.

IMPORTANT! You must use cosim_design -enable_dataflow_profiling  to capture
data for the Dataflow viewer, and your test bench must run at least two iterations of the top-level
function.

○ Process Latency and II displayed.

○ Channel type and widths are displayed in the Channel table.

○ Automatic cross-probing from Process and Channel table to the Graph and Source browser.

○ Hover over channel or process to display tooltips with design information.

The Dataflow viewer can help with performance debugging your designs. When your design
deadlocks during RTL co-simulation, the GUI will open the Dataflow viewer and highlight the
channels and processes involved in the deadlock so you can determine if the cause is insufficient
FIFO depth, for instance.

When your design does not perform as expected, the Process and Channels table can help you
understand why. A process can stall waiting to read input, or can stall because it cannot write
output. The channel table provides you with stalling percentages, as well as identifying if the
process is "read blocked" or "write blocked."

TIP: If you use a Tcl script to create the Vitis HLS project, you can still open it in the GUI to analyze the
design.

Timeline Trace Viewer
Timeline Trace viewer displays the run time profile of the functions of your design. It is especially
useful to see the behavior of dataflow regions after Co-simulation, as there is no need to launch
the Vivado logic simulator to view the timeline.

Timeline Trace viewer displays multiple iterations through the various sub-functions of a
dataflow region, shows where the functions are starting and ending, and displays the Co-
simulation data in tables below the timeline.

Section III: Using Vitis HLS
Chapter 15: Analyzing the Results of Synthesis

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 367Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=367

The viewer provides basic tools to use while viewing the timeline, such as adding markers,
stepping from one marker to the next and measuring the time between markers.

Figure 108: Timeline Trace Viewer

You can generate the Timeline Trace view from RTL Co-simulation. You should enable Dump
Trace All, and Enable Channel Profiling options from the Co-Simulation dialog box, or from the
Solutions Settings dialog box, and the Co-Sim window.

The Timeline Trace view also shows FIFO channel stall/starve states with Full and Empty
markers. In the following figure, you can see the demux FIFO is full, resulting in a stall as
highlighted in the timeline. In addition, the mux FIFO is empty and also stalled. The report also
shows the loop internal II and latency, and a table at the bottom of the display to show dataflow
path status, including performance, total time, stalling time and percentage.

Section III: Using Vitis HLS
Chapter 15: Analyzing the Results of Synthesis

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 368Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=368

Figure 109: Timeline Full/Empty

Section III: Using Vitis HLS
Chapter 15: Analyzing the Results of Synthesis

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 369Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=369

Chapter 16

Optimizing the HLS Project
After analysis, you will most likely need or want to optimize the performance of your function.
Even if it is performing well there may be opportunities for improvement. This section discusses
the mechanisms for applying optimizations to your project. Refer to Optimizing Techniques and
Troubleshooting Tips for a discussion of the various types of optimizations you can perform.

You can add optimization directives directly into the source code as compiler pragmas, using
various HLS PRAGMAS, or you can use Tcl set_directive commands to apply optimization
directives in a Tcl script to be used by a solution.

In addition to optimization pragmas and directives, Vitis™ HLS provides a number of
configuration settings to let you manage the default results of simulation and synthesis. These
configuration settings are accessed using the Solution → Solution Settings... menu command, and
clicking the Add command to add configuration settings. Refer to Configuration Commands for
more information on applying specific configuration settings.

Creating Additional Solutions
The most typical use of Vitis HLS is to create an initial design, analyze the results, and then
perform optimizations to meet the desired area and performance goals. This is often an iterative
process, requiring multiple steps and multiple optimizations to achieve the desired results.
Solutions offer a convenient way to configure the tool, add directives to your function to improve
the results, and preserve those results to compare with other solutions.

To create an additional solution for your , use the Project → New Solution menu command, or

the New Solution toolbar button . This opens the Solution Wizard as shown in the following
figure.

Section III: Using Vitis HLS
Chapter 16: Optimizing the HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 370Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=370

Figure 110: Solution Wizard

The Solution Wizard has the same options as described in Creating a New Vitis HLS Project, with
an additional option to let you Copy directives and constraints from solution. In the case where
there are already multiple solutions, you can specify which solution to copy from. After the new
solution has been created, optimization directives can be added (or modified if they were copied
from the previous solution).

Section III: Using Vitis HLS
Chapter 16: Optimizing the HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 371Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=371

When your project has multiple solutions, the commands are generally directed at the current
active solution. You can specify the active solution by right-clicking on a solution in the Explorer
view, and use the Set Active Solution command. By default, synthesis and simulation commands
build the active solution, directives are applied to the active solution, and reports are opened for
the active solution. You want to ensure you are working in the correct solution when your project
has multiple solutions.

TIP: The Explorer view shows which solution is active by applying a bold-italic font to the solution name.

Adding Pragmas and Directives
Vitis HLS pragmas and directives let you configure the synthesis results for your code.

• HLS Pragmas are added to the source code to enable the optimization or change in the
original source code. Every time the code is synthesized, it is implemented according to the
specified pragmas.

• Optimization Directives, or the set_directive commands, can be specified as Tcl
commands that are associated with a specific solution, or set of solutions. Allowing you to
customize the synthesis results for the same code base across different solutions.

IMPORTANT! In some cases where pragmas or directives conflict with other pragmas or directives, the
synthesis process returns an error until you resolve the conflict. However, in some cases the first pragma or
directive takes precedence over the second pragma or directive, and the second is ignored. This information
should be reported in the log file or console window.

To add pragmas or directives to your project:

1. In the Explorer view of the Vitis HLS IDE, double-click the code file under the Source folder
to open the Code Editor dialog box, the Outline view, and the Directive view.

2. Use the Directive view to add pragmas to your source code. This view helps you add and
manage pragmas and directives for your project, and it ensures that the pragmas are correct
and applied in the proper location. To use this view:

a. With your source code open, select the Directive view tab to locate the function, loop, or
feature of the code to add a pragma or directive to.

Vitis HLS applies directives to the appropriate scope for the object currently selected in
the Directive view.

b. Right-click an object in the Directive view to use the Insert Directive command. The Vitis
HLS Directive Editor opens, as shown in the following figure:

Section III: Using Vitis HLS
Chapter 16: Optimizing the HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 372Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=372

c. Review the Vitis HLS Directive Editor dialog box. It includes the following sections:

• Directive: Specifies the directive or pragma to apply. This is a drop-down menu that
lets you choose from the list of available directives.

• Destination: Specifies that a pragma should be added to the source file, or that a
set_directive command should be added to a Tcl script, the directive file,
associated with the active solution.

TIP: If your project only has one solution then it is always active. However, if you have multiple
solutions you will need to ensure the desired solution is active in the project. Right-click the
solution in the Explorer view of the project and click the Set Active Solution command. Refer
to Creating Additional Solutions for details on adding solutions.

• Options: Lists various configurable options associated with the currently selected
directive.

d. Click OK to apply the pragma or directive.

Note: To view information related to a selected directive, click Help.

Section III: Using Vitis HLS
Chapter 16: Optimizing the HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 373Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=373

Using Directives in Scripts vs. Pragmas in Code
In the Vitis HLS Directive Editor dialog box, you can specify either of the following Destination
settings:

• Directive File: Vitis HLS inserts the directive as a Tcl command into the file
directives.tcl in the solution directory.

• Source File: Vitis HLS inserts the directive directly into the C source file as a pragma.

The following table describes the advantages and disadvantages of both approaches.

Table 21: Tcl Directives Versus Pragmas

Directive Format Advantages Disadvantages
Directives file (Tcl Script) Each solution has independent

directives. This approach is ideal for
design exploration.
If any solution is re-synthesized, only
the directives specified in that solution
are applied.

If the C source files are transferred to a
third-party or archived, the
directives.tcl file must be
included.
The directives.tcl file is required if
the results are to be re-created.

Source Code (Pragma) The optimization directives are
embedded into the C source code.
Ideal when the C sources files are
shipped to a third-party as C IP. No
other files are required to recreate the
same results.
Useful approach for directives that are
unlikely to change, such as TRIPCOUNT
and INTERFACE.

If the optimization directives are
embedded in the code, they are
automatically applied to every solution
when re-synthesized.

TIP: When using the Vitis core development kit to define hardware acceleration of your C/C++ code, you
should use pragmas in your source code, rather than trying to work with directives in a Tcl file. In the Vitis
HLS bottom-up flow (or the Vitis kernel flow) you can use directives to develop different solutions, but
should convert your final directives to pragmas in the finished project.

When specifying values for pragma arguments, you can use literal values (for example, 1, 55,
3.14), or pass a macro using #define. The following example shows a pragma with literal values:

#pragma HLS ARRAY_PARTITION variable=k_matrix_val type=cyclic factor=5

This example uses defined macros:

#define E 5
#pragma HLS ARRAY_PARTITION variable=k_matrix_val type=cyclic factor=E

Section III: Using Vitis HLS
Chapter 16: Optimizing the HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 374Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=374

Applying Directives to the Proper Scope
Although the Vitis HLS GUI lets you apply directives to specific code objects, the directives are
added to the scope that contains the object. For example, you can apply the INTERFACE pragma
to an interface object in the Vitis HLS GUI, but the directive is applied to the top-level function
(scope). The interface port (object) is identified in the directive.

You can apply optimization directives to the following objects and scopes:

• Functions: When you apply directives to functions, Vitis HLS applies the directive to all
objects within the scope of that function. The effect of any directive stops at the next level of
the function hierarchy, and does not apply to sub-functions.

TIP: Directives that include a recursive option, such as the PIPELINE  directive, can be applied
recursively through the hierarchy.

• Interfaces: Vitis HLS applies the directive to the top-level function, which is the scope that
contains the interface.

• Loops: Directives apply to all objects within the scope of the loop.

For example, if you apply the LOOP_MERGE directive to a loop, Vitis HLS applies the directive
to any sub-loops within the loop, but not to the loop itself. The loop to which the directive is
applied is not merged with siblings at the same level of hierarchy.

• Arrays: Directives are applied to the scope that contains the array.

Applying Optimization Directives to Global Variables

Directives can only be applied to scopes, or to objects within a scope. As such, they cannot be
directly applied to global variables which are declared outside the scope of any function.
Therefore, to apply a directive to a global variable you must manually assign it using the following
process:

1. With the code open in the Code Editor, select the scope (function, loop or region) where the
global variable is used in the Directive view.

2. Right-click and use the Insert Directive command to open the Vitis HLS Directives Editor.

3. Select and configure the required directive, and click OK to add it.

4. Locate the added directive in the Directive view, and manually edit the variable name to
assign it to the global variable.

Applying Optimization Directives to Class Objects

Optimization directives can be also applied to objects or scopes defined in a class. The difference
is typically that classes are defined in a header file. Use one of the following actions to open the
header file:

Section III: Using Vitis HLS
Chapter 16: Optimizing the HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 375Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=375

• From the Explorer view in the Vitis HLS GUI, open the Includes folder, double-click the
header file to open it in the Code Editor.

• From within an open source code file, place the cursor over the #include statement for the
header file, hold down the Ctrl key, and click the header file to open it in the Code Editor.

The Directives tab is populated with the objects in the header file, and directives can be applied.

CAUTION! Care should be taken when applying directives as pragmas to a header file. The file might be
used by other people or used in other projects. Any directives added as a pragma are applied each time the
header file is included in a design.

Applying Optimization Directives to Templates

To apply optimization directives manually on templates when using Tcl commands, specify the
template arguments and class when referring to class methods. For example, given the following
C++ code:

template <uint32 SIZE, uint32 RATE>
void DES10<SIZE,RATE>::calcRUN() {}

The following Tcl command is used to specify the INLINE directive on the function:

set_directive_inline DES10<SIZE,RATE>::calcRUN

Using Constants with Pragmas

You can use a constant such as const int, or constexpr with pragmas or directives. For
example:

const int MY_DEPTH=1024;
#pragma HLS stream variable=my_var depth=MY_DEPTH

You can also use macros in the C code to implement this functionality. The key to using macros is
to use a level of hierarchy in the macro. This allows the expansion to be correctly performed. The
code can be made to compile as follows:

#include <hls_stream.h>
using namespace hls;

#define PRAGMA_SUB(x) _Pragma (#x)
#define PRAGMA_HLS(x) PRAGMA_SUB(x)
#define STREAM_IN_DEPTH 8

void foo (stream<int> &InStream, stream<int> &OutStream) {

// Legal pragmas
PRAGMA_HLS(HLS stream depth=STREAM_IN_DEPTH variable=InStream)
#pragma HLS stream depth=8 variable=OutStream

}

Section III: Using Vitis HLS
Chapter 16: Optimizing the HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 376Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=376

Failure to Satisfy Optimization Directives
When optimization directives are applied, Vitis HLS outputs information to the console (and log
file) detailing the progress. In the following example the PIPELINE directives was applied to the C
function with an II=1 (iteration interval of 1) but synthesis failed to satisfy this objective.

INFO: [SCHED 11] Starting scheduling ...
INFO: [SCHED 61] Pipelining function 'array_RAM'.
WARNING: [SCHED 63] Unable to schedule the whole 2 cycles 'load' operation
('d_i_load', array_RAM.c:98) on array 'd_i' within the first cycle (II = 1).
WARNING: [SCHED 63] Please consider increasing the target initiation
interval of the
pipeline.
WARNING: [SCHED 69] Unable to schedule 'load' operation ('idx_load_2',
array_RAM.c:98) on array 'idx' due to limited memory ports.
INFO: [SCHED 61] Pipelining result: Target II: 1, Final II: 4, Depth: 6.
INFO: [SCHED 11] Finished scheduling.

IMPORTANT! If Vitis HLS fails to satisfy an optimization directive, it automatically relaxes the
optimization target and seeks to create a design with a lower performance target. If it cannot relax the
target, it will halt with an error.

By seeking to create a design which satisfies a lower optimization target, Vitis HLS is able to
provide three important types of information:

• What target performance can be achieved with the current C code and optimization
directives.

• A list of the reasons why it was unable to satisfy the higher performance target.

• A design which can be analyzed to provide more insight and help understand the reason for
the failure.

In message SCHED-69, the reason given for failing to reach the target II is due to limited ports.
The design must access a block RAM, and a block RAM only has a maximum of two ports.

The next step after a failure such as this is to analyze what the issue is. In this example, analyze
line 52 of the code and/or use the Analysis perspective to determine the bottleneck and if the
requirement for more than two ports can be reduced or determine how the number of ports can
be increased.

After the design is optimized and the desired performance achieved, the RTL can be verified and
the results of synthesis packaged as IP.

Section III: Using Vitis HLS
Chapter 16: Optimizing the HLS Project

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 377Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=377

Chapter 17

C/RTL Co-Simulation in Vitis HLS
If you added a C test bench to the project for simulation purposes, you can also use it for C/RTL
co-simulation to verify that the RTL is functionally identical to the C source code. Select the Run
Cosimulation command from the Flow Navigator to verify the RTL results of synthesis. The Co-
simulation Dialog box is opened as shown in the following figure lets you select which type of
RTL output to use for verification (Verilog or VHDL) and which HDL simulator to use for the
simulation.

Figure 111: Co-Simulation Dialog Box

Section III: Using Vitis HLS
Chapter 17: C/RTL Co-Simulation in Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 378Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=378

The dialog box features the following settings:

• Simulator: Choose from one of the supported HDL simulators in the Vivado® Design Suite.
Vivado simulator is the default simulator.

• Language: Specify the use of Verilog or VHDL as the output language for simulation.

• Setup Only: Create the required simulation files, but do not run the simulation. The simulation
executable can be run from a command shell at a later time.

• Optimizing Compile: Enable optimization to improve the runtime performance, if possible, at
the expense of compilation time.

• Input Arguments: Specify any command-line arguments to the C test bench.

• Dump Trace: Specifies the level of trace file output written to the sim/Verilog or sim/
VHDL directory of the current solution when the simulation executes. Options include:

• all: Output all port and signal waveform data being saved to the trace file.

• port: Output waveform trace data for the top-level ports only.

• none: Do not output trace data.

• Random Stall: Applies a randomized stall for each data transmission.

• Compiled Library Location: Specifies the directory for the compiled simulation library to use
with third-party simulators.

• Extra Options for DATAFLOW:

• Wave Debug: Enables waveform visualization of all processes in the RTL simulation. This
option is only supported when using Vivado logic simulator. Enabling this will launch the
Simulator GUI to let you examine dataflow activity in the waveforms generated by
simulation. Refer to the Vivado Design Suite User Guide: Logic Simulation (UG900) for more
information on that tool.

• Disable Deadlock Detection: Disables deadlock detection, and opening the Cosim
Deadlock Viewer in co-simulation.

• Channel (PIPO/FIFO) Profiling: Enables capturing profile data for display in the Dataflow
Viewer.

• Dynamic Deadlock Prevention: Prevent deadlocks by enabling automatic FIFO channel size
tuning for dataflow profiling during co-simulation.

TIP: You can pre-configure C/RTL Co-Simulation by right-clicking a solution in the Explorer view and
selecting the Solutions Settings command to open the Solution Settings dialog box, and editing the Co-
simulation settings. The settings are the same as described above, but can be configured prior to running
the simulation.

Section III: Using Vitis HLS
Chapter 17: C/RTL Co-Simulation in Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 379Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.2%20English&url=ug900-vivado-logic-simulation
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=379

After the C/RTL co-simulation completes, the console displays the following messages to confirm
the verification was successful:

INFO: [Common 17-206] Exiting xsim ...
INFO: [COSIM 212-316] Starting C post checking ...
...
Test passed !
INFO: [COSIM 212-1000] *** C/RTL co-simulation finished: PASS ***

Finished C/RTL cosimulation.

Any printf commands in the C test bench, or hls::print statements in the kernel or IP are
also echoed to the console during simulation.

As described in Writing a Test Bench, the test bench verifies output from the top-level function
for synthesis, and returns zero to the main() function of the test bench if the output is correct.
Vitis HLS uses the same return value for both C simulation and C/RTL co-simulation to
determine if the results are correct. If the C test bench returns a non-zero value, Vitis HLS
reports that the simulation failed.

The Vitis HLS GUI automatically switches to the Analysis perspective after simulation and opens
the Cosimulation Report showing the pass or fail status and the measured statistics on latency
and II. Any additional reports that are generated, such as the Dataflow report, are also opened in
the Analysis perspective.

Figure 112: Cosimulation Report

Section III: Using Vitis HLS
Chapter 17: C/RTL Co-Simulation in Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 380Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=380

The Cosimulation Report displays the full design hierarchy, and if Channel (PIPO/FIFO) Profiling
is enabled, you will be able to see details of the dataflow regions as well.

IMPORTANT! II is marked as NA in the Cosimulation Report unless the transaction number in the RTL
simulation is greater than 1. If you want to calculate II, you must ensure there are at least two transactions
in the RTL simulation as described in Writing a Test Bench.

Output of C/RTL Co-Simulation
When C/RTL Cosimulation completes, the sim folder is created inside the solution folder. This
folder contains the following elements:

• The sim/report folder contains the report and log file for each type of RTL simulated.

• A verification folder named sim/verilog or vhdl is created for each RTL language that is
verified.

○ The RTL files used for simulation are stored in the verilog or vhdl folder.

○ The RTL simulation is executed in the verification folder.

○ Any outputs, such as trace files and waveform files, are written to the verilog or vhdl
folder.

• Additional folders sim/autowrap, tv, wrap and wrap_pc are work folders used by Vitis
HLS. There are no user files in these folders.

TIP: If the Setup Only option was selected in the C/RTL Co-Simulation dialog box, an executable is created
in the verification folder but the simulation is not run. The simulation can be manually run by executing the
simulation .exe  at the command prompt.

Section III: Using Vitis HLS
Chapter 17: C/RTL Co-Simulation in Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 381Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=381

Automatically Verifying the RTL
Figure 113: C/RTL Verification Flow

WrapC Simulation

Test Bench

DUT

RTL Simulation

AutoTB

RTL Module

Post-Checking
Simulation

Result
Checking

Test Bench

Result
Checking

X14311-100520

TV In .dat TV Out .dat

C/RTL co-simulation uses a C test bench, running the main() function, to automatically verify
the RTL design running in behavioral simulation. The C/RTL verification process consists of three
phases:

1. The C simulation is executed and the inputs to the top-level function, or the Design-Under-
Test (DUT), are saved as “input vectors.”

2. The “input vectors” are used in an RTL simulation using the RTL created by Vitis HLS in
Vivado simulator, or a supported third-party HDL simulator. The outputs from the RTL, or
results of simulation, are saved as “output vectors.”

3. The “output vectors” from the RTL simulation are returned to the main() function of the C
test bench to verify the results are correct. The C test bench performs verification of the
results, in some cases by comparing to known good results.

The following messages are output by Vitis™ HLS as verification progresses:

While running C simulation:

INFO: [COSIM 212-14] Instrumenting C test bench ...
 Build using ".../bin/g++"
 Compiling dct_test.cpp_pre.cpp.tb.cpp
 Compiling dct_inline.cpp_pre.cpp.tb.cpp
 Compiling apatb_dct.cpp
 Generating cosim.tv.exe
INFO: [COSIM 212-302] Starting C TB testing ...
Test passed !

At this stage, because the C simulation was executed, any messages written by the C test bench
will be output to the Console window and log file.

Section III: Using Vitis HLS
Chapter 17: C/RTL Co-Simulation in Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 382Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=382

While running RTL simulation:

INFO: [COSIM 212-333] Generating C post check test bench ...
INFO: [COSIM 212-12] Generating RTL test bench ...
INFO: [COSIM 212-1] *** C/RTL co-simulation file generation completed. ***
INFO: [COSIM 212-323] Starting verilog/vhdl simulation.
INFO: [COSIM 212-15] Starting XSIM ...

At this stage, any messages from the RTL simulation are output in console window or log file.

While checking results back in the C test bench:

INFO: [COSIM 212-316] Starting C post checking ...
Test passed !
INFO: [COSIM 212-1000] *** C/RTL co-simulation finished: PASS ***

The following are requirements of C/RTL co-simulation:

• The test bench must be self-checking as described in Writing a Test Bench, and return a value
of 0 if the test passes or returns a non-zero value if the test fails.

• Any third-party simulators must be available in the search path to be launched by Vitis HLS.

• Interface Synthesis Requirements must be met.

• Any arrays or structs on the design interface cannot use the optimization directives listed
in Unsupported Optimizations for Co-Simulation.

• IP simulation libraries must be compiled for use with third-party simulators as described in
Simulating IP Cores.

Interface Synthesis Requirements
To use the C/RTL co-simulation feature to verify the RTL design, at least one of the following
conditions must be true:

• Top-level function must be synthesized using an ap_ctrl_chain or ap_ctrl_hs block-
level protocol

• Design must be purely combinational

• Top-level function must have an initiation interval of 1

• Interfaces must be all arrays that are streaming and implemented with axis or ap_hs
interface modes

Note: The hls::stream variables are automatically implemented as ap_fifo interfaces.

Section III: Using Vitis HLS
Chapter 17: C/RTL Co-Simulation in Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 383Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=383

If at least one of these conditions is not met, C/RTL co-simulation halts with the following
message:

@E [SIM-345] Cosim only supports the following 'ap_ctrl_none' designs: (1)
combinational designs; (2) pipelined design with task interval of 1; (3)
designs with
array streaming or hls_stream ports.
@E [SIM-4] *** C/RTL co-simulation finished: FAIL ***

IMPORTANT! If the design is specified to use the block-level IO protocol ap_ctrl_none  and the design
contains any hls::stream variables which employ non-blocking behavior, C/RTL co-simulation is not
guaranteed to complete.

If any top-level function argument is specified as an AXI4-Lite interface, the function return must
also be specified as an AXI4-Lite interface.

Verification of DATAFLOW and DEPENDENCE
C/RTL co-simulation automatically verifies aspects of the DATAFLOW and DEPENDENCE
directives.

If the DATAFLOW directive is used to pipeline tasks, it inserts channels between the tasks to
facilitate the flow of data between them. It is typical for the channels to be implemented with
FIFOs and the FIFO depth specified using the STREAM directive, or the config_dataflow
command. If a FIFO depth is too small, the RTL simulation can stall. For example, if a FIFO is
specified with a depth of 2 but the producer task writes three values before any data values are
read by the consumer task, the FIFO blocks the producer. In some conditions this can cause the
entire design to stall as described in Cosim Deadlock Viewer.

In this case, C/RTL co-simulation issues a message as shown below, indicating the channel in the
DATAFLOW region is causing the RTL simulation to stall.

///
/
// ERROR!!! DEADLOCK DETECTED at 1292000 ns! SIMULATION WILL BE STOPPED! //
///
/
/////////////////////////
// Dependence cycle 1:
// (1): Process: hls_fft_1kxburst.fft_rank_rad2_nr_man_9_U0
// Channel: hls_fft_1kxburst.stage_chan_in1_0_V_s_U, FULL
// Channel: hls_fft_1kxburst.stage_chan_in1_1_V_s_U, FULL
// Channel: hls_fft_1kxburst.stage_chan_in1_0_V_1_U, FULL
// Channel: hls_fft_1kxburst.stage_chan_in1_1_V_1_U, FULL
// (2): Process: hls_fft_1kxburst.fft_rank_rad2_nr_man_6_U0
// Channel: hls_fft_1kxburst.stage_chan_in1_2_V_s_U, EMPTY
// Channel: hls_fft_1kxburst.stage_chan_in1_2_V_1_U, EMPTY
/////////////////////////////////
// Total 1 cycles detected!
///

Section III: Using Vitis HLS
Chapter 17: C/RTL Co-Simulation in Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 384Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=384

If co-simulation is attempted from the Vitis HLS IDE and the simulation results in a deadlock, the
Vitis HLS IDE will automatically launch the Dataflow Viewer and show the processes involved in
the deadlock (displayed in red). It will also show which channels are full (in red) versus empty (in
white). In this case, review the implementation of the channels between the tasks and ensure any
FIFOs are large enough to hold the data being generated.

In a similar manner, the RTL test bench is also configured to automatically check the validity of
false dependencies specified using the DEPENDENCE directive. A warning message during co-
simulation indicates the dependency is not false, and the corresponding directive must be
removed to achieve a functionally valid design.

TIP: The -disable_deadlock_detection option of the cosim_design command disables these
checks.

Unsupported Optimizations for Co-Simulation
For Vivado IP mode, automatic RTL verification does not support cases where multiple
transformations are performed on arrays on the interface, or arrays within structs.

IMPORTANT! This feature is not supported for the Vitis kernel flow.

In order for automatic verification to be performed, arrays on the function interface, or array
inside structs on the function interface, can use any of the following optimizations, but not two
or more:

• Vertical mapping on arrays of the same size

• Reshape

• Partition, for dimension 1 of the array

Automatic RTL verification does not support any of the following optimizations used on a top-
level function interface:

• Horizontal mapping.

• Vertical mapping of arrays of different sizes.

• Conditional access on the AXI4-Stream with register slice enabled.

• Mapping arrays to streams.

Section III: Using Vitis HLS
Chapter 17: C/RTL Co-Simulation in Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 385Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=385

Simulating IP Cores
When the design is implemented with floating-point cores, bit-accurate models of the floating-
point cores must be made available to the RTL simulator. This is automatically accomplished if
the RTL simulation is performed using the Vivado logic simulator. However, for supported third-
party HDL simulators, the Xilinx floating-point library must be pre-compiled and added to the
simulator libraries.

For example, to compile the Xilinx floating-point library in Verilog for use with the VCS simulator,
open the Vivado IDE and enter the following command in the Tcl Console window:

compile_simlib -simulator vcs_mx -family all -language verilog

This creates the floating-point library in the current directory for VCS. See the Vivado Tcl
Console window for the directory name. In this example, it is ./rev3_1.

You must refer to this library from within the Vitis HLS IDE by specifying the Compiled Library
Location field in the Co-simulation dialog box as described in C/RTL Co-Simulation in Vitis HLS,
or by running C/RTL co-simulation using the following command:

cosim_design -tool vcs -compiled_library_dir <path_to_library>/rev3_1

Analyzing RTL Simulations
When the C/RTL co-simulation completes, the simulation report opens and shows the measured
latency and II. These results may differ from values reported after HLS synthesis, which are based
on the absolute shortest and longest paths through the design. The results provided after C/RTL
co-simulation show the actual values of latency and II for the given simulation data set (and may
change if different input stimuli is used).

In non-pipelined designs, C/RTL co-simulation measures latency between ap_start and
ap_done signals. The II is 1 more than the latency, because the design reads new inputs 1 cycle
after all operations are complete. The design only starts the next transaction after the current
transaction is complete.

In pipelined designs, the design might read new inputs before the first transaction completes, and
there might be multiple ap_start and ap_ready signals before a transaction completes. In this
case, C/RTL co-simulation measures the latency as the number of cycles between data input
values and data output values. The II is the number of cycles between ap_ready signals, which
the design uses to requests new inputs.

Note: For pipelined designs, the II value for C/RTL co-simulation is only determined if the design is
simulated for multiple transactions.

Section III: Using Vitis HLS
Chapter 17: C/RTL Co-Simulation in Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 386Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=386

Viewing Simulation Waveforms
To view waveform data during RTL co-simulation, you must enable the following in the Co-
simulation Dialog box:

• Select Vivado XSIM as the RTL simulator.

• Enable Dump Trace with either the port or all options.

Vivado simulator GUI opens and displays all the processes in the RTL design. Visualizing the
active processes within the HLS design allows detailed profiling of process activity and duration
within each activation of the top module. The visualization helps you to analyze individual
process performance, as well as the overall concurrent execution of independent processes.
Processes dominating the overall execution have the highest potential to improve performance,
provided process execution time can be reduced.

This visualization is divided into two sections:

• HLS process summary contains a hierarchical representation of the activity report for all
processes.

• DUT name: <name>

• Function: <function name>

• Dataflow analysis provides detailed activity information about the tasks inside the dataflow
region.

• DUT name: <name>

• Function: <function name>

• Dataflow/Pipeline Activity: Shows the number of parallel executions of the function when
implemented as a dataflow process.

• Active Iterations: Shows the currently active iterations of the dataflow. The number of
rows is dynamically incremented to accommodate for the visualization of any concurrent
execution.

• StallNoContinue: A stall signal that tells if there were any output stalls experienced by the
dataflow processes (the function is done, but it has not received a continue from the
adjacent dataflow process).

• RTL Signals: The underlying RTL control signals that interpret the transaction view of the
dataflow process.

Section III: Using Vitis HLS
Chapter 17: C/RTL Co-Simulation in Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 387Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=387

Figure 114: Waveform Viewer

After C/RTL co-simulation completes, you can reopen the RTL waveforms in the Vivado IDE by
clicking the Open Wave Viewer toolbar button, or selecting Solution → Open Wave Viewer.

IMPORTANT! When you open the Vivado IDE using this method, you can only use the waveform analysis
features, such as zoom, pan, and waveform radix.

Cosim Deadlock Viewer
A deadlock is a situation in which processes inside a DATAFLOW region share the same
channels, effectively preventing each other from writing or reading from it, resulting in both
processes getting stuck. This scenario is common when there are either FIFO’s or a mix of PIPOs
and FIFOs as channels inside the DATAFLOW.

The deadlock viewer visualizes this deadlock scenario on the static dataflow viewer. It highlights
the problematic processes and channels. The viewer also provides a cross-probing capability to
link between the problematic dataflow channels and the associated source code. The user can
use the information in solving the issue with less time and effort. The viewer automatically opens
only after, the co-simulation detects the deadlock situation and the co-sim run has finished.

Section III: Using Vitis HLS
Chapter 17: C/RTL Co-Simulation in Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 388Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=388

A small example is shown below. The dataflow region consists of two processes which are
communicating through PIPO and FIFO. The first loop in proc_1 writes 10 data items in
data_channel1, before writing anything in data_array. Because of the insufficient FIFO
depth the data_channel loop does not complete which blocks the rest of the process. Then
proc_2 blocks because it cannot read the data from data_channel2 (because it is empty), and
cannot remove data from data_channel1. This creates a deadlock that requires increasing the
size of data_channel1 to at least 10.

void example(hls::stream<data_t>& A, hls::stream<data_t>& B){
#pragma HLS dataflow
..
..
hls::stream<int> data_channel;
int data_array[10];
#pragma HLS STREAM variable=data_channel depth=8 dim=1
 proc_1(A, data_channel, data_array);
 proc_2(B, data_channel, data_array);
}

void proc_1(hls::stream<data_t>& A, hls::stream<int>& data_channel, int
data_array[10]){
 …
 for(i = 0; i < 10; i++){
 tmp = A.read();
 tmp.data = tmp.data.to_int();
 data_channel.write(tmp.data);
 }
 for(i = 0; i < 10; i++){
 data_array[i] = i + tmp.data.to_int();
 }
}

void proc_2(hls::stream<data_t>& B, hls::stream<int>& data_channel, int
data_array[10]){
 int i;
 ..
 ..
 for(i = 0; i < 10; i++){
 if (i == 0){
 tmp.data = data_channel.read() + data_array[5];
 }
 else {
 tmp.data = data_channel.read();
 }
 B.write(tmp);
 }

Co-sim Log:

///
//////
// Inter-Transaction Progress: Completed Transaction / Total Transaction
// Intra-Transaction Progress: Measured Latency / Latency Estimation * 100%
//
// RTL Simulation : "Inter-Transaction Progress" ["Intra-Transaction
Progress"] @ "Simulation Time"
///
///////
// RTL Simulation : 0 / 1 [0.00%] @ "105000"

Section III: Using Vitis HLS
Chapter 17: C/RTL Co-Simulation in Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 389Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=389

///
/
// ERROR!!! DEADLOCK DETECTED at 132000 ns! SIMULATION WILL BE STOPPED! //
///
/
/////////////////////////
// Dependence cycle 1:
// (1): Process: example_example.proc_1_U0
// Channel: example_example.data_channel1_U, FULL
// (2): Process: example_example.proc_2_U0
// Channel: example_example.data_array_U, EMPTY
//
// Totally 1 cycles detected!
//

Figure 115: Deadlock Viewer

Debugging C/RTL Co-Simulation
When C/RTL co-simulation completes, Vitis HLS typically indicates that the simulations passed
and the functionality of the RTL design matches the initial C code. When the C/RTL co-
simulation fails, Vitis HLS issues the following message:

@E [SIM-4] *** C/RTL co-simulation finished: FAIL ***

Following are the primary reasons for a C/RTL co-simulation failure:

• Incorrect environment setup

• Unsupported or incorrectly applied optimization directives

• Issues with the C test bench or the C source code

Section III: Using Vitis HLS
Chapter 17: C/RTL Co-Simulation in Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 390Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=390

To debug a C/RTL co-simulation failure, run the checks described in the following sections. If you
are unable to resolve the C/RTL co-simulation failure, see Xilinx Support for support resources,
such as answers, documentation, downloads, and forums.

Setting Up the Environment
Check the environment setup as shown in the following table.

Table 22: Debugging Environment Setup

Questions Actions to Take
Are you using a third-party simulator? Ensure the path to the simulator executable is specified in

the system search path.
When using the Vivado simulator, you do not need to
specify a search path.
Ensure that you have compiled the simulation libraries as
discussed in Simulating IP Cores.

Are you running Linux? Ensure that your setup files (for example .cshrc
or .bashrc) do not have a change directory command.
When C/RTL co-simulation starts, it spawns a new shell
process. If there is a cd command in your setup files, it
causes the shell to run in a different location and eventually
C/RTL co-simulation fails.

Optimization Directives
Check the optimization directives as shown in the following table.

Table 23: Debugging Optimization Directives

Questions Actions to Take
Are you using the DEPENDENCE directive? Remove the DEPENDENCE directives from the design to see

if C/RTL co-simulation passes.
If co-simulation passes, it likely indicates that the TRUE or
FALSE setting for the DEPENDENCE directive is incorrect as
discussed in Verification of DATAFLOW and DEPENDENCE.

Does the design use volatile pointers on the top-level
interface?

Ensure the DEPTH option is specified on the INTERFACE
directive.
When volatile pointers are used on the interface, you
must specify the number of reads/writes performed on the
port in each transaction or each execution of the C function.

Are you using FIFOs with the DATAFLOW optimization? Check to see if C/RTL co-simulation passes with the
standard ping-pong buffers.
Check to see if C/RTL co-simulation passes without
specifying the size for the FIFO channels. This ensures that
the channel defaults to the size of the array in the C code.
Reduce the size of the FIFO channels until C/RTL co-
simulation stalls. Stalling indicates a channel size that is too
small. Review your design to determine the optimal size for
the FIFOs. You can use the STREAM directive to specify the
size of individual FIFOs.

Section III: Using Vitis HLS
Chapter 17: C/RTL Co-Simulation in Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 391Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=391

Table 23: Debugging Optimization Directives (cont'd)

Questions Actions to Take
Are you using supported interfaces? Ensure you are using supported interface modes. For

details, see Interface Synthesis Requirements.

Are you applying multiple optimization directives to arrays
on the interface?

Ensure you are using optimizations that are designed to
work together. For details, see Unsupported Optimizations
for Co-Simulation.

Are you using arrays on the interface that are mapped to
streams?

To use interface-level streaming (the top-level function of
the DUT), use hls::stream.

C Test Bench and C Source Code
Check the C test bench and C source code as shown in the following table.

Table 24: Debugging the C Test Bench and C Source Code

Questions Actions to Take
Does the C test bench check the results and return the value
0 (zero) if the results are correct?

Ensure the C test bench returns the value 0 for C/RTL co-
simulation. Even if the results are correct, the C/RTL co-
simulation feature reports a failure if the C test bench fails
to return the value 0.

Is the C test bench creating input data based on a random
number?

Change the test bench to use a fixed seed for any random
number generation. If the seed for random number
generation is based on a variable, such as a time-based
seed, the data used for simulation is different each time the
test bench is executed, and the results can vary.

Are you using pointers on the top-level interface that are
accessed multiple times?

Use a volatile pointer for any pointer that is accessed
multiple times within a single transaction (one execution of
the C function). If you do not use a volatile pointer,
everything except the first read and last write is optimized
out to adhere to the C standard.

Does the C code contain undefined values or perform out-
of-bounds array accesses?

Confirm all arrays are correctly sized to match all accesses.
Loop bounds that exceed the size of the array are a
common source of issues (for example, N accesses for an
array sized at N-1).
Confirm that the results of the C simulation are as expected
and that output values were not assigned random data
values.
Consider using the industry-standard Valgrind application
outside of the HLS design environment to confirm that the C
code does not have undefined or out-of-bounds issues.
It is possible for a C function to execute and complete even
if some variables are undefined or are out-of-bounds. In the
C simulation, undefined values are assigned a random
number. In the RTL simulation, undefined values are
assigned an unknown or X value.

Are you using floating-point math operations in the design? Check that the C test bench results are within an acceptable
error range instead of performing an exact comparison. For
some of the floating point math operations, the RTL
implementation is not identical to the C. For details, see
Verification and Math Functions.
Ensure that the RTL simulation models for the floating-point
cores are provided to the third-party simulator. For details,
see Simulating IP Cores.

Section III: Using Vitis HLS
Chapter 17: C/RTL Co-Simulation in Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 392Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=392

Table 24: Debugging the C Test Bench and C Source Code (cont'd)

Questions Actions to Take
Are you using Xilinx IP blocks and a third-party simulator? Ensure that the path to the Xilinx IP simulation models is

provided to the third-party simulator.

Are you using the hls::stream construct in the design that
changes the data rate (for example, decimation or
interpolation)?

Analyze the design and use the STREAM directive to
increase the size of the FIFOs used to implement the
hls::stream.
By default, an hls::stream is implemented as a FIFO with
a depth of 2. If the design results in an increase in the data
rate (for example, an interpolation operation), a default
FIFO size of 2 might be too small and cause the C/RTL co-
simulation to stall.

Are you using very large data sets in the simulation? Use the reduce_diskspace option when executing C/RTL
co-simulation. In this mode, HLS only executes 1 transaction
at a time. The simulation might run marginally slower, but
this limits storage and system capacity issues.
The C/RTL co-simulation feature verifies all transaction at
one time. If the top-level function is called multiple times
(for example, to simulate multiple frames of video), the data
for the entire simulation input and output is stored on disk.
Depending on the machine setup and OS, this might cause
performance or execution issues.

Section III: Using Vitis HLS
Chapter 17: C/RTL Co-Simulation in Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 393Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=393

Chapter 18

Exporting the RTL Design
The final step in the Vitis™ HLS flow is to export the RTL design in a form that can be used by
other tools in the Xilinx® design flow. Click the Export RTL command in the Flow Navigator to
open the Export RTL dialog box shown in the following figure.

TIP: When Vitis HLS reports the results of the high-level synthesis, it only provides an estimate of the
results with projected clock frequencies and resource utilization (LUTs, DSPs, BRAMs, etc.). These results
are only estimates because Vitis HLS cannot know what optimizations or routing delays will be in the final
synthesized or implemented design. Therefore use the Run Implementation command from Flow Navigator
to return reports from Vivado synthesis or place and route.

Section III: Using Vitis HLS
Chapter 18: Exporting the RTL Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 394Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=394

Figure 116: Export RTL Dialog Box

Table 25: RTL Export Selections

Export Format Default Location Comments
Vivado IP (.zip) solution/impl/

export.zip
The IP is exported as a ZIP file that can be added to the
Vivado IP catalog.
The impl/ip folder also contains the contents of the
unzipped IP.

Section III: Using Vitis HLS
Chapter 18: Exporting the RTL Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 395Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=395

Table 25: RTL Export Selections (cont'd)

Export Format Default Location Comments
Vitis Kernel (.xo) solution/impl/

export.xo
The XO file output can be used for linking by the Vitis
compiler in the application acceleration development flow.
You can link the Vitis kernel with other kernels, and the
target accelerator card, to build the xclbin file for your
accelerated application.

Vivado IP for System
Generator

solution/impl/ip This option creates IP for use with the Vivado edition of
System Generator for DSP.

• Output Location: Lets you specify the path and file name for the exported RTL design.

• IP OOC XDC File: Specifies an XDC file to be used for the RTL IP for out-of-context (OOC)
synthesis.

• IP XDC File: Lets you specify an XDC file for use during Vivado place and route.

IP Configuration

When you select the Vivado IP format on the Export RTL dialog box, you also have the option of
configuring specific fields, such as the Vendor, Library, Name, and Version (VLNV) of the IP.

The Configuration information is used to differentiate between multiple instances of the same IP
when it is loaded into the Vivado IP catalog. For example, if an implementation is packaged for
the IP catalog, and then a new solution is created and packaged as IP, the new solution by default
has the same name and configuration information. If the new solution is also added to the IP
catalog, the IP catalog will identify it as an updated version of the same IP and the last version
added to the IP catalog will be used.

The Configuration options, and their default values are listed below:

• Vendor: xilinx.com

• Library: hls

• Version: 1.0

• Description: An IP generated by Vitis HLS

• Display Name: This field is left blank by default

• Taxonomy: This field is left blank by default

After the IP packaging process is complete, the ZIP file archive written to the specified Output
Location, or written in the solution/impl folder, can be imported into the Vivado IP catalog
and used in any design.

Section III: Using Vitis HLS
Chapter 18: Exporting the RTL Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 396Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=396

Software Driver Files

For designs that include AXI4-Lite slave interfaces, a set of software driver files is created during
the export process. These C driver files can be included in a Vitis embedded software
development project, and used to access the AXI4-Lite slave port.

The software driver files are written to directory solution/impl/ip/drivers and are
included in the packaged IP export.zip. Refer to AXI4-Lite Interface for details on the C driver
files.

Running Implementation
The Vitis HLS tool is limited in terms of the estimations it can provide about the RTL design that
it generates. It can project resource utilization and timing of the end result, but these are just
projections. To get a better view of the RTL design, you can actually run Vivado synthesis and
place and route on the generated RTL design, and review actual results of timing and resource
utilization. Select the Run Implementation command from the Flow Navigator to open the dialog
box as shown below.

Section III: Using Vitis HLS
Chapter 18: Exporting the RTL Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 397Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=397

Figure 117: Run Implementation

The dialog presents the choice of running RTL Synthesis or RTL Synthesis, Place & Route. The
dialog box is largely unchanged in either selection, with the exception of the Place & Route
Options that appear at the bottom.

• RTL: Generate RTL in Verilog or VHDL form.

• Clock Period: Specify the clock period, which is defined by the active solution by default.

• Generate DCP: Check box to generate a DCP file for the synthesized or implemented design.

Section III: Using Vitis HLS
Chapter 18: Exporting the RTL Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 398Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=398

• IP Location: Specify the location to write the generated IP file.

• IP OOC XDC File: Specifies an XDC file to be used for the RTL IP for out-of-context (OOC)
synthesis.

• IP XDC File: Lets you specify an XDC file for use during Vivado place and route.

• Report Level: Defines the report-level generated during synthesis or implementation.

• Max Timing Paths: Specify the number of timing paths to extract from the Timing Summary
report. The worst case paths are returned as defined by the specified value.

• RTL Synthesis Strategy: Specify the strategy to employ in the synthesis run.

• Synth Design Arguments: Specify options for the synth_design command.

• Run Physical Optimizations: Specify the physical optimization to run. Choices include: none,
place, route, and all

• Implementation Strategy: Specify the strategy to employ in the implementation run.

TIP: You can cancel the Implementation run using the Stop Implementation command from the Flow
Navigator.

Implementation Report
The Implementation Report contains the results of Synthesis and Place and Route if it was run.
The sections of the report include the following:

• General Information: Provides general information related to the design and implementation.

• Run Constraints and Options: Reports the constraints and options that were set for the RTL
Synthesis run and/or the Place & Route run. This shows you what constraints were set and/or
modified for the run.

• Resource Usage/Final Timing: The Resource Usage and the Final Timing sections show a
quick summary of the resources and timing achieved by either the RTL Synthesis run or the
Place & Route run. These sections give a very high-level overview of the resource utilization
and status on whether timing goals were met or not. The information in the succeeding
sections provide details useful in debugging timing issues.

• Resources: A detailed per-module split up of resources is shown in this table. In addition, the
tables can also show the original variable and source location information from the source
code. If a particular resource was the result of a user-specified pragma, then this can also be
shown in the table. This allows you to relate your C code with the synthesized RTL
implementation. Inspecting this report is very beneficial because this is after Vivado has
synthesized the design and therefore, functional blocks like DSPs and other logic units have all
now been instantiated in the circuit.

Section III: Using Vitis HLS
Chapter 18: Exporting the RTL Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 399Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=399

• Fail Fast: The fail fast reports that Vivado provides can guide your investigation into specific
issues encountered by the tool. In the fail fast report, you should look into anything with the
Status of REVIEW to improve the implementation and timing closure. Different sections of
the fail fast report include:

• Design Characteristics: The default utilization guidelines are based on SSI technology
devices and can be relaxed for non-SSI technology devices. Designs with one or more
REVIEW checks are feasible but are difficult to implement.

• Clocking Checks: These checks are critical and must be addressed.

• LUT and Net Budgeting: Use a conservative method to better predict which logic paths are
unlikely to meet timing after placement with high device utilization.

• Timing Paths: The Timing Paths reports show the timing critical paths that result in the worst
slack for the design. By default, the tool will show the top 10 worst negative slack paths. Each
path in the table has detailed information that shows the combination path between one flip-
flop to another. Breaking these long combinational paths will be required to address the
timing issues. So you need to analyze these paths and reason where they are coming from and
map these paths back to the user's C code. Using both these paths and the resources table
presented earlier can help in determining and correlating the path back to your source code.

Section III: Using Vitis HLS
Chapter 18: Exporting the RTL Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 400Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=400

In the figure below, you can see that the top 10 negative slack paths in the Place & Route
report actually have higher logic levels (9) as compared to after RTL Synthesis (5), and the max
fanout also got worse (64 → 9366). This clearly shows how congestion in the design is causing
high logic levels and higher fanouts which in turn causes issues for meeting timing. Using such
clues, you can modify your design to remove some of this congestion either by rewriting the C
code or making some different design decisions with respect to BRAM/LUTRAM/URAM
resource choices.

Output of RTL Export
Vitis HLS writes to the impl folder of the active solution folder when you run the Export RTL
command.

The output files and folders include the following:

Section III: Using Vitis HLS
Chapter 18: Exporting the RTL Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 401Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=401

• component.xml: The IP component file that defines the interfaces and architecture.

• export.zip: The zip archive of the IP and its contents. The zip file can be directly added to
the Vivado IP catalog.

• export.xo: The compiled kernel object for use in the Vitis application acceleration
development flow.

• impl/ip: The IP contents unzipped.

• impl/ip/example: A folder with a Tcl script used to generate the packaged IP, and a shell
script to export the IP.

• impl/report: The report for the synthesized, or placed and routed IP is written to this
folder.

• impl/verilog: Contains the Verilog format RTL output files.

• impl/vhdl: Contains the VHDL format RTL output files.

TIP: If the Vivado synthesis or Vivado synthesis, place, and route options are selected, Vivado
synthesis and implementation are performed in the Verilog or VHDL folders. In this case the folder
includes a project.xpr  file that can be opened in the Vivado Design Suite.

IMPORTANT! Xilinx does not recommend directly using the files in the verilog  or vhdl  folders for
your own RTL synthesis project. Instead, Xilinx recommends using the packaged IP output files. Please
carefully read the text that immediately follows this note.

In cases where Vitis HLS uses Xilinx IP in the design, such as with floating point designs, the RTL
directory includes a script to create the IP during RTL synthesis. If the files in the verilog or
vhdl folders are copied out and used for RTL synthesis, it is your responsibility to correctly use
any script files present in those folders. If the package IP is used, this process is performed
automatically by the design Xilinx tools. If C/RTL co-simulation has been executed in Vitis HLS,
the Vivado project also contains an RTL test bench, and the design can be simulated.

Archiving the Project
After the project has been completed, and the RTL exported, you can archive the Vitis HLS
project to an industry-standard Zip file. Select the File → Archive Project menu command to
open the Archive Project dialog box as shown below.

Section III: Using Vitis HLS
Chapter 18: Exporting the RTL Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 402Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=402

Figure 118: Archive Project Dialog Box

The Archive Project dialog box features the following settings:

• Archive Name: Specifies the name of the archive file to create.

• Active Solution Only: This is selected by default. Disable this option to include all solutions
from the current project.

• Include Run Results: By default only the source files and constraints will be included in the
archive file. Enable this option to also include the results of simulation and synthesis in the
archive file.

Section III: Using Vitis HLS
Chapter 18: Exporting the RTL Design

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 403Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=403

Chapter 19

Running Vitis HLS from the
Command Line

Vitis™ HLS can be run from the GUI, as previously discussed, interactively from the command
line, or in batch mode from a Tcl script. This section discusses running the tool interactively, or in
batch mode.

Running Vitis HLS Interactively

You can launch Vitis HLS using the -i option to open the tool in interactive mode.

$ vitis_hls -i

When running interactively, the tool displays a command line prompt for you to enter commands:

vitis_hls>

You can use the help command to get a list of commands that you can use in this mode, as
described in Section IV: Vitis HLS Command Reference.

vitis_hls> help

Help for any individual command is provided by using the command name as an option to the
help command. For example, help for the add_files command can be returned with:

vitis_hls> help add_files

Vitis HLS also supports an auto-complete feature by pressing the tab key at any point when
entering commands. The tool displays the possible matches based on typed characters to
complete the command, or command option. Entering more characters improves the filtering of
the possible matches.

Type the exit or quit command to quit Vitis HLS.

TIP: On the Windows OS, the Vitis HLS command prompt is implemented using the Minimalist GNU for
Windows (minGW) environment, that supports both standard Windows DOS commands, and a subset of
Linux commands. For example, both the Linux ls  command and the DOS dir  command is used to list
the contents of a directory. Linux paths in a Makefile expand into minGW paths. Therefore, in all Makefile
files you must put the path name in quotes to prevent any path substitutions, for example FOO := ":/".

Section III: Using Vitis HLS
Chapter 19: Running Vitis HLS from the Command Line

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 404Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=404

Running Vitis HLS in Batch Mode

Vitis™ HLS can also be run in batch mode, by specifying a Tcl script for the tool to run when
launching as follows:

vitis_hls -f tcl_script.tcl

Commands embedded in the specified Tcl script are executed in the specified sequence. If the Tcl
script includes the exit or quit command, then the tool exits at that point, completing the
batch process. If the Tcl script does not end with the exit command, Vitis HLS returns to the
command prompt, letting you continue in interactive mode.

All of the Tcl commands used when creating a project in the GUI are written to the solution/
script.tcl file within the project. You can use this script as a starting point for developing
your own batch scripts. An example script is provided below:

open_project dct
set_top dct
add_files ../dct_src/dct.cpp
add_files -tb ../dct_src/out.golden.dat -cflags "-Wno-unknown-pragmas" -
csimflags "-Wno-unknown-pragmas"
add_files -tb ../dct_src/in.dat -cflags "-Wno-unknown-pragmas" -csimflags "-
Wno-unknown-pragmas"
add_files -tb ../dct_src/dct_test.cpp -cflags "-Wno-unknown-pragmas" -
csimflags "-Wno-unknown-pragmas"
open_solution "solution1" -flow_target vitis
set_part {xcvu11p-flga2577-1-e}
create_clock -period 10 -name default
source "./dct/solution1/directives.tcl"
csim_design
csynth_design
cosim_design
export_design -format ip_catalog

When opening a legacy Vitis™ HLS project in Vitis HLS, you must specify the -upgrade or -
reset option.

• -upgrade will perform conversion of a Vivado HLS project to a Vitis HLS project.

• -reset will restore the project to its initial state.

TIP: The open_project  command will return an error when opening a Vitis HLS project unless the -
upgrade  or -reset  option is used.

Section III: Using Vitis HLS
Chapter 19: Running Vitis HLS from the Command Line

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 405Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=405

Section IV

Vitis HLS Command Reference
This section contains the following chapters:

• vitis_hls Command

• Project Commands

• Configuration Commands

• Optimization Directives

• HLS Pragmas

Section IV: Vitis HLS Command Reference

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 406Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=406

Chapter 20

vitis_hls Command
The vitis_hls command opens in the Vitis™ HLS integrated design environment (IDE) mode
by default. However, you can also run vitis_hls interactively, specifying commands from the
command line, or specifying Tcl scripts for the tool to run in batch mode.

To see what options are available for use with vitis_hls you can use the -help option:

vitis_hls -help

The vitis_hls command supports the following options:

• -f <string>: Start Vitis HLS by running a specified Tcl script. After the Tcl script is ended
the tool remains open in interactive mode as described below, unless quit or exit has been
called from the script.

TIP: When running the tool in interactive mode, you can type the help  command to display a list of
available Vitis HLS commands:

vitis_hls> help

• -i: This option invokes the tool in interactive mode with a command prompt, ready to receive
any Vitis HLS command, as documented in Project Commands, Configuration Commands, or
Optimization Directives.

• -l <string>: Defines the name and location of the Vitis HLS log file. By default the tool
creates a log file called vitis_hls.log in the directory from which Vitis HLS was launched.

• -n | -nosplash: Do not show the splash screen when starting the GUI.

• -p: Open an existing project in IDE mode. Specify a project folder or Tcl file to open the
project when you are launching the tool. If a Tcl file is specified it will be automatically opened
in the IDE through open_tcl_project.

• -terse: Filter stdout commands to only show status INFO and WARNING messages. The
log file will contain all messages.

• -version: Return the version of Vitis HLS being used.

The following example launches Vitis HLS in command-line interactive (CLI) mode:

vitis_hls -i

Section IV: Vitis HLS Command Reference
Chapter 20: vitis_hls Command

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 407Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=407

hls_init.tcl
When you start Vitis™ HLS the tool looks for a Tcl initialization script in the following location:

1. User Specific: In a local user directory, for all versions of the tool:

• • On Windows: %APPDATA%/Xilinx/HLS_init.tcl

• • On Linux: $HOME/.Xilinx/HLS_init.tcl

The HLS_init.tcl lets you use Vitis™ HLS commands to initialize the tool prior to opening a
project.

TIP: There is no HLS_init.tcl  script in the software installation. You must create one if needed.

Section IV: Vitis HLS Command Reference
Chapter 20: vitis_hls Command

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 408Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=408

Chapter 21

Project Commands
Project commands are Vitis HLS commands that let you create and manage projects and
solutions. The commands must be run in the interactive mode, vitis_hls -i, or can be run as
a script using the -f option as described in vitis_hls Command.

The features of these commands are also available through the Vitis HLS GUI when performing
specific functions as described in sections like Creating a New Vitis HLS Project and C/RTL Co-
Simulation in Vitis HLS.

TIP: When running the commands through the GUI, the Tcl commands are added to a script of your
project written to solution/constraints/script.tcl.

add_files
Description

Adds design source files to the current project.

The tool searches the current directory for any header files included in the design source. To use
header files stored in other directories, use the -cflags option to include those directories to
the search path.

Syntax

add_files [OPTIONS] <src_files>

• <src_files> lists one or more supported source files.

Options

• -blackbox <file_name.json>: Specify the JSON file to be used for RTL blackbox. The
information in this file is used by the HLS compiler during synthesizing and running C/C++ and
co-simulation. See Adding RTL Blackbox Functions for more information.

• -cflags <string>: A string with any GCC compilation options.

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 409Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=409

• -csimflags <string>: A string with any desired simulation compilation options. Flags
specified with this option are only applied to simulation compilation, which includes C/C++
simulation and RTL co-simulation, not synthesis compilation. This option does not impact the
-cflags option.

• -tb: Specifies any files used as part of the design test bench. These files are not synthesized.
They are used when simulation is run by the csim_design or cosim_design commands.

Do not use the -tb option when adding source files for the design. Use separate add_files
commands to add design files and simulation files.

Examples

Add three design files to the project.

add_files a.cpp
add_files b.cpp
add_files c.cpp

Add multiple files with a single command line.

add_files "a.cpp b.cpp c.cpp"

Use the-tb option to add test bench files to the project. This example adds multiple files with a
single command, including:

• The test bench a_test.cpp

• All data files read by the test bench:

○ input_stimuli.dat

○ out.gold.dat

add_files -tb "a_test.cpp input_stimuli.dat out.gold.dat"

If the test bench data files in the previous example are stored in a separate directory (for
example test_data), the directory can be added to the project in place of the individual data
files.

add_files -tb a_test.cpp
add_files -tb test_data

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 410Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=410

cat_ini
Description

Concatenate one or more INI files into a single file and output the results to stdout or to a
specified file. The resulting INI can be read into the Vitis HLS tool using the apply_ini
command.

Syntax

cat_ini { <ini_file1> <ini_file2> ...} [OPTIONS]

• { <ini_file1> <ini_file2> ...} specifies one or more INI files to read into the
Vitis™ HLS tool and concatenate into a single file. The braces "{}" ar required to group multiple
inputs.

Options

• -exclude <string>: Specify INI section glob patterns to exclude when writing the file.

• -include <string>:

Specify glob patterns found in the INI files to include in the output file. Anything not included
will be excluded.

TIP: -exclude  and -include  are mutually exclusive, and cannot be used together.

• -out <file name>: Specifies the INI file name to write as output. When not specified, the
output is written to stdout.

• -quiet <true | false>: Suppress all warning and information messages when writing
the INI file. Note that errors will still be returned. The default value is false.

• -show <true | false>: Show verbose messages when writing the INI file. The default
value is false.

Examples

This example joins the specified INI files and returns them to stdout:

cat_ini {./run.ini ./test.ini}

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 411Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=411

close_project
Description

Closes the current project. The project is no longer active in the Vitis HLS session.

The close_project command:

• Prevents you from entering any project-specific or solution-specific commands.

• Is not required. Opening or creating a new project closes the current project.

Syntax

close_project

Options

This command has no options.

Examples

close_project

• Closes the current project.

• Saves all results.

close_solution
Description

Closes the current solution. The current solution is no longer active in the Vitis HLS session.

The close_solution command does the following:

• Prevents you from entering any solution-specific commands.

• Is not required. Opening or creating a new solution closes the current solution.

Syntax

close_solution

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 412Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=412

Options

This command has no options.

Examples

close_solution

• Closes the current solution.

• Saves all results.

cosim_design
Description

Executes post-synthesis co-simulation of the synthesized RTL with the original C/C++-based test
bench.

TIP: To specify the files for the test bench run the following command:

add_files -tb

The simulation results are written to the sim/Verilog or sim/VHDL folder of the active
solution, depending on the setting of the -rtl option.

Syntax

cosim_design [OPTIONS]

Options

• -O: Enables optimized compilation of the C/C++ test bench and RTL wrapper. This increases
compilation time, but results in better runtime performance.

• -argv <string>: The <string> is passed onto the main C/C++ function.

Specifies an argument list for the behavioral test bench.

• -compiled_library_dir <string>: Specifies the compiled library directory during
simulation with third-party simulators. The <string> is the path name to the compiled
library directory. The library must be compiled ahead of time using the compile_simlib
command as explained in the Vivado Design Suite Tcl Command Reference Guide (UG835).

• -coverage: Enables the coverage feature during simulation with the VCS simulator.

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 413Send Feedback

https://docs.xilinx.com/access/sources/dita/map?url=ug835-vivado-tcl-commands
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=413

• -disable_deadlock_detection: Disables the deadlock detection feature in co-
simulation.

• -disable_dependency_check: Disables dependency checks when running co-simulation.

• -enable_dataflow_profiling: This option turns on the dataflow channel profiling to
track channel sizes during co-simulation.

• -enable_fifo_sizing: This option turns on automatic FIFO channel size tuning for
dataflow profiling during co-simulation.

• -hwemu_trace_dir <kernel_name>/<instance_name>: Specifies the location of test
vectors generated during hardware emulation to be used during co-simulation. The test
vectors are generated by the config_export -cosim_trace_generation command.
The argument lets you specify the kernel and instance name of the Vitis kernel in the
hardware emulation simulation results to locate the test vectors.

• -ldflags <string>: Specifies the options passed to the linker for co-simulation.

This option is typically used to pass include path information or library information for the
C/C++ test bench.

• -mflags <string>: Specifies options required for simulation.

• -random_stall: Enable random stalling of top-level interfaces during co-simulation.

• -rtl [verilog | vhdl]: Specifies which RTL language to use for C/RTL co-simulation.
The default is Verilog.

• -setup: Creates all simulation files created in the sim/<HDL> directory of the active
solution. The simulation is not executed, but can be run later from a command shell.

• -stable_axilite_update: Enable s_axilite to configure registers which are stable
compared with the prior transaction.

• -tool [auto | vcs | modelsim | riviera | isim | xsim | ncsim |
xceilum]: Specifies the simulator to use to co-simulate the RTL with the C/C++ test bench.
The Vivado® simulator (xsim) is the default, unless otherwise specified.

• -trace_level [*none* | all | port | port_hier]: Determines the level of
waveform trace data to save during C/RTL co-simulation.

• none does not save trace data. This is the default.

• all results in all port and signal waveforms being saved to the trace file.

• port only saves waveform traces for the top-level ports.

• port_hier save the trace information for all ports in the design hierarchy.

The trace file is saved in the sim/Verilog or sim/VHDL folder of the current solution when
the simulation executes, depending on the selection used with the -rtl option.

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 414Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=414

• -user_stall <string>: Specifies the JSON stall file to be used during co-simulation. The
stall file can be generated using the cosim_stall command.

• -wave_debug: Opens the Vivado simulator GUI to view waveforms and simulation results.
Enables waveform viewing of all processes in the generated RTL, as in the dataflow and
sequential processes. This option is only supported when using Vivado simulator for co-
simulation by setting -tool xsim. See Viewing Simulation Waveforms for more information.

Examples

Performs verification using the Vivado simulator:

cosim_design

Uses the VCS simulator to verify the Verilog RTL and enable saving of the waveform trace file:

cosim_design -tool VCS -rtl verilog -coverage -trace_level all

Verifies the VHDL RTL using ModelSim. Values 5 and 1 are passed to the test bench function and
used in the RTL verification:

cosim_design -tool modelsim -rtl vhdl -argv "5 1"

cosim_stall
Description

Command for development of the co-simulation stall file in JSON format.

Syntax

cosim_stall [OPTIONS]

Options

• -check <string>: Specify the JSON format stall file to use when running co-simulation.

• -generate <string>: Generate a JSON stall file to be used during co-simulation.

• -list: List all ports which can apply stall during co-simulation. This option returns a list of
ports based on the current design.

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 415Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=415

Examples

The following example generates the specified stall file, and then specifies the file for use during
co-simulation:

cosim_stall -generate my_cosim_stall.json
cosim_stall -check my_cosim_stall.json

create_clock
Description

Creates a virtual clock for the current solution.

The command can be executed only in the context of an active solution. The clock period is a
constraint that drives optimization (chaining as many operations as feasible in the given clock
period).

C and C++ designs support only a single clock.

Syntax

create_clock -period <number> [OPTIONS]

Options

• -name <string>: Specifies the clock name. If no name is given, a default name is used.

• -period <number>: Specifies the clock period in ns or MHz.

• If no units are specified, ns is assumed.

• If no period is specified, a default period of 10 ns is used.

Examples

Species a clock period of 50 ns:

create_clock -period 50

Uses the default name and period of 10 ns to specify the clock:

create_clock

Specifies clock frequency in MHz:

create_clock -period 100MHz

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 416Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=416

csim_design
Description

Compiles and runs pre-synthesis C/C++ simulation using the provided C/C++ test bench.

TIP: To specify the files for the test bench run the following command:

add_files -tb

The simulation results are written to the csim folder inside the active solution.

Syntax

csim_design [OPTIONS]

Options

• -O: Enables optimized compilation of the C/C++ test bench. This increases compilation time,
but results in better runtime performance.

• -argv <string>: Specifies the argument list for the behavioral test bench. The <string>
is passed onto the main() C/C++ function of the test bench.

• -clean: Enables a clean build. Without this option, csim_design compiles incrementally.

• -ldflags <string>: Specifies the options passed to the linker for simulation. This option
is typically used to pass include path information or library information for the C/C++ test
bench.

• -mflags <string>: Specifies options required for simulation.

• -profile: Enable the creation of the Pre-Synthesis Control Flow.

• -setup: When this option is specified, the simulation binary will be created in the csim
directory of the active solution, but simulation will not be executed. Simulation can be
launched later from the compiled executable.

Examples

Compiles and runs C/C++ simulation:

csim_design

Compiles source design and test bench to generate the simulation binary. Does not execute the
simulation binary:

csim_design -O -setup

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 417Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=417

TIP: To run the simulation, execute run.sh  in a command terminal, from the csim/build  directory of
the active solution.

csynth_design
Description

Synthesizes the Vitis HLS project for the active solution.

The command can be executed only in the context of an active solution. The elaborated design in
the database is scheduled and mapped onto RTL, based on any constraints that are set.

Syntax

csynth_design [OPTIONS]

Options

• -dump_cfg: Write a pre-synthesis control flow graph (CFG).

• -dump_post_cfg: Write a post-synthesis control flow graph (CFG).

• -synthesis_check: Runs a pre-synthesis design rule check, but does not generate RTL.

Examples

Runs Vitis HLS synthesis on the top-level design.

csynth_design

delete_project
Description

Deletes the directory associated with the project.

The delete_project command checks the corresponding project directory <project> to
ensure that it is a valid Vitis HLS project before deleting it. If the specified project directory does
not exist in the current work directory, the command has no effect.

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 418Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=418

Syntax

delete_project <project>

• <project> is the project name.

Options

This command has no options.

Examples

Deletes the Project_1 by removing the directory and all its contents.

delete_project Project_1

delete_solution
Description

Removes a solution from an active project, and deletes the <solution> sub-directory from the
project directory.

If the solution does not exist in the project directory, the command has no effect.

Syntax

delete_solution <solution>

• <solution> is the solution to be deleted.

Options

This command has no options.

Examples

Deletes solution solution1 from the active project by deleting the sub-directory.

delete_solution solution1

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 419Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=419

enable_beta_device
Description

Enables specified beta access devices in the Vitis HLS tool set.

Syntax

enable_beta_device <pattern>

• <pattern> Specifies a pattern matching the beta devices to enable.

Options

This command has no options.

Examples

The following example enables all beta devices in the release:

 enable_beta_device *

export_design
Description

Exports and packages the generated RTL code as a packaged IP for use in the Vivado Design
Suite, or as a compiled Vitis kernel object (.xo) for the Vitis application acceleration
development flow.

Supported formats include:

• Vivado IP for inclusion in the IP catalog.

• Vitis application acceleration kernel (.xo).

• Synthesized or implemented design checkpoint (DCP) format.

• Vivado IP and ZIP archive for use in the System Generator for DSP tool.

The packaged project is written to the solution/impl folder of the active solution.

Syntax

export_design [OPTIONS]

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 420Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=420

Options

• -description <string>: Provides a description for the catalog entry for the generated IP,
used when packaging the IP.

• -display_name <string>: Provides a display name for the catalog entry for the
generated IP, used when packaging the IP.

• -flow (syn | impl): Obtains more accurate timing and resource usage data for the
generated RTL using Vivado synthesis and implementation. The option syn performs RTL
synthesis. The option impl performs both RTL synthesis and implementation, including a
detailed place and route of the RTL netlist. In the Vitis HLS IDE, these options appear as check
boxes labeled Vivado Synthesis and Vivado Synthesis, place and route stage.

• -format (ip_catalog | xo | syn_dcp | sysgen): Specifies the format to package
the IP. The supported formats are:

• ip_catalog: A format suitable for adding to the Xilinx IP catalog.

• ip_catalog: A format suitable for adding to the Xilinx IP catalog.

• xo: A format accepted by the v++ compiler for linking in the Vitis application acceleration
flow.

• syn_dcp: Synthesized checkpoint file for Vivado Design Suite. If this option is used, RTL
synthesis is automatically executed. Vivado implementation can be optionally added.

• sysgen: Generate a Vivado IP and .zip archive for use in System Generator.

• -ipname <string>: Provides the name component of the
Vendor:Library:Name:Version (VLNV) identifier for generated IP.

• -library <string>: Provides the library component of the
Vendor:Library:Name:Version (VLNV) identifier for generated IP.

• -output <string>: Specifies the output location of the generated IP, XO, or DCP files. The
file is written to the solution/impl folder of the current project if no output path is
specified.

• -rtl (verilog | VHDL): Specifies which HDL is used when the -flow option is
executed. If not specified, Verilog is the default language for the Vivado synthesized netlist.

• -taxonomy <string>: Specifies the taxonomy for the catalog entry for the generated IP,
used when packaging the IP.

• -vendor <string>: Provides the vendor component of the
Vendor:Library:Name:Version (VLNV) identifier for generated IP.

• -version <string>: Provides the version component of the
Vendor:Library:Name:Version (VLNV) identifier for generated IP.

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 421Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=421

Examples

Exports RTL for the Vitis application acceleration flow:

export_design -format xo

Exports the RTL as VHDL code in the Vivado IP catalog format. The VHDL is synthesized in
Vivado synthesis tool to obtain better timing and usage data:

export_design -rtl vhdl -format ip_catalog -flow syn

get_clock_period
Description

This command returns the clock period for specified clock objects, or returns the default clock
period for the active solution.

Syntax

get_clock_period [OPTIONS]

Options

• -default: Return the default period if the clock period is not specified.

• -name <string>: Get the clock period for the specified clock.

• -ns: Return the clock period in nanoseconds (ns). By default Vitis HLS returns the clock
period in the same units as it was specified.

Examples

The following example creates a clock, ap_clk, and specifies the clock period in MHz. Then it
gets the clock period for the clock as ns:

create_clock -name ap_clk -period 200MHz
get_clock_period -name ap_clk -ns

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 422Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=422

get_clock_uncertainty
Description

This command returns the clock uncertainty for specified clock, or returns the default clock
uncertainty for the active solution.

Syntax

get_clock_uncertainty [clock_name]

• <clock_name> indicates the clock to get the uncertainty for.

Options

• -default (true | false):

Return the default uncertainty value if it has not been set by user. If true then the default
uncertainty is returned, unless set by the user. If false, then the default is not returned.

.

Examples

The following example gets the clock uncertainty for the specified clock:

get_clock_uncertainty clk1

get_files
Description

This command gets the files that have been added to the active solution.

Syntax

get_files [OPTIONS]

Options

• -cflags: Return any compiler flags specified with the files.

• -csimflags: Return any C simulation flags specified with the files.

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 423Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=423

• -fullpath: Return the full path of the files.

• -tb: Return only the files that were added as part of the test bench (added with the -tb
option).

Examples

The following example gets the added test bench files from the current solution, and returns the
full path for the files:

get_files -tb -fullpath

get_part
Description

This command returns the Xilinx device used in the active solution.

Syntax

get_part

Options

There are no options for this command.

Examples

The following example returns the part used in the active solution:

get_part

get_project
Description

This command gets information for the currently opened project.

Syntax

get_project [OPTIONS]

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 424Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=424

Options

• -directory: Return the full path to the project directory.

• -name: Return the project name.

• -solutions: Return a list of all the solution names in the project.

Examples

The following example gets the full path for the current project:

get_project -directory

get_solution
Description

This command returns information related to the active solution.

Syntax

get_solution [OPTIONS]

Options

• -directory: Returns the full path to the active solution.

• -flow_target: Returns the flow target for the active solution.

• -json: Return the absolute path to the solution meta-data JSON file

• -name: Returns the solution name.

Examples

The following example returns the flow target for the active solution:

get_solution -flow_target

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 425Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=425

get_top
Description

This command returns the name of the top-level function for the open Vitis HLS project.

Syntax

get_top

Options

There are no options for this command.

Examples

The following example returns the top-level function for the open project:

get_top

help
Description

• When specified without a command name, the help command lists all Vitis HLS Tcl
commands.

• When used with a Vitis HLS Tcl command as an argument, the help command returns details
of the specified command.

TIP: For recognized Vitis HLS commands, auto-completion using the tab key is available when entering the
command name.

Syntax

help <cmd>

• <cmd> specifies a command name to return the help for. If no command is specified, a list of
all Vitis HLS commands will be returned.

Options

This command has no options.

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 426Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=426

Examples

Displays help for all commands and directives:

help

Displays help for the add_files command:

help add_files

list_part
Description

This command returns names of supported device families, parts, or boards.

If no argument is provided, the command will return all supported part families. To return specific
parts of a family, provide the family name as an argument.

Syntax

list_part [name] [OPTIONS]

• <family> specifies a device family to return the specific devices of. If no <family> is
specified, the list_part command returns a list of available device families.

Options

• -name <string>: Family, part, board name, or glob pattern.

• -board[=false|true]: Returns list of board names instead of part names.

• -clock_regions: Return a list of clock regions for the specified part. Must be specified with
the -name command.

• -slr_pblocks: Return the SLR pblock dictionary for the specified part. Must be specified
with the -name command.

Examples

Returns all supported device families.

list_part

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 427Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=427

Returns the clock regions of the current part in the active solution.

list_part -name [get_part] -clock_regions

open_project
Description

Opens an existing project, or creates a new one if the specified project does not exist.

IMPORTANT! In Vitis HLS, the open_project  command returns an error when opening a Vivado HLS
project, unless the -upgrade  or -reset  option is used.

There can only be one active project in a Vitis HLS session. To close a project:

• Use the close_project command, or

• Open or create another project with the open_project or open_tcl_project
commands.

Use the delete_project command to completely delete the project directory (removing it
from the disk) and any solutions associated it.

Syntax

open_project [OPTIONS] <name>

• <name> specifies the project name.

Options

• -reset:

• Resets the project by removing any data that already exists in the project.

• Removes any previous project information on design source files, header file search paths,
and the top-level function. The associated solution directories and files are kept, but might
now have invalid results.

RECOMMENDED: Use the -reset  option when executing Vitis HLS with Tcl scripts. Otherwise,
each new add_files  command adds additional files to the existing data.

• -upgrade: Upgrade a Vivado HLS project to Vitis HLS.

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 428Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=428

Examples

Opens an existing project named Project_1, or creates a new one if it does not exist:

open_project Project_1

Opens a project and removes any existing data:

open_project -reset Project_2

open_solution
Description

Opens an existing solution or creates a new one in the currently active project. There can only be
one active solution at any given time in a Vitis HLS session. As described in Vitis HLS Flow
Overview, the solution targets either the Vivado IP flow, or the Vitis Kernel flow. The default
flow is the Vivado IP flow if no flow target is specified.

IMPORTANT! Attempting to open or create a solution when there is no open project results in an error.

Each solution is managed in a sub-directory of the current project. A new solution is created if
the specified solution does not exist in the open project. To close a solution:

• Run the close_solution command, or

• Open another solution with the open_solution command.

Use the delete_solution command to remove a solution from the project and delete the
corresponding sub-directory.

Syntax

open_solution [OPTIONS] <name>

• <name> specifies the solution name.

TIP: You can specify both the project name and the solution name in order to use open_solution to
open the project and solution in a single command: open_solution dctProj/solution1

Options

• -flow_target [vitis | vivado]:

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 429Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=429

• vivado: Configures the solution to run in support of the Vivado IP generation flow,
requiring strict use of pragmas and directives, and exporting the results as Vivado IP. This is
the default flow when -flow_target is not specified.

• vitis: Configures the solution for use in the Vitis application acceleration development
flow. This configures the Vitis HLS tool to properly infer interfaces for the function
arguments without the need to specify the INTERFACE pragma or directive, and to output
the synthesized RTL code as a Vitis kernel object file (.xo).

• -reset:

• Resets the solution data if the solution already exists. Any previous solution information on
libraries, constraints, and directives is removed.

• Also removes synthesis, verification, and implementation results.

Examples

Opens an existing solution named Solution_1 in the open project, or creates a new solution if
one with the specified name does not exist. The solution is configured for creating kernel objects
(.xo) for use in the Vitis tool flow.

open_solution -flow_target vitis Solution_1

Opens and resets the specified solution in the open project. Removes any existing data from the
solution.

open_solution -reset Solution_2

open_tcl_project
Description

Create a project by sourcing a Tcl file, but skipping all design commands in the Tcl script:
cosim_design, csynth_design, and csim_design. This command only creates and
configures the project from a Tcl script. This lets you create a project using Tcl scripts from
existing projects without running simulation or synthesis.

There can only be one active project in a Vitis HLS session. To close a project:

• Use the close_project command, or

• Open or create another project with the open_tcl_project or open_project
commands.

Use the delete_project command to completely delete the project directory (removing it
from the disk) and any solutions associated it.

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 430Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=430

Syntax

open_tcl_project <tclfile>

• <tclfile> specifies the path and name of a Tcl script to use when creating a project.

Options

This command has no options.

Examples

Creates and opens a project from the specified Tcl script:

open_tcl_project run_hls.tcl

set_clock_uncertainty
Description

Sets a margin on the clock period defined by create_clock.

The margin of uncertainty is subtracted from the clock period to create an effective clock period.
The clock uncertainty is defined in ns, or as a percentage of the clock period. The clock
uncertainty defaults to 27% of the clock period.

Vitis HLS optimizes the design based on the effective clock period, providing a margin for
downstream tools to account for logic synthesis and routing. The command can be executed only
in the context of an active solution. Vitis HLS still uses the specified clock period in all output
files for verification and implementation.

Syntax

set_clock_uncertainty <uncertainty> <clock_list>

• <uncertainty>: A value, specified in ns, representing how much of the clock period is used
as a margin. The uncertainty can also be specified as a percentage of the clock period. The
default uncertainty is 27% of the clock period.

• <clock_list>: A list of clocks to which the uncertainty is applied. If none is provided, it is
applied to all clocks.

Options

This command has no options.

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 431Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=431

Examples

Specifies an uncertainty or margin of 0.5 ns on the clock. This effectively reduces the clock
period that Vitis HLS can use by 0.5 ns.

set_clock_uncertainty 0.5

set_part
Description

Sets a target device, device family, or board for the current solution. The command can be
executed only in the context of an active solution.

TIP: Each solution in a project can target a separate device or device family.

Syntax

set_part <device_specification>

• <device_specification> is a device specification that sets the target device for Vitis
HLS synthesis and implementation.

• The device specification includes <device>, <package>, and <speed_grade> information.

• Specifying the <device_family> uses the default device for the device family.

Options

• -board: Specify the part as defined on a board.

Examples

The FPGA libraries provided with Vitis HLS can be added to the current solution by providing the
device family name as shown below. In this case, the default device, package, and speed grade
specified in the Vitis HLS FPGA library for the Virtex-7 device family are used.

set_part virtex7

The FPGA libraries provided with Vitis HLS can optionally specify the specific device with
package and speed grade information.

set_part xc6vlx240tff1156-1

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 432Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=432

Specifies the part through the definition of a board.

set_part -board u200

set_top
Description

Defines the top-level function to be synthesized.

IMPORTANT! Any functions called from the top-level function will also become part of the HLS design.

Syntax

set_top <name>

• <name> is the function to be synthesized by HLS.

Options

This command has no options.

Examples

Sets the top-level function as foo.

set_top foo

Section IV: Vitis HLS Command Reference
Chapter 21: Project Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 433Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=433

Chapter 22

Configuration Commands
The configuration commands let you configure the Vitis™ HLS tool to control the results of
synthesis and simulation, specify defaults for pragmas and directives, and specify the outputs
generated by default. The commands must be run in the interactive mode, vitis_hls -i, or
can be run as a script using the -f option as described in vitis_hls Command.

These configuration commands can also be set in the Vitis HLS IDE using the Solution Settings
dialog box as described in Setting Configuration Options.

config_array_partition
Description

Specifies the default behavior for array partitioning.

Syntax

config_array_partition [OPTIONS]

Options

• -throughput_driven <off | auto>:

Enable automatic partial and/or complete array partitioning.

• auto : Enable automatic array partitioning with smart trade-offs between area and
throughput. This is the default value.

• off : Disable automatic array partitioning.

• -complete_threshold <uint:4>:

Sets the threshold for completely partitioning arrays. Arrays with fewer elements than the
specified threshold will be completely partitioned into individual elements.

Section IV: Vitis HLS Command Reference
Chapter 22: Configuration Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 434Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=434

Examples

Partitions all arrays in the design, except global arrays, with less than 12 elements into individual
elements.

config_array_partition -complete_threshold 12

config_compile
Description

Configures the default behavior of front-end compiling.

Syntax

config_compile [OPTIONS]

Options

• -enable_auto_rewind[=true|false]: When TRUE uses alternative HLS
implementation of pipelined loops which enables automatic loop rewind. This accepts values
of TRUE or FALSE. The default value is TRUE.

• -ignore_long_run_time[=true|false]: Do not report the "long run time" warning.
This accepts values of TRUE or FALSE. The default value is FALSE.

• -name_max_length <value>: Specifies the maximum length of function names. If the
length of the name is longer than the threshold, the last part of the name is truncated, and
digits are added to make the name unique when required. The default is 256.

• -no_signed_zeros[=true|false]: Ignores the signedness of floating-point zero so that
the compiler can perform aggressive optimizations on floating-point operations. This accepts
values of TRUE or FALSE. The default value is FALSE.

IMPORTANT! Using this option might change the result of any floating point calculations and result in
a mismatch in C/RTL co-simulation. Please ensure your test bench is tolerant of differences and checks
for a margin of difference, not exact values.

• -pipeline_flush_in_task <always | never | ii1>: Specifies that pipelines will
be flushing by default in hls::tasks to reduce the probability of deadlocks in C/RTL Co-
simulation. This option is limited to pipelines that achieve an II=1 with the default option of
ii1. This default can be overridden using always to always enable flushing piplelines in
either hls::tasks or dataflow, or can be completely disabled using never. For more
information refer to Flushing Pipelines and Pipeline Types.

Section IV: Vitis HLS Command Reference
Chapter 22: Configuration Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 435Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=435

IMPORTANT! Flushing pipelines are not compatible with the rewind option specified in the PIPLEINE
pragma or directive.

• always: Always make pipelines flushable in hls::tasks or dataflow regardless of II.

• never: Never make pipeline flushable unless specifically overridden by other directives or
pragmas.

• ii1: Make pipelines that achieve II=1 flushable in hls::tasks. This is the default setting.

• -pipeline_loops <threshold>: Specifies the lower limit used when automatically
pipelining loops. The default is 64, causing Vitis HLS is to automatically pipeline loops with a
tripcount of 64, or greater.

If the option is applied, the innermost loop with a tripcount higher than the threshold is
pipelined, or if the tripcount of the innermost loop is less than or equal to the threshold, the
innermost loop is unrolled. This analysis is then repeated for the parent loop. If the innermost
loop has no parent loop, the innermost loop is pipelined regardless of its tripcount.

• -pipeline_style <stp | flp | frp>: Specifies the default type of pipeline used by
Vitis HLS for the PIPELINE pragma or directive, or for loop pipelining due to the -
pipeline_loops threshold specified above. For more information on pipeline styles, refer
to Flushing Pipelines and Pipeline Types.

IMPORTANT! This is a hint not a hard constraint. The tool checks design conditions for enabling
pipelining. Some loops might not conform to a particular style and the tool reverts to the default style
(stp) if necessary.

• stp: Stall pipeline. Runs only when input data is available otherwise it stalls. This is the
default setting, and is the type of pipeline used by Vitis HLS for both loop and function
pipelining. Use this when a flushable pipeline is not required. For example, when there are
no performance or deadlock issue due to stalls.

• flp: Flushable pipeline architecture: flushes when input data is not available then stalls
waiting for new data.

• frp: Free-running, flushable pipeline. Runs even when input data is not available. Use this
when you need better timing due to reduced pipeline control signal fanout, or when you
need improved performance to avoid deadlocks. However, this pipeline style may consume
more power, as the pipeline registers are clocked even if there is no data.

• -pragma_strict_mode[=true|false]: Enable error messages for misplaced or misused
pragmas.

• -pre_tcl <arg>: Specify a TCL script to run prior to starting the csynth_design
command.

Section IV: Vitis HLS Command Reference
Chapter 22: Configuration Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 436Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=436

• -unsafe_math_optimizations[=true|false]: Ignores the signedness of floating-
point zero and enables associative floating-point operations so that compiler can perform
aggressive optimizations on floating-point operations. This accepts values of TRUE or FALSE.
The default value is FALSE.

Note: Using this option might change the result of any floating point calculations and result in a
mismatch in C/RTL co-simulation. Please ensure your test bench is tolerant of differences and checks
for a margin of difference, not exact values.

Examples

Pipeline the innermost loop with a tripcount higher than 30, or pipeline the parent loop of the
innermost loop when its tripcount is less than or equal 30:

config_compile -pipeline_loops 30

Ignore the signedness of floating-point zero:

config_compile -no_signed_zeros

Ignore the signedness of floating-point zero and enable the associative floating-point operations:

config_compile -unsafe_math_optimizations

config_cosim
Description

Lets you configure the settings of the C/RTL Co-simulation command (cosim_design).

Syntax

config_cosim [OPTIONS]

Options

• -O: Enables optimized compilation of the C/C++ test bench and RTL wrapper. This increases
compilation time, but results in better runtime performance.

• -argv <string>: The <string> is passed onto the main C/C++ function.

Specifies an argument list for the behavioral test bench.

Section IV: Vitis HLS Command Reference
Chapter 22: Configuration Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 437Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=437

• -compiled_library_dir <string>: Specifies the compiled library directory during
simulation with third-party simulators. The <string> is the path name to the compiled
library directory. The library must be compiled ahead of time using the compile_simlib
command as explained in the Vivado Design Suite Tcl Command Reference Guide (UG835).

• -coverage: Enables the coverage feature during simulation with the VCS simulator.

• -disable_deadlock_detection: Disables the deadlock detection feature in co-
simulation.

• -disable_dependency_check: Disables dependency checks when running co-simulation.

• -enable_dataflow_profiling: This option turns on the dataflow channel profiling to
track channel sizes during co-simulation.

• -enable_fifo_sizing: This option turns on automatic FIFO channel size tuning for
dataflow profiling during co-simulation.

• -hwemu_trace_dir <kernel_name>/<instance_name>: Specifies the location of test
vectors generated during hardware emulation to be used during co-simulation. The test
vectors are generated by the config_export -cosim_trace_generation command.
The argument lets you specify the kernel and instance name of the Vitis kernel in the
hardware emulation simulation results to locate the test vectors.

• -ldflags <string>: Specifies the options passed to the linker for co-simulation.

This option is typically used to pass include path information or library information for the
C/C++ test bench.

• -mflags <string>: Specifies options required for simulation.

• -random_stall: Enable random stalling of top-level interfaces during co-simulation.

• -rtl [verilog | vhdl]: Specifies which RTL language to use for C/RTL co-simulation.
The default is Verilog.

• -setup: Creates all simulation files created in the sim/<HDL> directory of the active
solution. The simulation is not executed, but can be run later from a command shell.

• -stable_axilite_update: Enable s_axilite to configure registers which are stable
compared with the prior transaction.

• -tool [auto | vcs | modelsim | riviera | isim | xsim | ncsim |
xceilum]: Specifies the simulator to use to co-simulate the RTL with the C/C++ test bench.
The Vivado® simulator (xsim) is the default, unless otherwise specified.

• -trace_level [*none* | all | port | port_hier]: Determines the level of
waveform trace data to save during C/RTL co-simulation.

• none does not save trace data. This is the default.

• all results in all port and signal waveforms being saved to the trace file.

Section IV: Vitis HLS Command Reference
Chapter 22: Configuration Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 438Send Feedback

https://docs.xilinx.com/access/sources/dita/map?url=ug835-vivado-tcl-commands
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=438

• port only saves waveform traces for the top-level ports.

• port_hier save the trace information for all ports in the design hierarchy.

The trace file is saved in the sim/Verilog or sim/VHDL folder of the current solution when
the simulation executes, depending on the selection used with the -rtl option.

• -user_stall <string>: Specifies the JSON stall file to be used during co-simulation. The
stall file can be generated using the cosim_stall command.

• -wave_debug: Opens the Vivado simulator GUI to view waveforms and simulation results.
Enables waveform viewing of all processes in the generated RTL, as in the dataflow and
sequential processes. This option is only supported when using Vivado simulator for co-
simulation by setting -tool xsim. See Viewing Simulation Waveforms for more information.

config_csim
Description

Lets you configure the settings of the C simulation command (csim_design).

Syntax

config_csim [OPTIONS]

Options

• -O: Enables optimized compilation of the C/C++ test bench. This increases compilation time,
but results in better runtime performance.

• -argv <string>: Specifies the argument list for the behavioral test bench. The <string>
is passed onto the main() C/C++ function of the test bench.

• -clean: Enables a clean build. Without this option, csim_design compiles incrementally.

• -ldflags <string>: Specifies the options passed to the linker for simulation. This option
is typically used to pass include path information or library information for the C/C++ test
bench.

• -mflags <string>: Specifies options required for simulation.

• -profile: Enable the creation of the Pre-Synthesis Control Flow.

• -setup: When this option is specified, the simulation binary will be created in the csim
directory of the active solution, but simulation will not be executed. Simulation can be
launched later from the compiled executable.

Section IV: Vitis HLS Command Reference
Chapter 22: Configuration Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 439Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=439

config_dataflow
Description

• Specifies the default behavior of dataflow pipelining (implemented by the
set_directive_dataflow command).

• Allows you to specify the default channel memory type and depth.

Syntax

config_dataflow [OPTIONS]

Options

• -default_channel [fifo | pingpong]: By default, a RAM memory, configured in
pingpong fashion, is used to buffer the data between functions or loops when dataflow
pipelining is used. When streaming data is used (that is, the data is always read and written in
consecutive order), a FIFO memory is more efficient and can be selected as the default
memory type.

TIP: Set arrays to streaming using the set_directive_stream command to perform FIFO accesses.

• -disable_fifo_sizing_opt: Disable FIFO sizing optimizations that increase resource
usage and may improve performance and reduce deadlocks.

• -fifo_depth <integer>: Specifies the default depth of the FIFOs. The default depth is 2.

This option has no effect when ping-pong memories are used. If not specified, the default
depth is 2, or if this is an array converted into a FIFO, the default size is the size of the original
array. In some cases, this might be too conservative and introduce FIFOs that are larger than
necessary. Use this option when you know that the FIFOs are larger than required.

CAUTION! Be careful when using this option. Insufficient FIFO depth might lead to deadlock
situations.

• -override_user_fifo_depth <value>:

Use the specified depth for every hls::stream, overriding any user settings.

Note: This is useful for checking if a deadlock is due to insufficient FIFO depths in the design. By setting
it to a very large value (for example, the maximum depth printed by co-simulation at the end of
simulation), if there is no deadlock, then you can use the FIFO depth profiling options of co-simulation
and the GUI to find the minimum depth that ensures performance and avoids deadlocks.

• -scalar_fifo_depth <integer>: Specifies the minimum for scalar propagation FIFO.

Section IV: Vitis HLS Command Reference
Chapter 22: Configuration Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 440Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=440

Through scalar propagation, the compiler converts the scalar from C/C++ code into FIFOs.
The minimal sizes of these FIFOs can be set with -start_fifo_depth. If this option is not
provided, then the value of -fifo_depth is used.

• -start_fifo_depth <integer>: Specifies the minimum depth of start propagation
FIFOs.

This option is only valid when the channel between the producer and consumer is a FIFO. This
option uses the same default value as the-fifo_depth option, which is 2. Such FIFOs can
sometimes cause deadlocks, in which case you can use this option to increase the depth of
the FIFO.

• -strict_mode [off | warning | error]: Set the severity for messages related to
dataflow canonical form.

• -strict_stable_sync[=true|false]: Force synchronization of stable ports with
ap_done.

• -task_level_fifo_depth <integer>: Specifies the depth of the task level FIFO.

A FIFO is synchronized by ap_ctrl_chain. The write is the ap_done of the producer, the
read is the ap_ready of the consumer. Like a PIPO in terms of synchronization, and like a
FIFO in terms of access.

Examples

Changes the default channel from ping-pong memories to FIFOs:

config_dataflow -default_channel fifo

Changes the default channel from ping-pong memories to FIFOs with a depth of 6:

config_dataflow -default_channel fifo -fifo_depth 6

CAUTION! If the design implementation requires a FIFO with greater than six elements, this setting results
in a design that fails RTL verification. Be careful when using this option, because it is a user override.

To find the cause of deadlocks, try to increase all the FIFO depths significantly, especially those
that are reported by C/RTL co-simulation. If the deadlock disappears with a large "N", then it is
due to insufficient FIFO depths. You can test this as follows:

config_dataflow -fifo_depth N -start_fifo_depth N -scalar_fifo_depth N -
task_level_fifo_depth N

Section IV: Vitis HLS Command Reference
Chapter 22: Configuration Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 441Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=441

config_debug
Generate HLS debug files used in the Vitis application acceleration development flow.

Description

Configures the default behavior of front-end compiling.

Syntax

config_debug [OPTIONS]

Options

• -directory <path>: Specifies the location of HLS debugging output. If not specified,
location is set to solution/.debug.

• -enable[=true|false]: Enable generation of HLS debugging files used in Vitis debug
flow.

Examples

The following example enables the debug files:

config_debug -enable true

config_export
Description

Configures options for export_design which can either run downstream tools or package a
Vivado IP or Vitis compiled kernel object (.xo).

Syntax

config_export [OPTIONS]

Options

• -cosim_trace_generation=<true | false>: Generate test vectors during hardware
emulation in the Vitis tool flow when the kernel is synthesized as a Vitis kernel, to be used
during C/RTL Co-simulation in future iterations.

Section IV: Vitis HLS Command Reference
Chapter 22: Configuration Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 442Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=442

• -description <string>: Provides a description for the catalog entry for the generated IP,
used when packaging the IP.

• -display_name <string>: Provides a display name for the catalog entry for the
generated IP, used when packaging the IP.

• -flow (none | syn | impl): Lets you obtain more accurate timing and resource usage
data for the generated RTL using Vivado synthesis and implementation. The option syn
performs RTL synthesis. The option impl performs both RTL synthesis and implementation,
including a detailed place and route of the RTL netlist. The default option is none which does
not run either synthesis or implementation.

TIP: In the Vitis HLS IDE, these options appear as check boxes labeled Vivado Synthesis and Vivado
Synthesis, place and route stage.

• -format (ip_catalog | xo | syn_dcp | sysgen): Specifies the format to package
the IP. The supported formats are:

• ip_catalog: A format suitable for adding to the Xilinx IP catalog.

• xo: A format accepted by the v++ compiler for linking in the Vitis application acceleration
flow.

• syn_dcp: Synthesized checkpoint file for Vivado Design Suite. If this option is used, RTL
synthesis is automatically executed. Vivado implementation can be optionally added.

• sysgen: Generates a Vivado IP and .zip archive for use in System Generator.

• -ip_xdc_file <arg>: Specify an XDC file whose contents will be included in the packaged
IP for use during implementation in the Vivado tool.

• -ip_xdc_ooc_file <arg>: Specify an out-of-context (OOC) XDC file whose contents will
be included in packaged IP and used during out-of-context Vivado synthesis for the exported
IP.

• -ipname <string>: Provides the name component of the
<Vendor>:<Library>:<Name>:<Version> (VLNV) identifier for generated IP.

• -library <string>: Provides the library component of the
<Vendor>:<Library>:<Name>:<Version> (VLNV) identifier for generated IP.

• -output <string>: Specifies the output location of the generated IP, .xo, or DCP files.
The file is written to the solution/impl folder of the current project if no output path is
specified.

• -rtl (verilog | VHDL): Specifies which HDL is used when the -flow option is
executed. If not specified, Verilog is the default language for the Vivado synthesized netlist.

• -taxonomy <string>: Specifies the taxonomy for the catalog entry for the generated IP,
used when packaging the IP.

Section IV: Vitis HLS Command Reference
Chapter 22: Configuration Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 443Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=443

• -vendor <string>: Provides the vendor component of the
<Vendor>:<Library>:<Name>:<Version> (VLNV) identifier for generated IP.

• -version <string>: Provides the version component of the
<Vendor>:<Library>:<Name>:<Version> (VLNV) identifier for generated IP.

• -vivado_clock <arg>: Override the specified HLS clock constraint used in Vivado OOC
run. This is only used for reporting purposes and will not apply to the exported IP.

• -vivado_impl_strategy <string>: Specifies Vivado implementation strategy name.
The default name is 'default'.

• -vivado_max_timing_paths <uint:10>: Specify the max number of timing paths to
report when the timing is not met in the Vivado synthesis or implementation.

• -vivado_optimization_level (0 | 1 | 2 | 3): Vivado optimization level. This
option sets other vivado_* options. This only applies for report generation and will not
apply to the exported IP. The default setting is 0.

• -vivado_pblock <arg>: Specify a PBLOCK range to use during implementation for
reporting purposes. This will not apply to the exported IP.

• -vivado_phys_opt (none | place | route | all): Specifies whether Vivado
physical optimization should be run during Vivado implementation. Valid values are:

• none: Do not run (default).

• place: Run post-place.

• route: Run post-route.

• all: Run post-place and post-route.

• -vivado_report_level (0 | 1 | 2): Specifies how many Vivado reports are
generated, and does not apply to the exported IP. The valid values and the associated reports
are:

• 0: Post-synthesis utilization. Post-implementation utilization and timing.

• 1: Post-synthesis utilization, timing, and analysis. Post-implementation utilization, timing,
and analysis.

• 2: Post-synthesis utilization, timing, analysis, and failfast. Post-implementation utilization,
timing, and failfast. This is the default setting.

• -vivado_synth_design_args <string>: Specifies extra arguments to pass to the
Vivado synth_design command. The default is -directive
sdx_optimization_effort_high.

• -vivado_synth_strategy <string>: Specifies Vivado synth strategy name. The default
strategy is "default".

Section IV: Vitis HLS Command Reference
Chapter 22: Configuration Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 444Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=444

Examples

The following example exports the Vitis .xo to the specified file:

export_design -description "Kernel Export" -display_name kernel_export \
-flow impl -format xo -output "tmp/hls_tests/kernel.xo"

config_interface
Description

Specifies the default interface options used to implement the RTL ports of each function during
interface synthesis.

Syntax

config_interface [OPTIONS]

Options

• -clock_enable[=true|false]: Adds a clock-enable port (ap_ce) to the design. The
default is false.

The clock enable prevents all clock operations when it is active-Low. It disables all sequential
operations

• -default_slave_interface [none | s_axilite]: Enables the default for the slave
interface as either none, which is the default for the Vivado IP flow, or as s_axilite which
is the default for the Vitis Kernel flow, as described in Vitis HLS Flow Overview.

• -m_axi_addr64[=true|false]: Globally enables 64-bit addressing for all m_axi ports in
the design. By default, this is enabled for the Vitis flow, and otherwise disabled.

• -m_axi_alignment_byte_size <size>: Specifies the memory alignment boundary for
m_axi interfaces provided as bitwidth. The <size> value must be a valid power of 2. A value
of 0 is an invalid value. The default value is 64 when open_solution -flow_target
vitis, and 1 when the -flow_target=vivado, aligning to a single byte.

IMPORTANT! Burst behavior will be incorrect if pointers are not aligned at runtime.

• -m_axi_auto_max_ports[=true|false]: If the option is true, all the m_axi interfaces
that are not explicitly bundled, with INTERFACE pragmas or directives, will be mapped into
individual interfaces, thus increasing the resource utilization (multiple adapters). The default is
false and m_axi ports are bundled into a single interface.

Section IV: Vitis HLS Command Reference
Chapter 22: Configuration Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 445Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=445

• -m_axi_buffer_impl [auto | lutram | uram | bram]: Select the implementation
for all m_axi internal buffers.

• auto: Let the tool choose the implementation.

• lutram: Specifies distributed RAM for the buffers.

• bram: Use the Block RAM. This is the default setting.

• uram: Use the UltraRAM.

• -m_axi_conservative_mode=<true|false>: This mode tells the m_axi not to issue a
write request until the associated write data is entirely available (typically, buffered into the
adapter or already emitted). It uses a buffer inside the MAXI adapter to store all the data for a
burst (both in case of reading and in case of writing). This is enabled (true) by default, and
may slightly increase write latency but can resolve deadlock due to concurrent requests (read
or write) on the memory subsystem. This feature can be disabled by setting it to false.

TIP: This mode can be safely set to false  to save this internal buffering if the design implements
buffering that is larger than the max write burst length using an alternative approach.

• -m_axi_flush_mode: Configure the m_axi adapter to be flushable, writing or reading
garbage data if a burst is interrupted due to pipeline blocking, missing data inputs when not in
conservative mode, or missing output space. The default is false. This is enabled when the
option is specified.

• -m_axi_latency <latency>: Globally specifies the expected latency of the m_axi
interface, allowing the design to initiate a bus request a number of cycles (latency) before the
read or write is expected. The default value is 64 when open_solution -flow_target
vitis, and 0 when -flow_target vivado.

• -m_axi_max_bitwidth <size>: Specifies the maximum bitwidth for the m_axi
interfaces data channel. The default is 1024 bits. The specified value must be a power-of-two,
between 8 and 1024. Note that this decreases throughput if the actual accesses are bigger
than the required interface, as they will be split into a multi-cycle burst of accesses.

• -m_axi_max_read_burst_length <size>: Specifies a global maximum number of data
values read during a burst transfer for all m_axi interfaces. The default is 16.

• -m_axi_max_widen_bitwidth <size>: Automatic port width resizing to widen bursts
for the m_axi interface, up to the chosen bitwidth. The specified value must be a power of 2
between 8 and 1024, and must align with the -m_axi_alignment_size. The default value
is 512 when open_solution -flow_target vitis, and 0 when the -flow_target
vivado.

• -m_axi_max_write_burst_length <size>: Specifies a global maximum number of
data values written during a burst transfer for all m_axi interfaces. The default is 16.

Section IV: Vitis HLS Command Reference
Chapter 22: Configuration Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 446Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=446

• -m_axi_min_bitwidth <size>: Specifies the minimum bitwidth for the m_axi interfaces
data channel. The default is 8 bits. The value must be a power of 2, between 8 and 1024.
Note that this does not necessarily increase throughput if the actual accesses are smaller than
the required interface.

• -m_axi_num_read_outstanding <size>: Specifies how many read requests can be
made to the m_axi interface without a response, before the design stalls. The default value is
16. This implies internal storage in the design, and a FIFO of size:

num_read_outstanding*max_read_burst_length*word_size

• -m_axi_num_write_outstanding <size>: Specifies how many write requests can be
made to the m_axi interface without a response, before the design stalls. The default value is
16. This implies internal storage in the design, and a FIFO of size:

num_write_outstanding*max_write_burst_length*word_size

• -m_axi_offset [off | direct | slave]: Globally controls the offset ports for all
m_axi interfaces in the design.

• off: No offset port is generated. This is the default value in the Vivado IP flow.

• direct: Generates a scalar input offset port for directly passing the address offset into the
IP through the offset port.

• slave: Generates an offset port and automatically maps it to an AXI4-Lite slave. This is
the default value.

• -register_io [off | scalar_in | scalar_out | scalar_all]: Globally
enables registers for all inputs, all outputs, or all ports on the top function. The default is off.

• -s_axilite_auto_restart_counter [0 | 1]: Enables the auto-restart behavior
for kernels. Use 0 to disable the auto-restart feature, which is the default, or use 1 to enable
the feature. When enabled, the tool establishes the auto-restart bit in the ap_ctrl_chain
control protocol for the s_axilite interface. For more information refer to Continuously
Running Kernels in Vitis Unified Software Platform Documentation: Application Acceleration
Development (UG1393).

• -s_axilite_data64[=true|false]: Set the data width for the s_axilite interface to
64 bits.

• -s_axilite_interrupt_mode[=cor|tow]: Specify the interrupt mode for s_axilite
interface to be Clear on Read (cor) or Toggle on Write (tow). Clear on Read interrupt can be
completed in a single transaction, while tow requires two. Tow is the default interrupt mode.

• -s_axilite_mailbox [both | in | out]: Enables the creation of a mailboxes for
non-stream non-stable s_axilite arguments. The mailbox feature is used in the setting and
management of never-ending kernels as described in Continuously Running Kernels in Vitis
Unified Software Platform Documentation: Application Acceleration Development (UG1393). The
argument values specify:

Section IV: Vitis HLS Command Reference
Chapter 22: Configuration Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 447Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.2%20English&url=ug1393-vitis-application-acceleration
https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.2%20English&url=ug1393-vitis-application-acceleration
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=447

• both : Enable mailbox for input and output arguments

• in : Enable mailbox for only input arguments

• out : Enable mailbox for only output arguments

• none : No mailbox created (default)

• -s_axilite_status_regs [ecc | off]:

Enables exposure of ECC error bits in the s_axilite register map via two clear-on-read
(COR) counters per BRAM or URAM with ECC enabled.

• off: No status registers generated. This is the default setting.

• ecc: Enable counters for ECC errors for BRAMs and URAMs

• -s_axilite_sw_reset[=false|true]: Enable the software reset of a kernel in the
s_axilite adapter.

Examples

The following example adds a clock enable port to the IP:

config_interface -clock_enable

config_op
Description

Sets the default options for micro-architecture binding of an operator (add, mul, sub...) to an
FPGA implementation resource, and specify its latency.

Binding is the process in which operators (such as addition, multiplication, and shift) are mapped
to specific RTL implementations. For example, a mult operation implemented as a combinational
or pipelined RTL multiplier.

This command can be used multiple times to configure the default binding of different operation
types to different implementation resources, or specify the default latency for that operation.
The default configuration defined by config_op can be overridden by specifying the BIND_OP
pragma or directive for a specific design element.

Syntax

config_op [OPTIONS] <op>

• <op>: Specifies the type of operation for the specified variable. Supported values include:

Section IV: Vitis HLS Command Reference
Chapter 22: Configuration Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 448Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=448

• mul: integer multiplication operation

• add: integer add operation

• sub: integer subtraction operation

• fadd: single precision floating-point add operation

• fsub: single precision floating-point subtraction operation

• fdiv: single precision floating-point divide operation

• fexp: single precision floating-point exponential operation

• flog: single precision floating-point logarithmic operation

• fmul: single precision floating-point multiplication operation

• frsqrt: single precision floating-point reciprocal square root operation

• frecip: single precision floating-point reciprocal operation

• fsqrt: single precision floating-point square root operation

• dadd: double precision floating-point add operation

• dsub: double precision floating-point subtraction operation

• ddiv: double precision floating-point divide operation

• dexp: double precision floating-point exponential operation

• dlog: double precision floating-point logarithmic operation

• dmul: double precision floating-point multiplication operation

• drsqrt: double precision floating-point reciprocal square root operation

• drecip: double precision floating-point reciprocal operation

• dsqrt: double precision floating-point square root operation

• hadd: half precision floating-point add operation

• hsub: half precision floating-point subtraction operation

• hdiv: half precision floating-point divide operation

• hmul: half precision floating-point multiplication operation

• hsqrt: half precision floating-point square root operation

• facc: single precision floating-point accumulate operation

• fmacc: single precision floating-point multiply-accumulate operation

• fmadd: single precision floating-point multiply-add operation

Section IV: Vitis HLS Command Reference
Chapter 22: Configuration Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 449Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=449

TIP: Comparison operators, such as dcmp , are implemented in LUTs and cannot be implemented
outside of the fabric, or mapped to DSPs, and so are not configurable with the config_op  or
bind_op  commands.

Options

• -impl [dsp | fabric | meddsp | fulldsp | maxdsp | primitivedsp |
auto | none | all]: Defines the default implementation style for the specified
operation. The default is to let the tool choose which implementation to use. The selections
include:

• all: All implementations. This is the default setting.

• dsp: Use DSP resources

• fabric: Use non-DSP resources

• meddsp: Floating Point IP Medium Usage of DSP resources

• fulldsp: Floating Point IP Full Usage of DSP resources

• maxdsp: Floating Point IP Max Usage of DSP resources

• primitivedsp: Floating Point IP Primitive Usage of DSP resources

• auto: enable inference of combined facc | fmacc | fmadd operators

• none: disable inference of combined facc | fmacc | fmadd operators

• -latency <value>: Defines the default latency for the binding of the type to the
implementation resource. The valid value range varies for each implementation (-impl) of the
operation. The default is -1, which applies the standard latency for the implementation
resource.

TIP: The latency can be specified for a specific operation without specifying the implementation detail.
This leaves Vitis HLS to choose the implementation while managing the latency.

• -precision [low | high | standard]: Applies to facc, fmacc, and fmadd
operators. Specify the precision for the given operator.

• low: Use a low precision (60 bit and 100 bit integer) accumulation implementation when
available. This option is only available on certain non-Versal devices, and may cause
RTL/Co-Sim mismatches due to insufficient precision with respect to C++ simulation.
However, it can always be pipelined with an II=1 without source code changes, though it
uses approximately 3X the resources of standard precision floating point accumulation.

• high: Use high precision (one extra bit) fused multiply-add implementation when available.
This option is useful for high-precision applications and is very efficient on Versal devices,
although it may cause RTL/Co-Sim mismatches due to the extra precision with respect to C
++ simulation. It uses more resources than standard precision floating point
accumulation.

Section IV: Vitis HLS Command Reference
Chapter 22: Configuration Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 450Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=450

• standard: standard precision floating point accumulation and multiply-add is suitable for
most uses of floating-point, and is the default setting. It always uses a true floating-point
accumulator that can be pipelined with II=1 on Versal devices, and II that is typically
between 3 and 5 (depending on clock frequency and target device) on non-Versal devices.

Example 1

The following example binds the addition operation to the fabric, with the specified latency:

config_op add -impl fabric -latency 2

Example 2

The following example enables the floating point accumulator with low-precision to achieve II=1
on a non-Versal device:

config_op facc -impl auto -precision low

config_rtl
Description

Configures various attributes of the output RTL, the type of reset used, and the encoding of the
state machines. It also allows you to use specific identification in the RTL.

By default, these options are applied to the top-level design and all RTL blocks within the design.
You can optionally specify a specific RTL model.

Syntax

config_rtl [OPTIONS]

Options

• -deadlock_detection <none | sim | hw>: Enables simulation or synthesis deadlock
detection in top level RTL of exported IP/XO file. The options are as follows:

• none : Deadlock detection disabled

• sim : Enables deadlock detection only for simulation/emulation (default)

• hw : Deadlock detection enabled in synthesized and simulatable RTL IP. Adds
ap_local_deadlock and ap_local_block signals to the IP to enable local and global
deadlock detection.

Section IV: Vitis HLS Command Reference
Chapter 22: Configuration Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 451Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=451

• -deadlock_diagnosis : Enable deadlock detection diagnosis for Vitis kernels (.xo) during
hardware emulation in the Vitis tool.

• -header <string>: Places the contents of file <string> at the top (as comments) of all
output RTL and simulation files.

TIP: Use this option to ensure that the output RTL files contain user specified identification.

• -kernel_profile: Add top level event and stall ports required by kernel profiling.

• -module_auto_prefix: Specifies the top level function name as the prefix value. This
option is ignored if config_rtl -module_prefix is also specified. This is enabled by
default.

• -module_prefix <string>: Specifies a user-defined prefix to be added to all RTL entity/
module names.

• -mult_keep_attribute: Enable keep attribute.

• -register_all_io: Register all I/O signals by default. The default is false. This is enabled
when the option is specified.

• -register_reset_num <int>: Specifies the number of registers to add to the reset
signal. In the Vivado IP flow the default is 0. For the Vitis kernel flow, the default value is 3.

• -reset [none | control | state | all]: Variables initialized in the C/C++ code are
always initialized to the same value in the RTL and therefore in the bitstream. This
initialization is performed only at power-on. It is not repeated when a reset is applied to the
design.

The setting applied with the -reset option determines how registers and memories are
reset.

• none: No reset is added to the design.

• control: Resets control registers, such as those used in state machines and those used to
generate I/O protocol signals. This is the default setting.

• state: Resets control registers and registers or memories derived from static or global
variables in the C/C++ code. Any static or global variable initialized in the C/C++ code is
reset to its initialized value.

• all: Resets all registers and memories in the design. Any static or global variable initialized
in the C/C++ code is reset to its initialized value.

• -reset_async: Causes all registers to use a asynchronous reset. If this option is not
specified, a synchronous reset is used.

• -reset_level (low | high): Allows the polarity of the reset signal to be either active-
Low or active-High. The default is High.

Section IV: Vitis HLS Command Reference
Chapter 22: Configuration Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 452Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=452

Examples

Configures the output RTL to have all registers reset with an asynchronous active-Low reset.

config_rtl -reset all -reset_async -reset_level low

Adds the contents of my_message.txt as a comment to all RTL output files.

config_rtl -header my_mesage.txt

config_schedule
Description

Configures the default type of scheduling performed by Vitis HLS.

Syntax

config_schedule [OPTIONS]

Options

• -enable_dsp_full_reg[=true|false]: Specifies that the DSP signals should be fully
registered. The default is true.

Examples

The following example disables registering DSP signals:

config_schedule -enable_dsp_full_reg=false

config_storage
Description

Sets the global default options for Vitis HLS micro-architecture binding of FIFO storage elements
to memory resources.

The default configuration defined by config_storage for FIFO strorage can be overridden by
specifying the BIND_STORAGE pragma or directive for a specific design element, or specifying
the storage_type option for the INTERFACE pragma or directive for objects on the interface.

Section IV: Vitis HLS Command Reference
Chapter 22: Configuration Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 453Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=453

Syntax

config_storage [OPTIONS] <type>

• <type>: Configures the fifo type.

Options

• -auto_srl_max_bits <value>: Specifies the maximum allowed SRL total bits (depth *
width) for auto-srl implementations (-impl autosrl). The default is 1024.

• -auto_srl_max_depth <value>: Specifies the maximum allowed SRL depth for auto-srl
implementation (-impl autosrl). The default is 2.

• -impl [auto | bram | lutram | uram | memory | srl]: Defines the device
resource to use in binding the specified type.

Examples

The following example configures the default binding of fifo:

config_storage fifo -impl uram

config_unroll
Description

Automatically unroll loops based on the loop index limit (or tripcount).

Syntax

config_unroll [OPTIONS] <value>

Options

• -tripcount_threshold <value>: All loops which have fewer iterations than the
specified value are automatically unrolled. The default value is 0.

Example

The following command ensures all loops which have fewer than 18 iterations are automatically
unrolled during scheduling.

config_unroll -tripcount_threshold 18

Section IV: Vitis HLS Command Reference
Chapter 22: Configuration Commands

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 454Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=454

Chapter 23

Optimization Directives
Directives, or the set_directive_* commands, can be specified as Tcl commands that are
associated with a specific solution, or set of solutions. Allowing you to customize the synthesis
results for the same source code across different solutions. This lets you preserve the original
code while engaging in what-if analysis of the design.

Directives must be run in the interactive mode, vitis_hls -i, or can be run as a script using
the -f option as described in vitis_hls Command.

Pragmas are directives that you can apply in the source code, rather than as a Tcl script, and so
change the synthesis results for all implementations of your code. There are HLS pragmas for
every set_directive command, so you can choose how you want to work with your Vitis HLS
project. Refer to HLS Pragmas for information on the different pragmas.

Directives and pragmas are also available through the Vitis™ HLS IDE for assignment to specific
elements of your source code, as described in Adding Pragmas and Directives.

TIP: When running the commands through the IDE, the Tcl commands are added to a script of your project
written to solution/constraints/script.tcl.

set_directive_aggregate
Description

This directive collects the data fields of a struct into a single wide scalar. Any arrays declared
within the struct and Vitis HLS performs a similar operation as
set_directive_array_reshape, and completely partitions and reshapes the array into a
wide scalar and packs it with other elements of the struct.

TIP: Arrays of structs are restructured as arrays of aggregated elements.

The bit alignment of the resulting new wide-word can be inferred from the declaration order of
the struct elements. The first element takes the least significant sector of the word and so forth
until all fields are mapped.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 455Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=455

Note: The AGGREGATE optimization does not pack the structs, and cannot be used on structs that contain
other structs.

Syntax

set_directive_aggregate [OPTIONS] <location> <variable>

• <location> is the location (in the format function[/label]) which contains the variable
which will be packed.

• <variable> is the struct variable to be packed.

Options

• -compact [bit | byte | none | auto]: Specifies the alignment of the aggregated
struct. Alignment can be on the bit-level (packed), the byte-level (padded), none, or
automatically determined by the tool which is the default behavior.

Examples

Aggregates struct pointer AB with three 8-bit fields (typedef struct {unsigned char R,
G, B;} pixel) in function func, into a new 24-bit pointer, aligning data at the bit-level.

set_directive_aggregate func AB -compact bit

See Also

• pragma HLS aggregate

• set_directive_array_reshape

• set_directive_disaggregate

set_directive_alias
Description

Specify that two or more M_AXI pointer arguments point to the same underlying buffer in
memory (DDR or HBM) and indicate any aliasing between the pointers by setting the distance or
offset between them.

IMPORTANT! The ALIAS pragma applies to top-level function arguments mapped to M_AXI  interfaces.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 456Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=456

Vitis HLS considers different pointers to be independent channels and generally does not provide
any dependency analysis. However, in cases where the host allocates a single buffer for multiple
pointers, this relationship can be communicated through the ALIAS pragma or directive and
dependency analysis can be maintained. The ALIAS pragma enables data dependence analysis in
Vitis HLS by defining the distance between pointers in the buffer.

Requirements for ALIAS:

• All ports assigned to an ALIAS pragma must be in assigned to M_AXI interfaces and assigned
to different bundles, as shown in the example below

• Each port can only be used in one ALIAS pragma or directive

• The depth of all ports assigned to an ALIAS pragma must be the same

• When offset is specified, the number of ports and number of offsets specified must be the
same: one offset per port

• The offset for the INTERFACE must be specified as slave or direct, offset=off is not
supported

Syntax

set_directive_alias [OPTIONS] <location> <ports>

• <location> is the location string in the format function[/label] that the ALIAS
pragma applies to.

• <ports> specifies the ports to alias.

Options

• -distance <integer>: Specifies the difference between the pointer values passed to the
ports in the list.

• -offset <string>: Specifies the offset of the pointer passed to each port in the ports
list with respect to the origin of the array.

Example

For the following function top:

void top(int *arr0, int *arr1, int *arr2, int *arr3, ...) {
 #pragma HLS interface M_AXI port=arr0 bundle=hbm0 depth=0x40000000
 #pragma HLS interface M_AXI port=arr1 bundle=hbm1 depth=0x40000000
 #pragma HLS interface M_AXI port=arr2 bundle=hbm2 depth=0x40000000
 #pragma HLS interface M_AXI port=arr3 bundle=hbm3 depth=0x40000000

The following command defines aliasing for the specified array pointers, and defines the
distance between them:

set_directive_alias "top" arr0,arr1,arr2,arr3 -distance 10000000

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 457Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=457

Alternatively, the following command specifies the offset between pointers, to accomplish the
same effect:

set_directive_alias top arr0,arr1,arr2,arr3 -offset
00000000,10000000,20000000,30000000

See Also

• pragma HLS alias

• set_directive_interface

set_directive_allocation
Description

Specifies instance restrictions for resource allocation.

The ALLOCATION pragma or directive can limit the number of RTL instances and hardware
resources used to implement specific functions, loops, or operations. For example, if the C/C++
source has four instances of a function foo_sub, the set_directive_allocation
command can ensure that there is only one instance of foo_sub in the final RTL. All four
instances are implemented using the same RTL block. This reduces resources used by the
function, but negatively impacts performance by sharing those resources.

The operations in the C/C++ code, such as additions, multiplications, array reads, and writes, can
also be limited by the set_directive_allocation command.

Syntax

set_directive_allocation [OPTIONS] <location> <instances>

• <location> is the location string in the format function[/label].

• <instances> is a function or operator.

The function can be any function in the original C/C++ code that has not been either inlined
by the set_directive_inline command or inlined automatically by Vitis HLS.

For a complete list of operations that can be limited using the ALLOCATION pragma, refer to
the config_op command.

Options

• -limit <integer>:

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 458Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=458

Sets a maximum limit on the number of instances (of the type defined by the -type option) to
be used in the RTL design.

• -type [function|operation]: The instance type can be function (default) or
operation.

Examples

Given a design foo_top with multiple instances of function foo, limits the number of instances
of foo in the RTL to 2.

set_directive_allocation -limit 2 -type function foo_top foo

Limits the number of multipliers used in the implementation of My_func to 1. This limit does not
apply to any multipliers that might reside in sub-functions of My_func. To limit the multipliers
used in the implementation of any sub-functions, specify an allocation directive on the sub-
functions or inline the sub-function into function My_func.

set_directive_allocation -limit 1 -type operation My_func mul

See Also

• pragma HLS allocation

• set_directive_inline

set_directive_array_partition
Description

IMPORTANT! Array_Partition  and Array_Reshape  pragmas and directives are not supported
for M_AXI  Interfaces on the top-level function. Instead you can use the hls::vector  data types as
described in Vector Data Types.

Partitions an array into smaller arrays or individual elements.

This partitioning:

• Results in RTL with multiple small memories or multiple registers instead of one large memory.

• Effectively increases the amount of read and write ports for the storage.

• Potentially improves the throughput of the design.

• Requires more memory instances or registers.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 459Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=459

Syntax

set_directive_array_partition [OPTIONS] <location> <array>

• <location> is the location (in the format function[/label]) which contains the array
variable.

• <array> is the array variable to be partitioned.

Options

• -dim <integer>:

Note: Relevant for multi-dimensional arrays only.

Specifies which dimension of the array is to be partitioned.

• If a value of 0 is used, all dimensions are partitioned with the specified options.

• Any other value partitions only that dimension. For example, if a value 1 is used, only the
first dimension is partitioned.

• -factor <integer>:

Note: Relevant for type block or cyclic partitioning only.

Specifies the number of smaller arrays that are to be created.

• -type (block|cyclic|complete):

• block partitioning creates smaller arrays from consecutive blocks of the original array.
This effectively splits the array into N equal blocks where N is the integer defined by the -
factor option.

• cyclic partitioning creates smaller arrays by interleaving elements from the original array.
For example, if -factor 3 is used:

○ Element 0 is assigned to the first new array.

○ Element 1 is assigned to the second new array.

○ Element 2 is assigned to the third new array.

○ Element 3 is assigned to the first new array again.

• complete partitioning decomposes the array into individual elements. For a one-
dimensional array, this corresponds to resolving a memory into individual registers. For
multi-dimensional arrays, specify the partitioning of each dimension, or use -dim 0 to
partition all dimensions.

The default is complete.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 460Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=460

Example 1

Partitions array AB[13] in function func into four arrays. Because four is not an integer factor of
13:

• Three arrays have three elements.

• One array has four elements (AB[9:12]).

set_directive_array_partition -type block -factor 4 func AB

Partitions array AB[6][4] in function func into two arrays, each of dimension [6][2].

set_directive_array_partition -type block -factor 2 -dim 2 func AB

Partitions all dimensions of AB[4][10][6] in function func into individual elements.

set_directive_array_partition -type complete -dim 0 func AB

Example 2

Partitioned arrays can be addressed in your code by the new structure of the array, as shown in
the following code example;

struct SS
{
 int x[N];
 int y[N];
};

int top(SS *a, int b[4][6], SS &c) {...}

set_directive_array_partition top b -type complete -dim 1
set_directive_interface -mode ap_memory top b[0]
set_directive_interface -mode ap_memory top b[1]
set_directive_interface -mode ap_memory top b[2]
set_directive_interface -mode ap_memory top b[3]

See Also

• pragma HLS array_partition

• set_directive_array_reshape

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 461Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=461

set_directive_array_reshape
Description

IMPORTANT! Array_Partition  and Array_Reshape  pragmas and directives are not supported
for M_AXI  Interfaces on the top-level function. Instead you can use the hls::vector  data types as
described in Vector Data Types.

Combines array partitioning with vertical array mapping to create a single new array with fewer
elements but wider words.

The set_directive_array_reshape command has the following features:

• Splits the array into multiple arrays (like set_directive_array_partition).

• Automatically recombine the arrays vertically to create a new array with wider words.

Syntax

set_directive_array_reshape [OPTIONS] <location> <array>

• <location> is the location (in the format function[/label]) that contains the array
variable.

• <array> is the array variable to be reshaped.

Options

• -dim <integer>:

Note: Relevant for multi-dimensional arrays only.

Specifies which dimension of the array is to be reshaped.

• If the value is set to 0, all dimensions are partitioned with the specified options.

• Any other value partitions only that dimension. The default is 1.

• -factor <integer>:

Note: Relevant for type block or cyclic reshaping only.

Specifies the number of temporary smaller arrays to be created.

• -object:

Note: Relevant for container arrays only.

Applies reshape on the objects within the container. If the option is specified, all dimensions
of the objects will be reshaped, but all dimensions of the container will be kept.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 462Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=462

• -type (block|cyclic|complete):

• block reshaping creates smaller arrays from consecutive blocks of the original array. This
effectively splits the array into N equal blocks where N is the integer defined by the -
factor option and then combines the N blocks into a single array with word-width*N.
The default is complete.

• cyclic reshaping creates smaller arrays by interleaving elements from the original array.
For example, if -factor 3 is used, element 0 is assigned to the first new array, element 1
to the second new array, element 2 is assigned to the third new array, and then element 3
is assigned to the first new array again. The final array is a vertical concatenation (word
concatenation, to create longer words) of the new arrays into a single array.

• complete reshaping decomposes the array into temporary individual elements and then
recombines them into an array with a wider word. For a one-dimension array this is
equivalent to creating a very-wide register (if the original array was N elements of M bits,
the result is a register with N*M bits). This is the default.

Example 1

Reshapes 8-bit array AB[17] in function func into a new 32-bit array with five elements.

Because four is not an integer factor of 17:

• Index 17 of the array, AB[17], is in the lower eight bits of the reshaped fifth element.

• The upper eight bits of the fifth element are unused.

set_directive_array_reshape -type block -factor 4 func AB

Partitions array AB[6][4] in function func, into a new array of dimension [6][2], in which
dimension 2 is twice the width.

set_directive_array_reshape -type block -factor 2 -dim 2 func AB

Reshapes 8-bit array AB[4][2][2] in function func into a new single element array (a register),
4*2*2*8 (= 128)-bits wide.

set_directive_array_reshape -type complete -dim 0 func AB

Example 2

Partitioned arrays can be addressed in your code by the new structure of the array, as shown in
the following code example;

struct SS
{
 int x[N];
 int y[N];
};

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 463Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=463

int top(SS *a, int b[4][6], SS &c) {...}

set_directive_array_reshape top b -type complete -dim 0
set_directive_interface -mode ap_memory top b[0]

See Also

• pragma HLS array_reshape

• set_directive_array_partition

set_directive_bind_op
Description

Vitis HLS implements the operations in the code using specific implementations. The
set_directive_bind_op command specifies that for a specified variable, an operation (mul,
add, sub) should be mapped to a specific device resource for implementation (impl) in the RTL.
If this command is not specified, Vitis HLS automatically determines the resource to use.

For example, to indicate that a specific multiplier operation (mul) is implemented in the device
fabric rather than a DSP, you can use the set_directive_bind_op command.

You can also specify the latency of the operation using the -latency option.

IMPORTANT! To use the -latency  option, the operation must have an available multi-stage
implementation. The HLS tool provides a multi-stage implementation for all basic arithmetic operations
(add, subtract, multiply, and divide), and all floating-point operations.

Syntax

set_directive_bind_op [OPTIONS] <location> <variable>

• <location> is the location (in the format function[/label]) which contains the
variable.

• <variable> is the variable to be assigned. The variable in this case is one that is assigned
the result of the operation that is the target of this directive.

Options

• -op <value>: Defines the operation to bind to a specific implementation resource.
Supported functional operations include: mul, add, sub

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 464Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=464

Supported floating point operations include: fadd, fsub, fdiv, fexp, flog, fmul, frsqrt,
frecip, fsqrt, dadd, dsub, ddiv, dexp, dlog, dmul, drsqrt, drecip, dsqrt, hadd,
hsub, hdiv, hmul, and hsqrt

TIP: Floating-point operations include single precision (f), double-precision (d), and half-precision (h).

• -impl <value>: Defines the implementation to use for the specified operation.Supported
implementations for functional operations include fabric and dsp.Supported
implementations for floating point operations include: fabric, meddsp, fulldsp, maxdsp,
and primitivedsp.

Note: primitivedsp is only available on Versal devices.

• -latency <int>: Defines the default latency for the implementation of the operation. The
valid latency varies according to the specified op and impl. The default is -1, which lets Vitis
HLS choose the latency.The tables below reflect the supported combinations of operation,
implementation, and latency.

Table 26: Supported Combinations of Functional Operations, Implementation, and
Latency

Operation Implementation Min Latency Max Latency
add fabric 0 4

add dsp 0 4

mul fabric 0 4

mul dsp 0 4

sub fabric 0 4

sub dsp 0 0

TIP: Comparison operators, such as dcmp , are implemented in LUTs and cannot be implemented outside
of the fabric, or mapped to DSPs, and so are not configurable with the config_op  or bind_op 
commands.

Table 27: Supported Combinations of Floating Point Operations, Implementation, and
Latency

Operation Implementation Min Latency Max Latency
fadd fabric 0 13

fadd fulldsp 0 12

fadd primitivedsp 0 3

fsub fabric 0 13

fsub fulldsp 0 12

fsub primitivedsp 0 3

fdiv fabric 0 29

fexp fabric 0 24

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 465Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=465

Table 27: Supported Combinations of Floating Point Operations, Implementation, and
Latency (cont'd)

Operation Implementation Min Latency Max Latency
fexp meddsp 0 21

fexp fulldsp 0 30

flog fabric 0 24

flog meddsp 0 23

flog fulldsp 0 29

fmul fabric 0 9

fmul meddsp 0 9

fmul fulldsp 0 9

fmul maxdsp 0 7

fmul primitivedsp 0 4

fsqrt fabric 0 29

frsqrt fabric 0 38

frsqrt fulldsp 0 33

frecip fabric 0 37

frecip fulldsp 0 30

dadd fabric 0 13

dadd fulldsp 0 15

dsub fabric 0 13

dsub fulldsp 0 15

ddiv fabric 0 58

dexp fabric 0 40

dexp meddsp 0 45

dexp fulldsp 0 57

dlog fabric 0 38

dlog meddsp 0 49

dlog fulldsp 0 65

dmul fabric 0 10

dmul meddsp 0 13

dmul fulldsp 0 13

dmul maxdsp 0 14

dsqrt fabric 0 58

drsqrt fulldsp 0 111

drecip fulldsp 0 36

hadd fabric 0 9

hadd meddsp 0 12

hadd fulldsp 0 12

hsub fabric 0 9

hsub meddsp 0 12

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 466Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=466

Table 27: Supported Combinations of Floating Point Operations, Implementation, and
Latency (cont'd)

Operation Implementation Min Latency Max Latency
hsub fulldsp 0 12

hdiv fabric 0 16

hmul fabric 0 7

hmul fulldsp 0 7

hmul maxdsp 0 9

hsqrt fabric 0 16

Examples

In the following example, a two-stage pipelined multiplier using fabric logic is specified to
implement the multiplication for variable <c> of the function foo.

int foo (int a, int b) {
int c, d;
c = a*b;
d = a*c;
return d;
}

And the set_directive command is as follows:

set_directive_bind_op -op mul -impl fabric -latency 2 "foo" c

TIP: The HLS tool selects the core to use for variable <d>.

See Also

• pragma HLS bind_op

• set_directive_bind_storage

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 467Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=467

set_directive_bind_storage
Description

The set_directive_bind_storage command assigns a variable (array, or function
argument) in the code to a specific memory type (type) in the RTL. If the command is not
specified, the Vitis HLS tool determines the memory type to assign. The HLS tool implements the
memory using specified implementations (impl) in the hardware. For example, you can use the
set_directive_bind_storage command to specify which type of memory, and which
implementation to use for an array variable. Also, this allows you to control whether the array is
implemented as a single or a dual-port RAM.

IMPORTANT! This feature is important for arrays on the top-level function interface, because the memory
type associated with the array determines the number and type of ports needed in the RTL, as discussed in
Arrays on the Interface. However, for variables assigned to top-level function arguments you must assign
the memory type and implementation using the -storage_type  and -storage_impl  options of the
INTERFACE pragma or directive.

You can use the -latency option to specify the latency of the implementation. For block RAMs
on the interface, the -latency option allows you to model off-chip, non-standard SRAMs at the
interface, for example supporting an SRAM with a latency of 2 or 3. For internal operations, the -
latency option allows the operation to be implemented using more pipelined stages. These
additional pipeline stages can help resolve timing issues during RTL synthesis.

IMPORTANT! To use the -latency  option, the operation must have an available multi-stage
implementation. The HLS tool provides a multi-stage implementation for all block RAMs.

For best results, Xilinx recommends that you use -std=c99 for C and -fno-builtin for C and
C++. To specify the C compile options, such as -std=c99, use the Tcl command add_files
with the -cflags option. Alternatively, select the Edit CFLAGs button in the Project Settings
dialog box as described in Creating a New Vitis HLS Project.

Syntax

set_directive_bind_storage [OPTIONS] <location> <variable>

• <location> is the location (in the format function[/label]) which contains the
variable.

• <variable> is the variable to be assigned.

TIP: If the variable is an argument of a top-level function, then use the -storage_type  and -
storage_impl  options of the INTERFACE pragma or directive.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 468Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=468

Options

• -type: Defines the type of memory to bind to the specified variable. Supported types
include: fifo, ram_1p, ram_1wnr, ram_2p, ram_s2p, ram_t2p, rom_1p, rom_2p, and
rom_np.

Table 28: Storage Types

Type Description
FIFO A FIFO. Vitis HLS determines how to implement this in the RTL, unless the -impl

option is specified.

RAM_1P A single-port RAM. Vitis HLS determines how to implement this in the RTL, unless
the -impl option is specified.

RAM_1WNR A RAM with 1 write port and N read ports, using N banks internally.

RAM_2P A dual-port RAM that allows read operations on one port and both read and write
operations on the other port.

RAM_S2P A dual-port RAM that allows read operations on one port and write operations on
the other port.

RAM_T2P A true dual-port RAM with support for both read and write on both ports.

ROM_1P A single-port ROM. Vitis HLS determines how to implement this in the RTL, unless
the -impl option is specified.

ROM_2P A dual-port ROM.

ROM_NP A multi-port ROM.

• -impl <value>: Defines the implementation for the specified memory type. Supported
implementations include: bram, bram_ecc, lutram, uram, uram_ecc, srl, memory, and
auto as described below.

Table 29: Supported Implementation

Name Description
MEMORY Generic memory for FIFO, lets the Vivado tool choose the implementation.

URAM UltraRAM resource

URAM_ECC UltraRAM with ECC

SRL Shift Register Logic resource

LUTRAM Distributed RAM resource

BRAM Block RAM resource

BRAM_ECC Block RAM with ECC

AUTO Vitis HLS automatically determine the implementation of the variable.

Table 30: Supported Implementations by FIFO/RAM/ROM

Type Command/Pragma Scope Supported
Implementations

FIFO bind_storage1 local AUTO, BRAM, LUTRAM,
URAM, MEMORY, SRL

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 469Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=469

Table 30: Supported Implementations by FIFO/RAM/ROM (cont'd)

Type Command/Pragma Scope Supported
Implementations

FIFO config_storage global AUTO, BRAM, LUTRAM,
URAM, MEMORY, SRL

RAM* | ROM* bind_storage local AUTO BRAM, BRAM_ECC,
LUTRAM, URAM, URAM_ECC

RAM* | ROM* config_storage2 global N/A

RAM_1P set_directive_interfa
ce s_axilite -
storage_impl

local AUTO, BRAM, URAM

config_interface -
m_axi_buffer_impl

global AUTO, BRAM, LUTRAM,
URAM

Notes:
1. When no implementation is specified the directive uses AUTOSRL behavior as a default. However, this value

cannot be specified.
2. config_storage only supports FIFO types.

• -latency <int>: Defines the default latency for the binding of the storage type to the
implementation. The valid latency varies according to the specified type and impl. The
default is -1, which lets Vitis HLS choose the latency.

Table 31: Supported Combinations of Memory Type, Implementation, and Latency

Type Implementation Min Latency Max Latency
FIFO BRAM 0 0

FIFO LUTRAM 0 0

FIFO MEMORY 0 0

FIFO SRL 0 0

FIFO URAM 0 0

RAM_1P AUTO 1 3

RAM_1P BRAM 1 3

RAM_1P LUTRAM 1 3

RAM_1P URAM 1 3

RAM_1WNR AUTO 1 3

RAM_1WNR BRAM 1 3

RAM_1WNR LUTRAM 1 3

RAM_1WNR URAM 1 3

RAM_2P AUTO 1 3

RAM_2P BRAM 1 3

RAM_2P LUTRAM 1 3

RAM_2P URAM 1 3

RAM_S2P BRAM 1 3

RAM_S2P BRAM_ECC 1 3

RAM_S2P LUTRAM 1 3

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 470Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=470

Table 31: Supported Combinations of Memory Type, Implementation, and Latency
(cont'd)

Type Implementation Min Latency Max Latency
RAM_S2P URAM 1 3

RAM_S2P URAM_ECC 1 3

RAM_T2P BRAM 1 3

RAM_T2P URAM 1 3

ROM_1P AUTO 1 3

ROM_1P BRAM 1 3

ROM_1P LUTRAM 1 3

ROM_2P AUTO 1 3

ROM_2P BRAM 1 3

ROM_2P LUTRAM 1 3

ROM_NP BRAM 1 3

ROM_NP LUTRAM 1 3

IMPORTANT! Any combinations of memory type and implementation that are not listed in the prior table
are not supported by set_directive_bind_storage.

Examples

In the following example, the coeffs[128] variable is an argument to the function func1. The
directive specifies that coeffs uses a single port RAM implemented on a BRAM core from the
library.

set_directive_bind_storage -impl bram "func1" coeffs RAM_1P

TIP: The ports created in the RTL to access the values of coeffs  are defined in the RAM_1P core.

See Also

• pragma HLS bind_storage

set_directive_dataflow
Description

Specifies that dataflow optimization be performed on the functions or loops, improving the
concurrency of the RTL implementation.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 471Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=471

All operations are performed sequentially in a C/C++ description. In the absence of any
directives that limit resources (such as set_directive_allocation), Vitis HLS seeks to
minimize latency and improve concurrency. Data dependencies can limit this. For example,
functions or loops that access arrays must finish all read/write accesses to the arrays before they
complete. This prevents the next function or loop that consumes the data from starting
operation.

It is possible for the operations in a function or loop to start operation before the previous
function or loop completes all its operations. When the DATAFLOW optimization is specified,
the HLS tool analyzes the dataflow between sequential functions or loops and creates channels
(based on ping-pong RAMs or FIFOs) that allow consumer functions or loops to start operation
before the producer functions or loops have completed. This allows functions or loops to operate
in parallel, which decreases latency and improves the throughput of the RTL.

TIP: The config_dataflow  command specifies the default memory channel and FIFO depth used in
DATAFLOW optimization.

If no initiation interval (number of cycles between the start of one function or loop and the next)
is specified, Vitis HLS attempts to minimize the initiation interval and start operation as soon as
data is available.

For the DATAFLOW optimization to work, the data must flow through the design from one task
to the next. The following coding styles prevent the HLS tool from performing the DATAFLOW
optimization. Refer to Limitations of Control-Driven Task-Level Parallelism for additional details.

• Single-producer-consumer violations

• Feedback between tasks

• Conditional execution of tasks

• Loops with multiple exit conditions

IMPORTANT! If any of these coding styles are present, the HLS tool issues a message and does not
perform DATAFLOW optimization.

Finally, the DATAFLOW optimization has no hierarchical implementation. If a sub-function or
loop contains additional tasks that might benefit from the DATAFLOW optimization, you must
apply the optimization to the loop, the sub-function, or inline the sub-function.

Syntax

set_directive_dataflow <location> -disable_start_propagation

• <location> is the location (in the format function[/label]) at which dataflow
optimization is to be performed.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 472Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=472

• -disable_start_propagation disables the creation of a start FIFO used to propagate a
start token to an internal process. Such FIFOs can sometimes be a bottleneck for
performance.

Examples

Specifies dataflow optimization within function foo.

set_directive_dataflow foo

See Also

• pragma HLS dataflow

• set_directive_allocation

• config_dataflow

set_directive_dependence
Description

Vitis HLS detects dependencies within loops: dependencies within the same iteration of a loop
are loop-independent dependencies, and dependencies between different iterations of a loop are
loop-carried dependencies.

These dependencies are impacted when operations can be scheduled, especially during function
and loop pipelining.

• Loop-independent dependence: The same element is accessed in a single loop iteration.

for (i=0;i<N;i++) {
 A[i]=x;
 y=A[i];
}

• Loop-carried dependence: The same element is accessed from a different loop iteration.

for (i=0;i<N;i++) {
 A[i]=A[i-1]*2;
}

Under certain circumstances, such as variable dependent array indexing or when an external
requirement needs to be enforced (for example, two inputs are never the same index), the
dependence analysis might be too conservative and fail to filter out false dependencies. The
set_directive_dependence command allows you to explicitly define the dependencies and
eliminate a false dependence.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 473Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=473

IMPORTANT! Specifying a false dependency when the dependency is not false can result in incorrect
hardware. Ensure dependencies are correct (true or false) before specifying them.

Syntax

set_directive_dependence -dependent <arg> [OPTIONS] <location>

• -dependent (true | false): This argument should be specified to indicate whether a
dependence is true and needs to be enforced, or is false and should be removed. However,
when not specified, the tool will return a warning that the value was not specified and will
assume a value of false.

• <location>: The location in the code, specified as function[/label], where the
dependence is defined.

Options

• -class (array | pointer): Specifies a class of variables in which the dependence
needs clarification. This is mutually exclusive with the -variable option.

• -dependent (true | false): Specify if a dependence needs to be enforced (true) or
removed (false).

• -direction (RAW | WAR | WAW):

Note: Relevant only for loop-carried dependencies.

Specifies the direction for a dependence:

• RAW (Read-After-Write - true dependence): The write instruction uses a value used by the
read instruction.

• WAR (Write-After-Read - anti dependence): The read instruction gets a value that is
overwritten by the write instruction.

• WAW (Write-After-Write - output dependence): Two write instructions write to the same
location, in a certain order.

• -distance <integer>:

Note: Relevant only for loop-carried dependencies where -dependent is set to true.

Specifies the inter-iteration distance for array access.

• -type (intra | inter): Specifies whether the dependence is:

• Within the same loop iteration (intra), or

• Between different loop iterations (inter) (default).

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 474Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=474

• -variable <variable>: Defines a specific variable to apply the dependence directive.
Mutually exclusive with the -class option.

IMPORTANT! You cannot specify a dependence  for function arguments that are bundled with
other arguments in an m_axi  interface. This is the default configuration for m_axi interfaces on the
function. You also cannot specify a dependence for an element of a struct, unless the struct has been
disaggregated.

Examples

Removes the dependence between Var1 in the same iterations of loop_1 in function func.

set_directive_dependence -variable Var1 -type intra \
-dependent false func/loop_1

The dependence on all arrays in loop_2 of function func informs Vitis HLS that all reads must
happen after writes in the same loop iteration.

set_directive_dependence -class array -type intra \
-dependent true -direction RAW func/loop_2

See Also

• pragma HLS dependence

• set_directive_disaggregate

• set_directive_pipeline

set_directive_disaggregate
Description

The set_directive_disaggregate command lets you deconstruct a struct variable into
its individual elements. The number and type of elements created are determined by the
contents of the struct itself.

IMPORTANT! Structs used as arguments to the top-level function are aggregated by default, but can be
disaggregated with this directive or pragma. Refer to AXI4-Stream Interfaces for important information
about disaggregating structs associated with streams.

Syntax

set_directive_disaggregate <location> <variable>

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 475Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=475

• <location> is the location (in the format function[/label]) where the variable to
disaggregate is found.

• <variable> specifies the struct variable name.

Options

This command has no options.

Example 1

The following example shows the struct variable a in function top will be disaggregated:

set_directive_disaggregate top a

Example 2

Disaggregated structs can be addressed in your code by the using standard C/C++ coding style
as shown below. Notice the different methods for accessing the pointer element (a) versus the
reference element (c);

struct SS
{
 int x[N];
 int y[N];
};

int top(SS *a, int b[4][6], SS &c) {

set_directive_disaggregate top a
set_directive_interface -mode s_axilite top a->x
set_directive_interface -mode s_axilite top a->y

set_directive_disaggregate top c
set_directive_interface -mode ap_memory top c.x
set_directive_interface -mode ap_memory top c.y

Example 3

The following example shows the Dot struct containing the RGB struct as an element. If you
apply set_directive_disaggregate to variable Arr, then only the top-level Dot struct is
disaggregated.

struct Pixel {
char R;
char G;
char B;
};

struct Dot {
Pixel RGB;
unsigned Size;
};

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 476Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=476

#define N 1086
void DUT(Dot Arr[N]) {
...
}

set_directive_disaggregate DUT Arr

If you want to disaggregate the whole struct, Dot and RGB, then you can assign the
set_directive_disaggregate as shown below.

void DUT(Dot Arr[N]) {
#pragma HLS disaggregate variable=Arr->RGB
...
}

set_directive_disaggregate DUT Arr->RGB

The results in this case will be:

void DUT(char Arr_RGB_R[N], char Arr_RGB_G[N], char Arr_RGB_B[N], unsigned
Arr_Size[N]) {
...
}

See Also

• pragma HLS disaggregate

• set_directive_aggregate

set_directive_expression_balance
Description

Sometimes C/C++ code is written with a sequence of operations, resulting in a long chain of
operations in RTL. With a small clock period, this can increase the latency in the design. By
default, the Vitis HLS tool rearranges the operations using associative and commutative
properties. As described in Optimizing Logic Expressions, this rearrangement creates a balanced
tree that can shorten the chain, potentially reducing latency in the design at the cost of extra
hardware.

Expression balancing rearranges operators to construct a balanced tree and reduce latency.

• For integer operations expression balancing is on by default but may be disabled.

• For floating-point operations, expression balancing is off by default but may be enabled.

The set_directive_expression_balance command allows this expression balancing to
be turned off, or on, within a specified scope.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 477Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=477

Syntax

set_directive_expression_balance [OPTIONS] <location>

• <location> is the location (in the format function[/label]) where expression balancing
should be disabled, or enabled.

Options

• -off: Turns off expression balancing at the specified location. Specifying the
set_directive_expression_balance command enables expression balancing in the
specified scope. Adding the -off option disables it.

Examples

Disables expression balancing within function My_Func.

set_directive_expression_balance -off My_Func

Explicitly enables expression balancing in function My_Func2.

set_directive_expression_balance My_Func2

See Also

• pragma HLS expression_balance

set_directive_function_instantiate
Description

By default:

• Functions remain as separate hierarchy blocks in the RTL, or are decomposed (inlined) into
higher-level functions.

• All instances of a function, at the same level of hierarchy, uses the same RTL implementation
(block).

The set_directive_function_instantiate command is used to create a unique RTL
implementation for each instance of a function, allowing each instance to be optimized around a
specific argument or variable.

By default, the following code results in a single RTL implementation of function func_sub for
all three instances, or if func_sub is a small function it is inlined into function func.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 478Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=478

TIP: By default, the Vitis HLS tool automatically inlines small functions. This is true even for function
instantiations. Using the set_directive_inline off  option can be used to prevent this automatic
inlining.

char func_sub(char inval, char incr)
{
 return inval + incr;
}
void func(char inval1, char inval2, char inval3,
 char *outval1, char *outval2, char * outval3)
{
 *outval1 = func_sub(inval1, 1);
 *outval2 = func_sub(inval2, 2);
 *outval3 = func_sub(inval3, 3);
}

Using the directive as shown in the example section below results in three versions of function
func_sub, each independently optimized for variable incr.

Syntax

set_directive_function_instantiate <location> <variable>

• <location> is the location (in the format function[/region label]) where the
instances of a function are to be made unique.

• <variable> specifies the function argument to be specified as a constant in the various
function instantiations.

Options

This command has no options.

Examples

For the example code shown above, the following Tcl (or pragma placed in function func_sub)
allows each instance of function func_sub to be independently optimized with respect to input
incr.

set_directive_inline -off func_sub
set_directive_function_instantiate func_sub incr

See Also

• pragma HLS function_instantiate

• set_directive_allocation

• set_directive_inline

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 479Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=479

set_directive_inline
Description

Removes a function as a separate entity in the RTL hierarchy. After inlining, the function is
dissolved into the calling function, and no longer appears as a separate level of hierarchy.

IMPORTANT! Inlining a child function also dissolves any pragmas or directives applied to that function. In
Vitis HLS, any directives applied in the child context are ignored.

In some cases, inlining a function allows operations within the function to be shared and
optimized more effectively with the calling function. However, an inlined function cannot be
shared or reused, so if the parent function calls the inlined function multiple times, this can
increase the area and resource utilization.

By default, inlining is only performed on the next level of function hierarchy.

Syntax

set_directive_inline [OPTIONS] <location>

• <location> is the location (in the format function[/label]) where inlining is to be
performed.

Options

• -off: By default, Vitis HLS performs inlining of smaller functions in the code. Using the -off
option disables inlining for the specified function.

• -recursive: By default, only one level of function inlining is performed. The functions
within the specified function are not inlined. The -recursive option inlines all functions
recursively within the specified function hierarchy.

Examples

The following example inlines function func_sub1, but no sub-functions called by func_sub1.

set_directive_inline func_sub1

This example inlines function func_sub1, recursively down the hierarchy, except function
func_sub2:

set_directive_inline -recursive func_sub1
set_directive_inline -off func_sub2

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 480Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=480

See Also

• pragma HLS inline

• set_directive_allocation

set_directive_interface
Description

Specifies how RTL ports are created from the function description during interface synthesis. For
more information, see Defining Interfaces. The ports in the RTL implementation are derived from:

• Any function-level protocol that is specified.

• Function arguments and return.

TIP: Global variables required on the interface must be explicitly defined as an argument of the top-level
function as described in Global Variables. If a global variable is accessed, but all read and write operations
are local to the design, the resource is created in the design. There is no need for an I/O port in the RTL.

Function-level handshakes:

• Control when the function starts operation.

• Indicate when function operation:

○ Ends

○ Is idle

○ Is ready for new inputs

The implementation of a function-level protocol:

• Is controlled by modes ap_ctrl_chain, ap_ctrl_hs, or ap_ctrl_none.

• Requires only the top-level function name.

Each function argument can be specified to have its own I/O protocol (such as valid handshake
or acknowledge handshake).

TIP: The Vitis HLS tool automatically determines the I/O protocol used by any sub-functions. You cannot
specify the INTERFACE pragma or directive for sub-functions.

Syntax

set_directive_interface [OPTIONS] <location> <port>

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 481Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=481

• <location> is the location (in the format function[/label]) where the function
interface or registered output is to be specified.

• <port> is the parameter (function argument) for which the interface has to be synthesized.
The port name is not required when block control modes are specified: ap_ctrl_chain,
ap_ctrl_hs, or ap_ctrl_none.

Options

TIP: Many of the options specified below have global values that are defined in the config_interface
command. Set local values for the interface defined here to override the global values.

• -bundle <string>: By default, the HLS tool groups or bundles function arguments with
compatible options into interface ports in the RTL code. All AXI4-Lite (s_axilite) interfaces
are bundled into a single AXI4-Lite port whenever possible. Similarly, all function arguments
specified as an AXI4 (m_axi) interface are bundled into a single AXI4 port by default. All
interface ports with compatible options, such as mode, offset, and bundle, are grouped
into a single interface port. The port name is derived automatically from a combination of the
mode and bundle, or is named as specified by -name.

IMPORTANT! When specifying the bundle  name you should use all lower-case characters.

• -clock <string>: By default, the AXI4-Lite interface clock is the same clock as the system
clock. This option is used to set specify a separate clock for an AXI4-Lite interface. If the -
bundle option is used to group multiple top-level function arguments into a single AXI4-Lite
interface, the clock option need only be specified on one of bundle members.

• -depth <int>: Specifies the maximum number of samples for the test bench to process.
This setting indicates the maximum size of the FIFO needed in the verification adapter that
the HLS tool creates for RTL co-simulation.

TIP: While depth  is usually an option, it is required for m_axi  interfaces and determines the amount
of resources allocated for the adapter as explained in AXI4 Master Interface.

• -latency <value>: This option can be used on ap_memory and M_AXI interfaces.

• In an ap_memory interface, the interface option specifies the read latency of the RAM
resource driving the interface. By default, a read operation of 1 clock cycle is used. This
option allows an external RAM with more than 1 clock cycle of read latency to be modeled.

• In an M_AXI interface, this option specifies the expected latency of the AXI4 interface,
allowing the design to initiate a bus request <value> number of cycles (latency) before the
read or write is expected. If this figure it too low, the design will be ready too soon and may
stall waiting for the bus. If this figure is too high, bus access may be idle waiting on the
design to start the access.

• -max_read_burst_length <int>: For use with the M_AXI interface, this option specifies
the maximum number of data values read during a burst transfer.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 482Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=482

• -max_widen_bitwidth <int>: Specifies the maximum bit width available for the
interface when automatically widening the interface. This overrides the global value specified
by the config_interface -m_axi_max_bitwidth command.

• -max_write_burst_length <int>: For use with the M_AXI interface, this option
specifies the maximum number of data values written during a burst transfer.

• -mode (ap_none|ap_vld|ap_ack|ap_hs|ap_ovld|ap_fifo|ap_memory|bram|
axis|s_axilite|m_axi|ap_ctrl_none|ap_ctrl_hs|ap_ctrl_chain|
ap_stable): Following is a summary of how Vitis HLS implements the -mode options.

• ap_none: No protocol. The interface is a data port.

• ap_vld: Implements the data port with an associated valid port to indicate when the
data is valid for reading or writing.

• ap_ack: Implements the data port with an associated acknowledge port to acknowledge
that the data was read or written.

• ap_hs: Implements the data port with associated valid and acknowledge ports to
provide a two-way handshake to indicate when the data is valid for reading and writing and
to acknowledge that the data was read or written.

• ap_ovld: Implements the output data port with an associated valid port to indicate
when the data is valid for reading or writing.

Note: Vitis HLS implements the input argument or the input half of any read/write arguments with
mode ap_none.

• ap_fifo: Implements the port with a standard FIFO interface using data input and output
ports with associated active-Low FIFO empty and full ports.

Note: You can only use this interface on read arguments or write arguments. The ap_fifo mode
does not support bidirectional read/write arguments.

• ap_memory: Implements array arguments as a standard RAM interface. If you use the RTL
design in Vivado IP integrator, the memory interface appears as discrete ports.

• bram: Implements array arguments as a standard RAM interface. If you use the RTL design
in Vitis IP integrator, the memory interface appears as a single port.

• axis: Implements all ports as an AXI4-Stream interface.

• s_axilite: Implements all ports as an AXI4-Lite interface. Vitis HLS produces an
associated set of C driver files during the Export RTL process.

• m_axi: Implements all ports as an AXI4 interface. You can use the config_interface
command to specify either 32-bit (default) or 64-bit address ports and to control any
address offset.

• ap_ctrl_none: No block-level I/O protocol.

Note: Using the ap_ctrl_none mode might prevent the design from being verified using the C/C+
+/RTL co-simulation feature.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 483Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=483

• ap_ctrl_hs: Implements a set of block-level control ports to start the design operation
and to indicate when the design is idle, done, and ready for new input data.

Note: The ap_ctrl_hs mode is the default block-level I/O protocol.

• ap_ctrl_chain: Implements a set of block-level control ports to start the design
operation, continue operation, and indicate when the design is idle, done, and ready
for new input data.

• ap_stable: No protocol. The interface is a data port. Vitis HLS assumes the data port is
always stable after reset, which allows internal optimizations to remove unnecessary
registers.

• -name <string>: Specifies a name for the port which will be used in the generated RTL.

• -num_read_outstanding <int>: For use with the M_AXI interface, this option specifies
how many read requests can be made to the AXI4 bus, without a response, before the design
stalls. This implies internal storage in the design, and a FIFO of size:

num_read_outstanding*max_read_burst_length*word_size

• -num_write_outstanding <int>: For use with the M_AXI interface, this option specifies
how many write requests can be made to the AXI4 bus, without a response, before the design
stalls. This implies internal storage in the design, and a FIFO of size:

num_read_outstanding*max_read_burst_length*word_size

• -offset <string>: Controls the address offset in AXI4-Lite (s_axilite) and AXI4
memory mapped (m_axi) interfaces for the specified port.

• In an s_axilite interface, <string> specifies the address in the register map.

• In an m_axi interface this option overrides the global option specified by the
config_interface -m_axi_offset option, and <string> is specified as:

○ off: Do not generate an offset port.

○ direct: Generate a scalar input offset port.

○ slave: Generate an offset port and automatically map it to an AXI4-Lite slave interface.
This is the default offset.

• -register: Registers the signal and any associated protocol signals and instructs the signals
to persist until at least the last cycle of the function execution. This option applies to the
following scalar interfaces for the top-level function:

• s_axilite

• ap_fifo

• ap_none

• ap_stable

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 484Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=484

• ap_hs

• ap_ack

• ap_vld

• ap_ovld

• -register_mode (both|forward|reverse|off): This option applies to AXI4-Stream
interfaces, and specifies if registers are placed on the forward path (TDATA and TVALID), the
reverse path (TREADY), on both paths (TDATA, TVALID, and TREADY), or if none of the ports
signals are to be registered (off). The default is both. AXI4-Stream side-channel signals are
considered to be data signals and are registered whenever the TDATA is registered.

• -storage_impl=<impl>: For use with s_axilite only. This options defines a storage
implementation to assign to the interface. Supported implementation values include auto,
bram, and uram. The default is auto.

TIP: uram  is a synchronous memory with only a single clock for two ports. Therefore uram  cannot be
specified for an s_axilite  adapter with a second clock.

• -storage_type=<type>: For use with ap_memory and bram interfaces only. This options
defines a storage type (for example, RAM_T2P) to assign to the variable. Supported types
include: ram_1p, ram_1wnr, ram_2p, ram_s2p, ram_t2p, rom_1p, rom_2p, and rom_np.

TIP: This can also be specified using the BIND_STORAGE pragma or directive for the variable for
objects that are not defined on the interface.

Examples

Turns off function-level handshakes for function func.

set_directive_interface -mode ap_ctrl_none func

Argument InData in function func is specified to have a ap_vld interface and the input
should be registered.

set_directive_interface -mode ap_vld -register func InData

See Also

• pragma HLS interface

• set_directive_bind_storage

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 485Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=485

set_directive_latency
Description

Specifies a maximum or minimum latency value, or both, on a function, loop, or region.

Vitis HLS always aims for minimum latency. The behavior of the tool when minimum and
maximum latency values are specified is as follows:

• Latency is less than the minimum: If Vitis HLS can achieve less than the minimum specified
latency, it extends the latency to the specified value, potentially enabling increased sharing.

• Latency is greater than the minimum: The constraint is satisfied. No further optimizations are
performed.

• Latency is less than the maximum: The constraint is satisfied. No further optimizations are
performed.

• Latency is greater than the maximum: If Vitis HLS cannot schedule within the maximum limit,
it increases effort to achieve the specified constraint. If it still fails to meet the maximum
latency, it issues a warning. Vitis HLS then produces a design with the smallest achievable
latency.

TIP: You can also use the LATENCY pragma or directive to limit the efforts of the tool to find an optimum
solution. Specifying latency constraints for scopes within the code: loops, functions, or regions, reduces the
possible solutions within that scope and can improve tool runtime. Refer to Improving Synthesis Runtime
and Capacity for more information.

If the intention is to limit the total latency of all loop iterations, the latency directive should be
applied to a region that encompasses the entire loop, as in this example: set_directive
Region_All_Loop_A

Region_All_Loop_A: {
Loop_A: for (i=0; i<N; i++)
 {
 ..Loop Body...
 }
}

In this case, even if the loop is unrolled, the latency directive sets a maximum limit on all loop
operations.

If Vitis HLS cannot meet a maximum latency constraint it relaxes the latency constraint and tries
to achieve the best possible result.

If a minimum latency constraint is set and Vitis HLS can produce a design with a lower latency
than the minimum required it inserts dummy clock cycles to meet the minimum latency.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 486Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=486

Syntax

set_directive_latency [OPTIONS] <location>

• <location> is the location (function, loop or region) (in the format function[/label]) to
be constrained.

Options

• -max <integer>: Specifies the maximum latency.

• -min <integer>: Specifies the minimum latency.

Examples

Function foo is specified to have a minimum latency of 4 and a maximum latency of 8.

set_directive_latency -min=4 -max=8 foo

In function foo, loop loop_row is specified to have a maximum latency of 12. Place the pragma
in the loop body.

set_directive_latency -max=12 foo/loop_row

See Also

• pragma HLS latency

set_directive_loop_flatten
Description

Flattens nested loops into a single loop hierarchy.

In the RTL implementation, it costs a clock cycle to move between loops in the loop hierarchy.
Flattening nested loops allows them to be optimized as a single loop. This saves clock cycles,
potentially allowing for greater optimization of the loop body logic.

RECOMMENDED: Apply this directive to the inner-most loop in the loop hierarchy. Only perfect and
semi-perfect loops can be flattened in this manner.

• Perfect loop nests

○ Only the innermost loop has loop body content.

○ There is no logic specified between the loop statements.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 487Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=487

○ All loop bounds are constant.

• Semi-perfect loop nests

○ Only the innermost loop has loop body content.

○ There is no logic specified between the loop statements.

○ The outermost loop bound can be a variable.

• Imperfect loop nests

When the inner loop has variables bounds (or the loop body is not exclusively inside the inner
loop), try to restructure the code, or unroll the loops in the loop body to create a perfect loop
nest.

Syntax

set_directive_loop_flatten [OPTIONS] <location>

• <location> is the location (inner-most loop), in the format function[/label].

Options

• -off: Option to prevent loop flattening from taking place, and can prevent some loops from
being flattened while all others in the specified location are flattened.

IMPORTANT! The presence of the LOOP_FLATTEN pragma or directive enables the optimization. The
addition of -off  disables it.

Examples

Flattens loop_1 in function foo and all (perfect or semi-perfect) loops above it in the loop
hierarchy, into a single loop. Place the pragma in the body of loop_1.

set_directive_loop_flatten foo/loop_1
#pragma HLS loop_flatten

Prevents loop flattening in loop_2 of function foo. Place the pragma in the body of loop_2.

set_directive_loop_flatten -off foo/loop_2
#pragma HLS loop_flatten off

See Also

• set_directive_loop_flatten

• pragma HLS loop_merge

• pragma HLS unroll

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 488Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=488

set_directive_loop_merge
Description

Merges all loops into a single loop. Merging loops:

• Reduces the number of clock cycles required in the RTL to transition between the loop-body
implementations.

• Allows the loops be implemented in parallel (if possible).

The rules for loop merging are:

• If the loop bounds are variables, they must have the same value (number of iterations).

• If loops bounds are constants, the maximum constant value is used as the bound of the
merged loop.

• Loops with both variable bound and constant bound cannot be merged.

• The code between loops to be merged cannot have side effects. Multiple execution of this
code should generate the same results.

○ a=b is allowed

○ a=a+1 is not allowed.

• Loops cannot be merged when they contain FIFO reads. Merging changes the order of the
reads. Reads from a FIFO or FIFO interface must always be in sequence.

Syntax

set_directive_loop_merge <location>

• <location> is the location (in the format function[/label]) at which the loops reside.

Options

• -force: Forces loops to be merged even when Vitis HLS issues a warning. You must assure
that the merged loop will function correctly.

Examples

Merges all consecutive loops in function foo into a single loop.

set_directive_loop_merge foo

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 489Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=489

All loops inside loop_2 of function foo (but not loop_2 itself) are merged by using the -
force option.

set_directive_loop_merge -force foo/loop_2

See Also

• pragma HLS loop_merge

• set_directive_loop_flatten

• set_directive_unroll

set_directive_loop_tripcount
Description

The loop tripcount is the total number of iterations performed by a loop. Vitis HLS reports the
total latency of each loop (the number of cycles to execute all iterations of the loop). This loop
latency is therefore a function of the tripcount (number of loop iterations).

IMPORTANT! The LOOP_TRIPCOUNT pragma or directive is for analysis only, and does not impact the
results of synthesis.

The tripcount can be a constant value. It might depend on the value of variables used in the loop
expression (for example, x<y) or control statements used inside the loop.

Vitis HLS cannot determine the tripcount in some cases. These cases include, for example, those
in which the variables used to determine the tripcount are:

• Input arguments, or

• Variables calculated by dynamic operation

In the following example, the maximum iteration of the for-loop is determined by the value of
input num_samples. The value of num_samples is not defined in the C function, but comes
into the function from the outside.

void foo (num_samples, ...) {
 int i;
 ...
 loop_1: for(i=0;i< num_samples;i++) {
 ...
 result = a + b;
 }
}

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 490Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=490

In cases where the loop latency is unknown or cannot be calculated,
set_directive_loop_tripcount allows you to specify minimum, maximum, and average
iterations for a loop. This lets the tool analyze how the loop latency contributes to the total
design latency in the reports and helps you determine appropriate optimizations for the design.

TIP: If a C assert macro is used to limit the size of a loop variable, Vitis HLS can use it to both define loop
limits for reporting and create hardware that is exactly sized to these limits.

Syntax

set_directive_loop_tripcount [OPTIONS] <location>

• <location> is the location of the loop (in the format function[/label]) at which the
tripcount is specified.

Options

• -avg <integer>: Specifies the average number of iterations.

• -max <integer>: Specifies the maximum number of iterations.

• -min <integer>: Specifies the minimum number of iterations.

Examples

loop_1 in function foo is specified to have a minimum tripcount of 12, and a maximum
tripcount of 16:

set_directive_loop_tripcount -min 12 -max 16 -avg 14 foo/loop_1

See Also

• pragma HLS loop_tripcount

set_directive_occurrence
Description

When pipelining functions or loops, the OCCURRENCE directive specifies that the code in a
pipelined function call within the pipelined function or loop is executed at a lower rate than the
surrounding function or loop. This allows the pipelined call that is executed at the lower rate to
be pipelined at a slower rate, and potentially shared within the top-level pipeline. For example:

• A loop iterates N times.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 491Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=491

• Part of the loop is protected by a conditional statement and only executes M times, where N is
an integer multiple of M.

• The code protected by the conditional is said to have an occurrence of N/M.

Identifying a region with an OCCURRENCE rate allows the functions and loops in this region to
be pipelined with an initiation interval that is slower than the enclosing function or loop.

Syntax

set_directive_occurrence [OPTIONS] <location>

• <location> specifies the block of code that contains the pipelined function call(s) with a
slower rate of execution.

Options

• -cycle <int>: Specifies the occurrence N/M where:

• N is the number of times the enclosing function or loop is executed.

• M is the number of times the conditional region is executed.

IMPORTANT! N must be an integer multiple of M.

Examples

Region Cond_Region in function foo has an occurrence of 4. It executes at a rate four times
slower than the code that encompasses it.

set_directive_occurrence -cycle 4 foo/Cond_Region

See Also

• pragma HLS occurrence

• set_directive_pipeline

set_directive_performance
Description

Note: set_directive_performance applies to loops and loop nests, and requires a known loop
tripcount to determine the performance. If your loop has a variable tripcount then you must also specify
set_directive_tripcount.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 492Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=492

The set_directive_performance lets you specify a high-level constraint (target_ti)
defining the number of clock cycles between successive starts of a loop, and lets the tool infer
lower-level UNROLL, PIPELINE, ARRAY_PARTITION, and INLINE directives needed to achieve
the desired result. The set_directive_performance does not guarantee the specified value
will be achieved, and so it is only a target.

Note: set_directive_inline is applied automatically to functions inside any pipelined loop that has
II=1 to improve throughput. If you apply the PERFORMANCE directive that infers a pipeline with II=1, it
will also trigger the auto-inline optimization. You can disable this for specific functions by using
set_directive_inline off.

The target transaction interval (target_ti) specifies a performance target for loops, where a
transaction is a complete set of loop iterations (tripcount) and the interval is the time between
when the first transaction starts and the second transaction starts.

• Target Transaction Interval (target_ti): Specifies the number of clock cycles from the first
transaction of a loop, or nested loop, and the start of the next transaction of the loop.
Specified as the cycles needed for the loop to complete all iterations and begin the next
transaction.

The transaction interval is the initiation interval (II) of the loop times the number of iterations, or
tripcount: target_ti = II * loop tripcount. Conversely, target_ti = FreqHz / Operations per
second.

For example, assuming an image processing function that processes a single frame per invocation
with a throughput goal of 60 fps, then the target throughput for the function is 60 invocations
per second. If the clock frequency is 180 MHz, then target_ti is 180M/60, or 3 million clock
cycles per function invocation.

Vitis HLS always tries to achieve the specified performance target in the design. When
set_directive_performance is specified, the tool automatically applies pragmas or
directives such as PIPELINE, UNROLL, or ARRAY_PARTITION to achieve the target_ti.

Syntax

Specify the directive for a function, or a labeled loop, or region of code.

set_directive_performance <label> -target_ti=<value>

Where:

• -target_ti=<value>: Specifies a target transaction interval defined as the number of
clock cycles for the loop to complete an iteration. The <value> can be specified as an integer,
floating point, or constant expression that is resolved by the tool as an integer.

Note: A warning will be returned if truncation occurs.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 493Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=493

Example 1

The loop labeled loop_1 is specified to have target transaction interval of 4 clock cycles:

set_directive_performance loop_1-target_ti=4

See Also

• pragma HLS performance

• set_directive_inline

set_directive_pipeline
Description

Reduces the initiation interval (II) for a function or loop by allowing the concurrent execution of
operations as described in Pipelining Loops. A pipelined function or loop can process new inputs
every N clock cycles, where N is the initiation interval (II). An II of 1 processes a new input
every clock cycle.

As a default behavior, with the PIPELINE pragma or directive Vitis HLS will generate the
minimum II for the design according to the specified clock period constraint. The emphasis will be
on meeting timing, rather than on achieving II unless the -II option is specified.

The default type of pipeline is defined by the config_compile -pipeline_style
command, but can be overridden in the PIPELINE pragma or directive.

If Vitis HLS cannot create a design with the specified II, it:

• Issues a warning.

• Creates a design with the lowest possible II.

You can then analyze this design with the warning messages to determine what steps must be
taken to create a design that satisfies the required initiation interval.

Syntax

set_directive_pipeline [OPTIONS] <location>

Where:

• <location> is the location (in the format function[/label]) to be pipelined.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 494Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=494

Options

• -II <integer>: Specifies the desired initiation interval for the pipeline. Vitis HLS tries to
meet this request. Based on data dependencies, the actual result might have a larger II.

• -off: Turns off pipeline for a specific loop or function. This can be used when
config_compile -pipeline_loops is used to globally pipeline loops.

• -rewind:

Note: Applicable only to a loop.

Optional keyword. Enables rewinding as described in Rewinding Pipelined Loops for
Performance. This enables continuous loop pipelining with no pause between one execution
of the loop ending and the next execution starting. Rewinding is effective only if there is one
single loop (or a perfect loop nest) inside the top-level function. The code segment before the
loop:

• Is considered as initialization.

• Is executed only once in the pipeline.

• Cannot contain any conditional operations (if-else).

• -style <stp | frp | flp>: Specifies the type of pipeline to use for the specified
function or loop. For more information on pipeline styles refer to Flushing Pipelines and
Pipeline Types. The types of pipelines include:

• stp: Stall pipeline. Runs only when input data is available otherwise it stalls. This is the
default setting, and is the type of pipeline used by Vitis HLS for both loop and function
pipelining. Use this when a flushable pipeline is not required. For example, when there are
no performance or deadlock issue due to stalls.

• flp: This option defines the pipeline as a flushable pipeline. This type of pipeline typically
consumes more resources and/or can have a larger II because resources cannot be shared
among pipeline iterations.

• frp: Free-running, flushable pipeline. Runs even when input data is not available. Use this
when you need better timing due to reduced pipeline control signal fanout, or when you
need improved performance to avoid deadlocks. However, this pipeline style can consume
more power as the pipeline registers are clocked even if there is no data.

IMPORTANT! This is a hint not a hard constraint. The tool checks design conditions for enabling
pipelining. Some loops might not conform to a particular style and the tool reverts to the default style
(stp) if necessary.

Examples

Function func is pipelined with the specified initiation interval.

set_directive_pipeline func II=1

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 495Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=495

See Also

• pragma HLS pipeline

• set_directive_dependence

• config_compile

set_directive_protocol
Description

This commands specifies a region of code, a protocol region, in which no clock operations will be
inserted by Vitis HLS unless explicitly specified in the code. Vitis HLS will not insert any clocks
between operations in the region, including those which read from or write to function
arguments. The order of read and writes will therefore be strictly followed in the synthesized
RTL.

A region of code can be created in the C/C++ code by enclosing the region in braces "{ }" and
naming it. The following defines a region named io_section:

io_section:{
...
lines of code
...
}

A clock operation can be explicitly specified in C code using an ap_wait() statement, and can
be specified in C++ code by using the wait() statement. The ap_wait and wait statements
have no effect on the simulation of the design.

Syntax

set_directive_protocol [OPTIONS] <location>

The <location> specifies the location (in the format function[/label]) at which the
protocol region is defined.

Options

• -mode [floating | fixed]:

• floating: Lets code statements outside the protocol region overlap and execute in
parallel with statements in the protocol region in the final RTL. The protocol region remains
cycle accurate, but outside operations can occur at the same time. This is the default mode.

• fixed: The fixed mode ensures that statements outside the protocol region do not
execute in parallel with the protocol region.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 496Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=496

Examples

The example code defines a protocol region, io_section in function foo. The following
directive defines that region as a fixed mode protocol region:

set_directive_protocol -mode fixed foo/io_section

See Also

• pragma HLS protocol

set_directive_reset
Description

Adds or removes resets for specific state variables (global or static). The reset port is used to
restore the registers and block RAM, connected to the port, to an initial value any time the reset
signal is applied. The presence and behavior of the RTL reset port is controlled using the
config_rtl settings.

Greater control over reset is provided through the RESET pragma. If a variable is a static or
global, the RESET pragma is used to explicitly add a reset, or the variable can be removed from
the reset by turning off the pragma. This can be particularly useful when static or global arrays
are present in the design.

Syntax

set_directive_reset [OPTIONS] <location> <variable>

• <location> is the location (in the format function[/label]) at which the variable is
defined.

• <variable> is the variable to which the directive is applied.

Options

• -off:

• If -off is specified, reset is not generated for the specified variable.

Examples

Adds reset to variable a in function foo even when the global reset setting is none or control.

set_directive_reset foo a

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 497Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=497

Removes reset from variable static int a in function foo even when the global reset setting
is state or all.

set_directive_reset -off foo a

See Also

• pragma HLS reset

• config_rtl

set_directive_stable
Description

The STABLE pragma is applied to arguments of a DATAFLOW or PIPELINE region and is used to
indicate that an input or output of this region can be ignored when generating the
synchronizations at entry and exit of the DATAFLOW region. This means that the reading
processes (resp. read accesses) of that argument do not need to be part of the “first stage” of the
task-level (resp. fine-grain) pipeline for inputs, and the writing process (resp. write accesses) do
not need to be part of the last stage of the task-level (resp. fine-grain) pipeline for outputs.

The pragma can be specified at any point in the hierarchy, on a scalar or an array, and
automatically applies to all the DATAFLOW or PIPELINE regions below that point. The effect of
STABLE for an input is that a DATAFLOW or PIPELINE region can start another iteration even
though the value of the previous iteration has not been read yet. For an output, this implies that
a write of the next iteration can occur although the previous iteration is not done.

Syntax

set_directive_stable <location> <variable>

• <location> is the function name or loop name where the directive is to be constrained.

• <variable> is the name of the array to be constrained.

Examples

In the following example, without the STABLE directive, proc1 and proc2 would be
synchronized to acknowledge the reading of their inputs (including A). With the directive, A is no
longer considered as an input that needs synchronization.

void dataflow_region(int A[...], int B[…] ...
 proc1(...);
 proc2(A, ...);

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 498Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=498

The directives for this example would be scripted as:

set_directive_stable dataflow_region variable=A
set_directive_dataflow dataflow_region

See Also

• pragma HLS stable

• set_directive_dataflow

• set_directive_pipeline

set_directive_stream
Description

By default, array variables are implemented as RAM:

• Top-level function array parameters are implemented as a RAM interface port.

• General arrays are implemented as RAMs for read-write access.

• Arrays involved in sub-functions, or loop-based DATAFLOW optimizations are implemented
as a RAM ping-pong buffer channel.

If the data stored in the array is consumed or produced in a sequential manner, a more efficient
communication mechanism is to use streaming data, where FIFOs are used instead of RAMs.
When an argument of the top-level function is specified as INTERFACE type ap_fifo, the array
is automatically implemented as streaming. See Defining Interfaces for more information.

IMPORTANT! To preserve the accesses, it might be necessary to prevent compiler optimizations (in
particular dead code elimination) by using the volatile  qualifier as described in Type Qualifiers.

Syntax

set_directive_stream [OPTIONS] <location> <variable>

• <location> is the location (in the format function[/label]) which contains the array
variable.

• <variable> is the array variable to be implemented as a FIFO.

Options

• -depth <integer>:

Note: Relevant only for array streaming in dataflow channels.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 499Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=499

By default, the depth of the FIFO implemented in the RTL is the same size as the array
specified in the C code. This options allows you to modify the size of the FIFO.

When the array is implemented in a DATAFLOW region, it is common to the use the -depth
option to reduce the size of the FIFO. For example, in a DATAFLOW region where all loops and
functions are processing data at a rate of II = 1, there is no need for a large FIFO because data
is produced and consumed in each clock cycle. In this case, the -depth option may be used
to reduce the FIFO size to 2 to substantially reduce the area of the RTL design.

This same functionality is provided for all arrays in a DATAFLOW region using the
config_dataflow command with the -depth option. The -depth option used with
set_directive_stream overrides the default specified using config_dataflow.

• -type <arg>: Specify a mechanism to select between FIFO, PIPO, synchronized shared
(shared), and un-synchronized shared (unsync). The supported types include:

• fifo: A FIFO buffer with the specified depth.

• pipo: A regular Ping-Pong buffer, with as many “banks” as the specified depth (default is
2).

• shared: A shared channel, synchronized like a regular Ping-Pong buffer, with depth, but
without duplicating the array data. Consistency can be ensured by setting the depth small
enough, which acts as the distance of synchronization between the producer and
consumer.

TIP: The default depth for shared is 1.

• unsync: Does not have any synchronization except for individual memory reads and
writes. Consistency (read-write and write-write order) must be ensured by the design itself.

Examples

Specifies array A[10] in function func to be streaming and implemented as a FIFO.

set_directive_stream func A -type fifo

Array B in named loop loop_1 of function func is set to streaming with a FIFO depth of 12. In
this case, place the pragma inside loop_1.

set_directive_stream -depth 12 -type fifo func/loop_1 B

Array C has streaming implemented as a PIPO.

set_directive_stream -type pipo func C

See Also

• pragma HLS stream

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 500Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=500

• set_directive_dataflow

• set_directive_interface

• config_dataflow

set_directive_top
Description

Attaches a name to a function, which can then be used by the set_top command to set the
named function as the top. This is typically used to synthesize member functions of a class in C+
+.

RECOMMENDED: Specify the directive in an active solution. Use the set_top  command with the new
name.

Syntax

set_directive_top [OPTIONS] <location>

• <location> is the function to be renamed.

Options

• -name <string>: Specifies the name of the function to be used by the set_top command.

Examples

Function foo_long_name is renamed to DESIGN_TOP, which is then specified as the top-level.
If the pragma is placed in the code, the set_top command must still be issued in the top-level
specified in the GUI project settings.

set_directive_top -name DESIGN_TOP foo_long_name

Followed by the set_top DESIGN_TOP command.

See Also

• pragma HLS top

• set_top

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 501Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=501

set_directive_unroll
Description

Transforms loops by creating multiples copies of the loop body.

A loop is executed for the number of iterations specified by the loop induction variable. The
number of iterations may also be impacted by logic inside the loop body (for example, break or
modifications to any loop exit variable). The loop is implemented in the RTL by a block of logic
representing the loop body, which is executed for the same number of iterations.

The set_directive_unroll command allows the loop to be fully unrolled. Unrolling the loop
creates as many copies of the loop body in the RTL as there are loop iterations, or partially
unrolled by a factor N, creating N copies of the loop body and adjusting the loop iteration
accordingly.

If the factor N used for partial unrolling is not an integer multiple of the original loop iteration
count, the original exit condition must be checked after each unrolled fragment of the loop body.

To unroll a loop completely, the loop bounds must be known at compile time. This is not required
for partial unrolling.

Syntax

set_directive_unroll [OPTIONS] <location>

• <location> is the location of the loop (in the format function[/label]) to be
unrolled.

Options

• -factor <integer>: Specifies a non-zero integer indicating that partial unrolling is
requested.

The loop body is repeated this number of times. The iteration information is adjusted
accordingly.

• -skip_exit_check: Effective only if a factor is specified (partial unrolling).

• Fixed bounds

No exit condition check is performed if the iteration count is a multiple of the factor.

If the iteration count is not an integer multiple of the factor, the tool:

• Prevents unrolling.

• Issues a warning that the exit check must be performed to proceed.

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 502Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=502

• Variable bounds

The exit condition check is removed. You must ensure that:

○ The variable bounds is an integer multiple of the factor.

○ No exit check is in fact required.

Examples

Unrolls loop L1 in function foo. Place the pragma in the body of loop L1.

set_directive_unroll foo/L1

Specifies an unroll factor of 4 on loop L2 of function foo. Removes the exit check. Place the
pragma in the body of loop L2.

set_directive_unroll -skip_exit_check -factor 4 foo/L2

Unrolls all loops inside loop L3 in function foo, but not loop L3 itself. The -region option
specifies the location be considered an enclosing region and not a loop label.

set_directive_unroll -region foo/L3

See Also

• pragma HLS unroll

• set_directive_loop_flatten

• set_directive_loop_merge

Section IV: Vitis HLS Command Reference
Chapter 23: Optimization Directives

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 503Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=503

Chapter 24

HLS Pragmas
Optimizations in Vitis HLS

In the Vitis™ software platform, a kernel defined in the C/C++ language, or OpenCL™ C, must be
compiled into the register transfer level (RTL) that can be implemented into the programmable
logic of a Xilinx® device. The v++ compiler calls the Vitis High-Level Synthesis (HLS) tool to
synthesize the RTL code from the kernel source code.

The HLS tool is intended to work with the Vitis IDE project without interaction. However, the
HLS tool also provides pragmas that can be used to optimize the design, reduce latency, improve
throughput performance, and reduce area and device resource usage of the resulting RTL code.
These pragmas can be added directly to the source code for the kernel.

The HLS pragmas include the optimization types specified in the following table.

Table 32: Vitis HLS Pragmas by Type

Type Attributes
Kernel Optimization • pragma HLS aggregate

• pragma HLS disaggregate
• pragma HLS bind_op
• pragma HLS bind_storage
• pragma HLS expression_balance
• pragma HLS latency
• pragma HLS reset
• pragma HLS top

Function Inlining • pragma HLS inline

Interface Synthesis • pragma HLS interface

Task-level Pipeline • pragma HLS dataflow
• pragma HLS stream

Pipeline • pragma HLS pipeline
• pragma HLS occurrence

Loop Unrolling • pragma HLS unroll
• pragma HLS dependence

Loop Optimization • pragma HLS loop_flatten
• pragma HLS loop_merge
• pragma HLS loop_tripcount

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 504Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=504

Table 32: Vitis HLS Pragmas by Type (cont'd)

Type Attributes
Array Optimization • pragma HLS array_partition

• pragma HLS array_reshape

Structure Packing • pragma HLS aggregate
• pragma HLS dataflow

Resource Optimization • pragma HLS allocation
• pragma HLS function_instantiate

pragma HLS aggregate
Description

Collects and groups the data fields of a struct into a single scalar with a wider word width.

The AGGREGATE pragma is used for grouping all the elements of a struct into a single wide
vector to allow all members of the struct to be read and written to simultaneously. The bit
alignment of the resulting new wide-word can be inferred from the declaration order of the
struct elements. The first element takes the LSB of the vector, and the final element of the struct
is aligned with the MSB of the vector.

If the struct contains arrays, the AGGREGATE pragma performs a similar operation as
ARRAY_RESHAPE, and combines the reshaped array with the other elements in the struct. Any
arrays declared inside the struct are completely partitioned and reshaped into a wide scalar and
packed with other scalar elements.

IMPORTANT! You should exercise some caution when using the AGGREGATE optimization on struct
objects with large arrays. If an array has 4096 elements of type int, this will result in a vector (and port) of
width 4096×32=131072 bits. The Vitis HLS tool can create this RTL design, however it is very unlikely
logic synthesis will be able to route this during the FPGA implementation.

Syntax

Place the pragma near the definition of the struct variable to aggregate:

#pragma HLS aggregate variable=<variable> compact=<arg>

Where:

• variable=<variable>: Specifies the variable to be grouped.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 505Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=505

• compact=[bit | byte | none | auto]: Specifies the alignment of the aggregated
struct. Alignment can be on the bit-level, the byte-level, none, or automatically determined by
the tool which is the default behavior.

Example 1

Aggregates struct pointer AB with three 8-bit fields (typedef struct {unsigned char R,
G, B;} pixel) in function func, into a new 24-bit pointer aligned on the bit-level.

typedef struct{
unsigned char R, G, B;
} pixel;

pixel AB;
#pragma HLS aggregate variable=AB compact=bit

Example 2

Aggregates struct array AB[17] with three 8-bit field fields (R, G, B) into a new 17 element array
of 24-bits.

typedef struct{
unsigned char R, G, B;
} pixel;

pixel AB[17];
#pragma HLS aggregate variable=AB

See Also

• set_directive_aggregate

• pragma HLS array_reshape

• pragma HLS disaggregate

pragma HLS alias
Description

Specify that two or more M_AXI pointer arguments point to the same underlying buffer in
memory (DDR or HBM) and indicate any aliasing between the pointers by setting the distance or
offset between them.

IMPORTANT! The ALIAS pragma applies to top-level function arguments mapped to M_AXI interfaces.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 506Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=eff1586264710929.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://docs.xilinx.com/access/sources/dita/topic?resourceid=pragma-hls-array_reshape-mrl1504034361747.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://docs.xilinx.com/access/sources/dita/topic?resourceid=pragma-hls-disaggregate-lbk1584844390084.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=506

Vitis HLS considers different pointers to be independent channels and generally does not provide
any dependency analysis. However, in cases where the host allocates a single buffer for multiple
pointers, this relationship can be communicated through the ALIAS pragma or directive and
dependency analysis can be maintained. The ALIAS pragma enables data dependence analysis in
Vitis HLS by defining the distance between pointers in the buffer.

Requirements for ALIAS:

• All ports assigned to an ALIAS pragma must be in assigned to M_AXI interfaces and assigned
to different bundles, as shown in the example below

• Each port can only be used in one ALIAS pragma or directive

• The depth of all ports assigned to an ALIAS pragma must be the same

• When offset is specified, the number of ports and number of offsets specified must be the
same: one offset per port

• The offset for the INTERFACE must be specified as slave or direct, offset=off is not
supported

Syntax

pragma HLS alias ports=<list> [distance=<int> | offset=<list...>]

Where:

• ports=<list>: specifies the ports to alias.

• distance=<integer>: Specifies the difference between the pointer values passed to the
ports in the list.

• offset=<list>: Specifies the offset of the pointer passed to each port in the ports list
with respect to the origin of the array.

Note: offset and distance are mutually exclusive.

Example

For the following function top:

void top(int *arr0, int *arr1, int *arr2, int *arr3, ...) {
 #pragma HLS interface mode=m_axi port=arr0 bundle=hbm0 depth=0x40000000
 #pragma HLS interface mode=m_axi port=arr1 bundle=hbm1 depth=0x40000000
 #pragma HLS interface mode=m_axi port=arr2 bundle=hbm2 depth=0x40000000
 #pragma HLS interface mode=m_axi port=arr3 bundle=hbm3 depth=0x40000000

The following pragma defines aliasing for the specified array pointers, and defines the distance
between them:

#pragma HLS ALIAS ports=arr0,arr1,arr2,arr3 distance=10000000

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 507Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=507

Alternatively, the following pragma specifies the offset between pointers, to accomplish the
same effect:

#pragma HLS ALIAS ports=arr0,arr1,arr2,arr3
offset=00000000,10000000,20000000,30000000

See Also

• set_directive_alias

• pragma HLS interface

pragma HLS allocation
Description

Specifies restrictions to limit resource allocation in the implemented kernel. The ALLOCATION
pragma or directive can limit the number of RTL instances and hardware resources used to
implement specific functions, loops, or operations. The ALLOCATION pragma is specified inside
the body of a function, a loop, or a region of code.

For example, if the C source has four instances of a function foo_sub, the ALLOCATION
pragma can ensure that there is only one instance of foo_sub in the final RTL. All four instances
of the C function are implemented using the same RTL block. This reduces resources used by the
function, but negatively impacts performance by sharing those resources.

Template functions can also be specified for ALLOCATION by specifying the function pointer
instead of the function name, as shown in the examples below.

The operations in the C code, such as additions, multiplications, array reads, and writes, can also
be limited by the ALLOCATION pragma.

Syntax

Place the pragma inside the body of the function, loop, or region where it will apply.

IMPORTANT! The order of the arguments below is important. The <type>  as operation or function
must follow the allocation  keyword.

#pragma HLS allocation <type> instances=<list>
limit=<value>

Where:

• <type>: The type is specified as one of the following:

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 508Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=508

• function: Specifies that the allocation applies to the functions listed in the instances=
list. The function can be any function in the original C or C++ code that has not been:

• Inlined by the pragma HLS inline, or the set_directive_inline command, or

• Inlined automatically by the Vitis HLS tool.

• operation: Specifies that the allocation applies to the operations listed in the
instances= list.

• instances=<list>: Specifies the names of functions from the C code, or operators.

For a complete list of operations that can be limited using the ALLOCATION pragma, refer to
the config_op command.

• limit=<value>: Optionally specifies the limit of instances to be used in the kernel.

Example 1

Given a design with multiple instances of function foo, this example limits the number of
instances of foo in the RTL for the hardware kernel to two.

#pragma HLS allocation function instances=foo limit=2

Example 2

Limits the number of multiplier operations used in the implementation of the function my_func
to one. This limit does not apply to any multipliers outside of my_func, or multipliers that might
reside in sub-functions of my_func.

TIP: To limit the multipliers used in the implementation of any sub-functions, specify an allocation directive
on the sub-functions or inline the sub-function into function my_func.

void my_func(data_t angle) {
#pragma HLS allocation operation instances=mul limit=1
...
}

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 509Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=arv1584806222219.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=509

Example 3

The ALLOCATION pragma can also be used on template functions as shown below. The
identification is generally based on the function name, but in the case of template functions it is
based on the function pointer:

template <typename DT>
void foo(DT a, DT b){
}
// The following is valid
#pragma HLS ALLOCATION function instances=foo<DT>
...
// The following is not valid
#pragma HLS ALLOCATION function instances=foo

See Also

• set_directive_allocation

• pragma HLS inline

pragma HLS array_partition
Description

IMPORTANT! Array_Partition  and Array_Reshape  pragmas and directives are not supported
for M_AXI  Interfaces on the top-level function. Instead you can use the hls::vector  data types as
described in Vector Data Types.

Partitions an array into smaller arrays or individual elements and provides the following:

• Results in RTL with multiple small memories or multiple registers instead of one large memory.

• Effectively increases the amount of read and write ports for the storage.

• Potentially improves the throughput of the design.

• Requires more memory instances or registers.

Syntax

Place the pragma in the C source within the boundaries of the function where the array variable
is defined.

#pragma HLS array_partition variable=<name> \
type=<type> factor=<int> dim=<int>

Where:

• variable=<name>: A required argument that specifies the array variable to be partitioned.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 510Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=sps1585343020533.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://docs.xilinx.com/access/sources/dita/topic?resourceid=pragma-hls-inline-jka1504034359550.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=510

• type=<type>: Optionally specifies the partition type. The default type is complete. The
following types are supported:

• cyclic: Cyclic partitioning creates smaller arrays by interleaving elements from the
original array. The array is partitioned cyclically by putting one element into each new array
before coming back to the first array to repeat the cycle until the array is fully partitioned.
For example, if factor=3 is used:

• Element 0 is assigned to the first new array

• Element 1 is assigned to the second new array.

• Element 2 is assigned to the third new array.

• Element 3 is assigned to the first new array again.

• block: Block partitioning creates smaller arrays from consecutive blocks of the original
array. This effectively splits the array into N equal blocks, where N is the integer defined by
the factor= argument.

• complete: Complete partitioning decomposes the array into individual elements. For a
one-dimensional array, this corresponds to resolving a memory into individual registers.
This is the default <type>.

• factor=<int>: Specifies the number of smaller arrays that are to be created.

IMPORTANT! For complete type partitioning, the factor is not specified. For block and cyclic
partitioning, the factor=  is required.

• dim=<int>: Specifies which dimension of a multi-dimensional array to partition. Specified as
an integer from 0 to <N>, for an array with <N> dimensions:

• If a value of 0 is used, all dimensions of a multi-dimensional array are partitioned with the
specified type and factor options.

• Any non-zero value partitions only the specified dimension. For example, if a value 1 is
used, only the first dimension is partitioned.

Example 1

This example partitions the 13 element array, AB[13], into four arrays using block partitioning:

#pragma HLS array_partition variable=AB type=block factor=4

TIP: Because four is not an integer factor of 13:

• Three of the new arrays have three elements each

• One array has four elements (AB[9:12])

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 511Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=511

Example 2

This example partitions dimension two of the two-dimensional array, AB[6][4] into two new
arrays of dimension [6][2]:

#pragma HLS array_partition variable=AB type=block factor=2 dim=2

Example 3

This example partitions the second dimension of the two-dimensional in_local array into
individual elements.

int in_local[MAX_SIZE][MAX_DIM];
#pragma HLS ARRAY_PARTITION variable=in_local type=complete dim=2

Example 4

Partitioned arrays can be addressed in your code by the new structure of the array, as shown in
the following code example;

struct SS
{
 int x[N];
 int y[N];
};

int top(SS *a, int b[4][6], SS &c) {
#pragma HLS array_partition type=complete dim=1 variable=b
#pragma HLS interface mode=ap_memory port = b[0]
#pragma HLS interface mode=ap_memory port = b[1]
#pragma HLS interface mode=ap_memory port = b[2]
#pragma HLS interface mode=ap_memory port = b[3]

See Also

• set_directive_array_partition

• pragma HLS array_reshape

pragma HLS array_reshape
Description

IMPORTANT! Array_Partition  and Array_Reshape  pragmas and directives are not supported
for M_AXI  Interfaces on the top-level function. Instead you can use the hls::vector  data types as
described in Vector Data Types.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 512Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=xoa1585343027355.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://docs.xilinx.com/access/sources/dita/topic?resourceid=pragma-hls-array_reshape-mrl1504034361747.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=512

The ARRAY_RESHAPE pragma reforms the array with vertical remapping and concatenating
elements of arrays by increasing bit-widths. This reduces the number of block RAM consumed
while providing parallel access to the data. This pragma creates a new array with fewer elements
but with greater bit-width, allowing more data to be accessed in a single clock cycle.

Given the following code:

void foo (...) {
int array1[N];
int array2[N];
int array3[N];
#pragma HLS ARRAY_RESHAPE variable=array1 type=block factor=2 dim=1
#pragma HLS ARRAY_RESHAPE variable=array2 type=cycle factor=2 dim=1
#pragma HLS ARRAY_RESHAPE variable=array3 type=complete dim=1
...
}

The ARRAY_RESHAPE pragma transforms the arrays into the form shown in the following figure.

Figure 119: ARRAY_RESHAPE Pragma

0 1 2 ... N-3 N-2 N-1

N/2 ... N-2 N-1
0 1 ... (N/2-1)

1 ... N-3 N-1
0 2 ... N-2

block

cyclic

complete

X14307-110217

0 1 2 ... N-3 N-2 N-1

0 1 2 ... N-3 N-2 N-1

array1[N]

array2[N]

array3[N] N-1
N-2
...
1
0

MSB
LSB

MSB
LSB

MSB

LSB

array4[N/2]

array5[N/2]

array6[1]

Syntax

Place the pragma in the C source within the region of a function where the array variable is
defines.

#pragma HLS array_reshape variable=<name> \type=<type> factor=<int>
dim=<int>

Where:

• variable=<name>: Required argument that specifies the array variable to be reshaped.

• type=<type>: Optionally specifies the partition type. The default type is complete. The
following types are supported:

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 513Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=513

• cyclic: Cyclic reshaping creates smaller arrays by interleaving elements from the original
array. For example, if factor=3 is used, element 0 is assigned to the first new array,
element 1 to the second new array, element 2 is assigned to the third new array, and then
element 3 is assigned to the first new array again. The final array is a vertical concatenation
(word concatenation, to create longer words) of the new arrays into a single array.

• block: Block reshaping creates smaller arrays from consecutive blocks of the original
array. This effectively splits the array into <N> equal blocks where <N> is the integer
defined by factor=, and then combines the <N> blocks into a single array with word-
width*N.

• complete: Complete reshaping decomposes the array into temporary individual elements
and then recombines them into an array with a wider word. For a one-dimension array this
is equivalent to creating a very-wide register (if the original array was N elements of M bits,
the result is a register with N*M bits). This is the default type of array reshaping.

• factor=<int>: Specifies the amount to divide the current array by (or the number of
temporary arrays to create). A factor of 2 splits the array in half, while doubling the bit-width.
A factor of 3 divides the array into three, with triple the bit-width.

IMPORTANT! For complete type partitioning, the factor is not specified. For block and cyclic
reshaping, the factor=  is required.

• dim=<int>: Specifies which dimension of a multi-dimensional array to partition. Specified as
an integer from 0 to <N>, for an array with <N> dimensions:

• If a value of 0 is used, all dimensions of a multi-dimensional array are partitioned with the
specified type and factor options.

• Any non-zero value partitions only the specified dimension. For example, if a value 1 is
used, only the first dimension is partitioned.

• object: A keyword relevant for container arrays only. When the keyword is specified the
ARRAY_RESHAPE pragma applies to the objects in the container, reshaping all dimensions of
the objects within the container, but all dimensions of the container itself are preserved.
When the keyword is not specified the pragma applies to the container array and not the
objects.

Example 1

Reshapes an 8-bit array with 17 elements, AB[17], into a new 32-bit array with five elements
using block mapping.

#pragma HLS array_reshape variable=AB type=block factor=4

TIP: factor=4  indicates that the array should be divided into four; this means that 17 elements are
reshaped into an array of five elements, with four times the bit-width. In this case, the last element,
AB[17], is mapped to the lower eight bits of the fifth element, and the rest of the fifth element is empty.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 514Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=514

Example 2

Reshapes the two-dimensional array AB[6][4] into a new array of dimension [6][2], in which
dimension 2 has twice the bit-width.

#pragma HLS array_reshape variable=AB type=block factor=2 dim=2

Example 3

Reshapes the three-dimensional 8-bit array, AB[4][2][2] in function func, into a new single
element array (a register), 128-bits wide (4×2×2×8).

#pragma HLS array_reshape variable=AB type=complete dim=0

TIP: dim=0  means to reshape all dimensions of the array.

Example 4

Partitioned arrays can be addressed in your code by the new structure of the array, as shown in
the following code example;

struct SS
{
 int x[N];
 int y[N];
};

int top(SS *a, int b[4][6], SS &c) {
#pragma HLS array_reshape type=complete dim=0 variable=b
#pragma HLS interface mode=ap_memory port=b[0]

See Also

• pragma HLS array_reshape

• pragma HLS array_partition

pragma HLS bind_op
Description

Vitis HLS implements the operations in the code using specific implementations. The BIND_OP
pragma specifies that for a specific variable, an operation (mul, add, div) should be mapped to a
specific device resource for implementation (impl) in the RTL. If the BIND_OP pragma is not
specified, Vitis HLS automatically determines the resources to use for operations.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 515Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=pragma-hls-array_reshape-mrl1504034361747.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://docs.xilinx.com/access/sources/dita/topic?resourceid=pragma-hls-array_partition-gle1504034361378.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=515

For example, to indicate that a specific multiplier operation (mul) is implemented in the device
fabric rather than a DSP, you can use the BIND_OP pragma.

You can also specify the latency of the operation using the latency option.

IMPORTANT! To use the latency  option, the operation must have an available multi-stage
implementation. The HLS tool provides a multi-stage implementation for all basic arithmetic operations
(add, subtract, multiply, and divide), and all floating-point operations.

Syntax

Place the pragma in the C source within the body of the function where the variable is defined.

#pragma HLS bind_op variable=<variable> op=<type>\
impl=<value> latency=<int>

Where:

• variable=<variable>: Defines the variable to assign the BIND_OP pragma to. The
variable in this case is one that is assigned the result of the operation that is the target of this
pragma.

• op=<type>: Defines the operation to bind to a specific implementation resource. Supported
functional operations include: mul, add, and sub Supported floating point operations include:
fadd, fsub, fdiv, fexp, flog, fmul, frsqrt, frecip, fsqrt, dadd, dsub, ddiv, dexp,
dlog, dmul, drsqrt, drecip, dsqrt, hadd, hsub, hdiv, hmul, and hsqrt

TIP: Floating point operations include single precision (f), double-precision (d), and half-precision (h).

• impl=<value>: Defines the implementation to use for the specified operation. Supported
implementations for functional operations include fabric, and dsp.Supported
implementations for floating point operations include: fabric, meddsp, fulldsp, maxdsp,
and primitivedsp.

Note: primitivedsp is only available on Versal® devices.

• latency=<int>: Defines the default latency for the implementation of the operation. The
valid latency varies according to the specified op and impl. The default is -1, which lets Vitis
HLS choose the latency.The tables below reflect the supported combinations of operation,
implementation, and latency.

Table 33: Supported Combinations of Functional Operations, Implementation, and
Latency

Operation Implementation Min Latency Max Latency
add fabric 0 4

add dsp 0 4

mul fabric 0 4

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 516Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=516

Table 33: Supported Combinations of Functional Operations, Implementation, and
Latency (cont'd)

Operation Implementation Min Latency Max Latency
mul dsp 0 4

sub fabric 0 4

sub dsp 0 0

TIP: Comparison operators, such as dcmp , are implemented in LUTs and cannot be implemented outside
of the fabric, or mapped to DSPs, and so are not configurable with the config_op  or bind_op
commands.

Table 34: Supported Combinations of Floating Point Operations, Implementation, and
Latency

Operation Implementation Min Latency Max Latency
fadd fabric 0 13

fadd fulldsp 0 12

fadd primitivedsp 0 3

fsub fabric 0 13

fsub fulldsp 0 12

fsub primitivedsp 0 3

fdiv fabric 0 29

fexp fabric 0 24

fexp meddsp 0 21

fexp fulldsp 0 30

flog fabric 0 24

flog meddsp 0 23

flog fulldsp 0 29

fmul fabric 0 9

fmul meddsp 0 9

fmul fulldsp 0 9

fmul maxdsp 0 7

fmul primitivedsp 0 4

fsqrt fabric 0 29

frsqrt fabric 0 38

frsqrt fulldsp 0 33

frecip fabric 0 37

frecip fulldsp 0 30

dadd fabric 0 13

dadd fulldsp 0 15

dsub fabric 0 13

dsub fulldsp 0 15

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 517Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=517

Table 34: Supported Combinations of Floating Point Operations, Implementation, and
Latency (cont'd)

Operation Implementation Min Latency Max Latency
ddiv fabric 0 58

dexp fabric 0 40

dexp meddsp 0 45

dexp fulldsp 0 57

dlog fabric 0 38

dlog meddsp 0 49

dlog fulldsp 0 65

dmul fabric 0 10

dmul meddsp 0 13

dmul fulldsp 0 13

dmul maxdsp 0 14

dsqrt fabric 0 58

drsqrt fulldsp 0 111

drecip fulldsp 0 36

hadd fabric 0 9

hadd meddsp 0 12

hadd fulldsp 0 12

hsub fabric 0 9

hsub meddsp 0 12

hsub fulldsp 0 12

hdiv fabric 0 16

hmul fabric 0 7

hmul fulldsp 0 7

hmul maxdsp 0 9

hsqrt fabric 0 16

Example

In the following example, a two-stage pipelined multiplier using fabric logic is specified to
implement the multiplication for variable c of the function foo.

int foo (int a, int b) {
int c, d;
#pragma HLS BIND_OP variable=c op=mul impl=fabric latency=2
c = a*b;
d = a*c;
return d;
}

TIP: The HLS tool selects the implementation to use for variable d.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 518Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=518

See Also

• set_directive_bind_op

• pragma HLS bind_storage

pragma HLS bind_storage
Description

The BIND_STORAGE pragma assigns a variable (array, or function argument) in the code to a
specific memory type (type) in the RTL. If the pragma is not specified, the Vitis HLS tool
determines the memory type to assign. The HLS tool implements the memory using specified
implementations (impl) in the hardware.

For example, you can use the pragma to specify which memory type to use to implement an
array. This lets you control whether the array is implemented as a single or a dual-port RAM for
example. Also, this allows you to control whether the array is implemented as a single or a dual-
port RAM.

IMPORTANT! This feature is important for arrays on the top-level function interface, because the memory
type associated with the array determines the number and type of ports needed in the RTL, as discussed in
Arrays on the Interface. However, for variables assigned to top-level function arguments you must assign
the memory type and implementation using the -storage_type  and -storage_impl  options of the
INTERFACE pragma or directive.

You can also specify the latency of the implementation. For block RAMs on the interface, the
latency option lets you model off-chip, non-standard SRAMs at the interface, for example
supporting an SRAM with a latency of 2 or 3. For internal operations, the latency option allows
the memory to be implemented using more pipelined stages. These additional pipeline stages can
help resolve timing issues during RTL synthesis.

IMPORTANT! To use the latency  option, the operation must have an available multi-stage
implementation. The HLS tool provides a multi-stage implementation for all block RAMs.

Syntax

Place the pragma in the C/C++ source within the body of the function where the variable is
defined.

#pragma HLS bind_storage variable=<variable> type=<type>\
[impl=<value> latency=<int>]

Where:

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 519Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=qtg1584808253999.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://docs.xilinx.com/access/sources/dita/topic?resourceid=pragma-hls-bind_storage-chr1584844747152.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=519

• variable=<variable>: Defines the variable to assign the BIND_STORAGE pragma to. This
is required when specifying the pragma.

TIP: If the variable is an argument of a top-level function, then use the -storage_type  and -
storage_impl  options of the INTERFACE pragma or directive.

• type=<type>: Defines the type of memory to bind to the specified variable. Supported
types include: fifo, ram_1p, ram_1wnr, ram_2p, ram_s2p, ram_t2p, rom_1p, rom_2p,
rom_np.

Table 35: Storage Types

Type Description
FIFO A FIFO. Vitis HLS determines how to implement this in the RTL, unless the -impl

option is specified.

RAM_1P A single-port RAM. Vitis HLS determines how to implement this in the RTL, unless
the -impl option is specified.

RAM_1WNR A RAM with 1 write port and N read ports, using N banks internally.

RAM_2P A dual-port RAM that allows read operations on one port and both read and write
operations on the other port.

RAM_S2P A dual-port RAM that allows read operations on one port and write operations on
the other port.

RAM_T2P A true dual-port RAM with support for both read and write on both ports.

ROM_1P A single-port ROM. Vitis HLS determines how to implement this in the RTL, unless
the -impl option is specified.

ROM_2P A dual-port ROM.

ROM_NP A multi-port ROM.

• impl=<value>: Defines the implementation for the specified memory type. Supported
implementations include: bram, bram_ecc, lutram, uram, uram_ecc, srl, memory, and
auto as described below.

Table 36: Supported Implementation

Name Description
MEMORY Generic memory lets the Vivado tool choose the implementation.

URAM UltraRAM resource

URAM_ECC UltraRAM with ECC

SRL Shift Register Logic resource

LUTRAM Distributed RAM resource

BRAM Block RAM resource

BRAM_ECC Block RAM with ECC

AUTO Vitis HLS automatically determine the implementation of the variable.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 520Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=520

Table 37: Supported Implementations by FIFO/RAM/ROM

Type Command/Pragma Scope Supported
Implementations

FIFO bind_storage1 local AUTO, BRAM, LUTRAM,
URAM, MEMORY, SRL

FIFO config_storage global AUTO, BRAM, LUTRAM,
URAM, MEMORY, SRL

RAM* | ROM* bind_storage local AUTO BRAM, BRAM_ECC,
LUTRAM, URAM, URAM_ECC

RAM* | ROM* config_storage2 global N/A

RAM_1P set_directive_interfa
ce s_axilite -
storage_impl

local AUTO, BRAM, URAM

config_interface -
m_axi_buffer_impl

global AUTO, BRAM, LUTRAM,
URAM

Notes:
1. When no implementation is specified the directive uses AUTOSRL behavior as a default. However, this value

cannot be specified.
2. config_storage only supports FIFO types.

• latency=<int>: Defines the default latency for the binding of the type. As shown in the
following table, the valid latency varies according to the specified type and impl. The default
is -1, that lets Vitis HLS choose the latency.

Table 38: Supported Combinations of Memory Type, Implementation, and Latency

Type Implementation Min Latency Max Latency
FIFO BRAM 0 0

FIFO LUTRAM 0 0

FIFO MEMORY 0 0

FIFO SRL 0 0

FIFO URAM 0 0

RAM_1P AUTO 1 3

RAM_1P BRAM 1 3

RAM_1P LUTRAM 1 3

RAM_1P URAM 1 3

RAM_1WNR AUTO 1 3

RAM_1WNR BRAM 1 3

RAM_1WNR LUTRAM 1 3

RAM_1WNR URAM 1 3

RAM_2P AUTO 1 3

RAM_2P BRAM 1 3

RAM_2P LUTRAM 1 3

RAM_2P URAM 1 3

RAM_S2P BRAM 1 3

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 521Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=521

Table 38: Supported Combinations of Memory Type, Implementation, and Latency
(cont'd)

Type Implementation Min Latency Max Latency
RAM_S2P BRAM_ECC 1 3

RAM_S2P LUTRAM 1 3

RAM_S2P URAM 1 3

RAM_S2P URAM_ECC 1 3

RAM_T2P BRAM 1 3

RAM_T2P URAM 1 3

ROM_1P AUTO 1 3

ROM_1P BRAM 1 3

ROM_1P LUTRAM 1 3

ROM_2P AUTO 1 3

ROM_2P BRAM 1 3

ROM_2P LUTRAM 1 3

ROM_NP BRAM 1 3

ROM_NP LUTRAM 1 3

IMPORTANT! Any combinations of memory type and implementation that are not listed in the prior table
are not supported by set_directive_bind_storage.

Example

The pragma specifies that the variable coeffs uses a single port RAM implemented on a BRAM
core from the library.

#pragma HLS bind_storage variable=coeffs type=RAM_1P impl=bram

TIP: The ports created in the RTL to access the values of coeffs  are defined in the RAM_1P.

See Also

• set_directive_bind_storage

• pragma HLS bind_op

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 522Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=522

pragma HLS dataflow
Description

The DATAFLOW pragma enables task-level pipelining, allowing functions and loops to overlap in
their operation, increasing the concurrency of the RTL implementation and increasing the overall
throughput of the design.

All operations are performed sequentially in a C description. In the absence of any directives that
limit resources (such as pragma HLS allocation), the Vitis HLS tool seeks to minimize
latency and improve concurrency. However, data dependencies can limit this. For example,
functions or loops that access arrays must finish all read/write accesses to the arrays before they
complete. This prevents the next function or loop that consumes the data from starting
operation. The DATAFLOW optimization enables the operations in a function or loop to start
operation before the previous function or loop completes all its operations.

Figure 120: DATAFLOW Pragma

void top (a,b,c,d) {
 ...
 func_A(a,b,i1);
 func_B(c,i1,i2);
 func_C(i2,d)

 return d;
}

func_A
func_B
func_C

8 cycles

func_A func_B func_C

8 cycles

3 cycles

func_A
func_B

func_C

func_A
func_B

func_C

5 cycles

(A) Without Dataflow Pipelining (B) With Dataflow Pipelining

X14266-110217

When the DATAFLOW pragma is specified, the HLS tool analyzes the dataflow between
sequential functions or loops and creates channels (based on ping pong RAMs or FIFOs) that
allow consumer functions or loops to start operation before the producer functions or loops have
completed. This allows functions or loops to operate in parallel, which decreases latency and
improves the throughput of the RTL.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 523Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=523

If no initiation interval (number of cycles between the start of one function or loop and the next)
is specified, the HLS tool attempts to minimize the initiation interval and start operation as soon
as data is available.

TIP: The config_dataflow  command specifies the default memory channel and FIFO depth used in
dataflow optimization.

For the DATAFLOW optimization to work, the data must flow through the design from one task
to the next. The following coding styles prevent the HLS tool from performing the DATAFLOW
optimization. Refer to Limitations of Control-Driven Task-Level Parallelism for additional details.

• Single-producer-consumer violations

• Feedback between tasks

• Conditional execution of tasks

• Loops with multiple exit conditions

IMPORTANT! If any of these coding styles are present, the HLS tool issues a message and does not
perform DATAFLOW optimization.

Finally, the DATAFLOW optimization has no hierarchical implementation. If a sub-function or
loop contains additional tasks that might benefit from the DATAFLOW optimization, you must
apply the optimization to the loop, the sub-function, or inline the sub-function.

Syntax

Place the pragma in the C source within the boundaries of the region, function, or loop.

#pragma HLS dataflow [disable_start_propagation]

• disable_start_propagation: Optionally disables the creation of a start FIFO used to
propagate a start token to an internal process. Such FIFOs can sometimes be a bottleneck for
performance.

Example

Specifies DATAFLOW optimization within the loop wr_loop_j.

 wr_loop_j: for (int j = 0; j < TILE_PER_ROW; ++j) {
#pragma HLS DATAFLOW
 wr_buf_loop_m: for (int m = 0; m < TILE_HEIGHT; ++m) {
 wr_buf_loop_n: for (int n = 0; n < TILE_WIDTH; ++n) {
#pragma HLS PIPELINE
 // should burst TILE_WIDTH in WORD beat
 outFifo >> tile[m][n];
 }
 }
 wr_loop_m: for (int m = 0; m < TILE_HEIGHT; ++m) {
 wr_loop_n: for (int n = 0; n < TILE_WIDTH; ++n) {

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 524Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=524

#pragma HLS PIPELINE
 outx[TILE_HEIGHT*TILE_PER_ROW*TILE_WIDTH*i
+TILE_PER_ROW*TILE_WIDTH*m+TILE_WIDTH*j+n] = tile[m][n];
 }
 }

See Also

• set_directive_dataflow

• config_dataflow

• pragma HLS allocation

• pragma HLS pipeline

pragma HLS dependence
Description

Vitis HLS detects dependencies within loops: dependencies within the same iteration of a loop
are loop-independent dependencies, and dependencies between different iterations of a loop are
loop-carried dependencies. The DEPENDENCE pragma allows you to provide additional
information to define, negate loop dependencies, and allow loops to be pipelined with lower
intervals.

• Loop-independent dependence: The same element is accessed in a single loop iteration.

for (i=0;i<N;i++) {
 A[i]=x;
 y=A[i];
}

• Loop-carried dependence: The same element is accessed from a different loop iteration.

for (i=0;i<N;i++) {
 A[i]=A[i-1]*2;
}

These dependencies impact when operations can be scheduled, especially during function and
loop pipelining.

Under some circumstances, such as variable dependent array indexing or when an external
requirement needs to be enforced (for example, two inputs are never the same index), the
dependence analysis might be too conservative and fail to filter out false dependencies. The
DEPENDENCE pragma allows you to explicitly define the dependencies and eliminate a false
dependence.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 525Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=pxo1585342465608.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://docs.xilinx.com/access/sources/dita/topic?resourceid=pragma-hls-allocation-zof1504034359187.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://docs.xilinx.com/access/sources/dita/topic?resourceid=pragma-hls-pipeline-fde1504034360078.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=525

IMPORTANT! Specifying a false dependency, when in fact the dependency is not false, can result in
incorrect hardware. Ensure dependencies are correct (true or false) before specifying them.

Syntax

Place the pragma within the boundaries of the function where the dependence is defined.

#pragma HLS dependence variable=<variable> <class> \
<type> <direction> distance=<int> <dependent>

Where:

• variable=<variable>: Optionally specifies the variable to consider for the dependence.

IMPORTANT! You cannot specify a dependence  for function arguments that are bundled with
other arguments in an m_axi  interface. This is the default configuration for m_axi  interfaces on the
function. You also cannot specify a dependence for an element of a struct, unless the struct has been
disaggregated.

• class=[array | pointer]: Optionally specifies a class of variables in which the
dependence needs clarification. Valid values include array or pointer.

TIP: <class>  and variable=  should not be specified together as you can specify dependence for
a variable, or a class of variables within a function.

• type=[inter | intra]: Valid values include intra or inter. Specifies whether the
dependence is:

• intra: Dependence within the same loop iteration. When dependence <type> is
specified as intra, and <dependent> is false, the HLS tool might move operations freely
within a loop, increasing their mobility and potentially improving performance or area.
When <dependent> is specified as true, the operations must be performed in the order
specified.

• inter: dependence between different loop iterations. This is the default <type>. If
dependence <type> is specified as inter, and <dependent> is false, it allows the HLS
tool to perform operations in parallel if the function or loop is pipelined, or the loop is
unrolled, or partially unrolled, and prevents such concurrent operation when
<dependent> is specified as true.

• direction=[RAW | WAR | WAW]: This is relevant for loop-carry dependencies only, and
specifies the direction for a dependence:

• RAW (Read-After-Write - true dependence): The write instruction uses a value used by the
read instruction.

• WAR (Write-After-Read - anti dependence): The read instruction gets a value that is
overwritten by the write instruction.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 526Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=526

• WAW (Write-After-Write - output dependence): Two write instructions write to the same
location, in a certain order.

• distance=<int>: Specifies the inter-iteration distance for array access. Relevant only for
loop-carry dependencies where dependence is set to true.

• <dependent>: The <dependent> argument should be specified to indicate whether a
dependence is true and needs to be enforced, or is false and should be removed. However,
when not specified, the tool will return a warning that the value was not specified and will
assume a value of false. The accepted values are true or false.

Example 1

In the following example, the HLS tool does not have any knowledge about the value of cols
and conservatively assumes that there is always a dependence between the write to buff_A[1]
[col] and the read from buff_A[1][col]. In an algorithm such as this, it is unlikely cols will
ever be zero, but the HLS tool cannot make assumptions about data dependencies. To overcome
this deficiency, you can use the DEPENDENCE pragma to state that there is no dependence
between loop iterations (in this case, for both buff_A and buff_B).

void foo(int rows, int cols, ...)
 for (row = 0; row < rows + 1; row++) {
 for (col = 0; col < cols + 1; col++) {
 #pragma HLS PIPELINE II=1
 #pragma HLS dependence variable=buff_A type=inter false
 #pragma HLS dependence variable=buff_B type=inter false
 if (col < cols) {
 buff_A[2][col] = buff_A[1][col]; // read from buff_A[1][col]
 buff_A[1][col] = buff_A[0][col]; // write to buff_A[1][col]
 buff_B[1][col] = buff_B[0][col];
 temp = buff_A[0][col];
}

Example 2

Removes the dependence between Var1 in the same iterations of loop_1 in function func.

#pragma HLS dependence variable=Var1 type=intra false

Example 3

Defines the dependence on all arrays in loop_2 of function func to inform the HLS tool that all
reads must happen after writes (RAW) in the same loop iteration.

#pragma HLS dependence class=array type=intra direction=RAW true

See Also

• set_directive_dependence

• pragma HLS disaggregate

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 527Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=xou1585343161477.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://docs.xilinx.com/access/sources/dita/topic?resourceid=pragma-hls-disaggregate-lbk1584844390084.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=527

• pragma HLS pipeline

pragma HLS disaggregate
Description

The DISAGGREGATE pragma lets you deconstruct a struct variable into its individual
elements. The number and type of elements created are determined by the contents of the struct
itself.

IMPORTANT! Structs used as arguments to the top-level function are aggregated by default, but can be
disaggregated with this directive or pragma. Refer to AXI4-Stream Interfaces for important information
about disaggregating structs associated with streams.

Syntax

Place the pragma in the C source within the boundaries of the region, function, or loop.

#pragma HLS disaggregate variable=<variable>

Options

Where:

• variable=<variable>: Specifies the struct variable to disaggregate.

Example 1

The following example shows the struct variable a in function top will be disaggregated:

#pragma HLS disaggregate variable=a

Example 2

Disaggregated structs can be addressed in your code by the using standard C/C++ coding style
as shown below. Notice the different methods for accessing the pointer element (a) versus the
reference element (c);

struct SS
{
 int x[N];
 int y[N];
};

int top(SS *a, int b[4][6], SS &c) {
#pragma HLS disaggregate variable = a
#pragma HLS interface s_axilite port = a->x
#pragma HLS interface s_axilite port = a->y

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 528Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=pragma-hls-pipeline-fde1504034360078.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=528

// Following is now supported
#pragma HLS disaggregate variable = c
#pragma HLS interface ap_memory port = c.x
#pragma HLS interface ap_memory port = c.y

Example 3

The following example shows the Dot struct containing the RGB struct as an element. If you
apply the DISAGGREGATE pragma to variable Arr, then only the top-level Dot struct is
disaggregated.

struct Pixel {
char R;
char G;
char B;
};

struct Dot {
Pixel RGB;
unsigned Size;
};

#define N 1086
void DUT(Dot Arr[N]) {
#pragma HLS disaggregate variable=Arr
...
}

If you want to disaggregate the whole struct, Dot and RGB, then you can assign the
DISAGGREGATE pragma as shown below.

void DUT(Dot Arr[N]) {
#pragma HLS disaggregate variable=Arr->RGB
...
}

The results in this case will be:

void DUT(char Arr_RGB_R[N], char Arr_RGB_G[N], char Arr_RGB_B[N], unsigned
Arr_Size[N]) {
#pragma HLS disaggregate variable=Arr->RGB
...
}

See Also

• set_directive_disaggregate

• pragma HLS aggregate

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 529Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=hhv1584808444510.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://docs.xilinx.com/access/sources/dita/topic?resourceid=pragma-hls-data_pack-drx1504034362276.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=529

pragma HLS expression_balance
Description

Sometimes C/C++ code is written with a sequence of operations, resulting in a long chain of
operations in RTL. With a small clock period, this can increase the latency in the design. By
default, the Vitis HLS tool rearranges the operations using associative and commutative
properties. This rearrangement creates a balanced tree that can shorten the chain, potentially
reducing latency in the design at the cost of extra hardware.

Expression balancing rearranges operators to construct a balanced tree and reduce latency.

• For integer operations expression balancing is on by default but may be disabled.

• For floating-point operations, expression balancing is off by default but may be enabled.

The EXPRESSION_BALANCE pragma allows this expression balancing to be disabled, or to be
expressly enabled, within a specified scope.

Syntax

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS expression_balance off

Where:

• off: Turns off expression balancing at this location.Specifying #pragma HLS
expression_balance enables expression balancing in the specified scope. Adding off
disables it.

Example 1

Disables expression balancing within function my_Func.

void my_func(char inval, char incr) {
 #pragma HLS expression_balance off

Example 2

This example explicitly enables expression balancing in function my_Func.

void my_func(char inval, char incr) {
 #pragma HLS expression_balance

See Also

• set_directive_expression_balance

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 530Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=wem1585343253479.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=530

pragma HLS function_instantiate
Description

The FUNCTION_INSTANTIATE pragma is an optimization technique that has the area benefits of
maintaining the function hierarchy but provides an additional powerful option: performing
targeted local optimizations on specific instances of a function. This can simplify the control logic
around the function call and potentially improve latency and throughput.

By default:

• Functions remain as separate hierarchy blocks in the RTL, or is decomposed (or inlined) into a
higher level function.

• All instances of a function, at the same level of hierarchy, make use of a single RTL
implementation (block).

The FUNCTION_INSTANTIATE pragma is used to create a unique RTL implementation for each
instance of a function, allowing each instance to be locally optimized according to the function
call. This pragma exploits the fact that some inputs to a function can be a constant value when
the function is called, and uses this to both simplify the surrounding control structures and
produce smaller more optimized function blocks.

Without the FUNCTION_INSTANTIATE pragma, the following code results in a single RTL
implementation of function func_sub for all three instances of the function in func. Each
instance of function func_sub is implemented in an identical manner. This is fine for function
reuse and reducing the area required for each instance call of a function, but means that the
control logic inside the function must be more complex to account for the variation in each call of
func_sub.

char func_sub(char inval, char incr) {
#pragma HLS INLINE OFF
#pragma HLS FUNCTION_INSTANTIATE variable=incr
 return inval + incr;
}
void func(char inval1, char inval2, char inval3,
 char *outval1, char *outval2, char * outval3)
{
 *outval1 = func_sub(inval1, 1);
 *outval2 = func_sub(inval2, 2);
 *outval3 = func_sub(inval3, 3);
}

TIP: The Vitis HLS tool automatically decomposes (or inlines) small functions into higher-level calling
functions. This is true even for function instantiations. Using the INLINE pragma with the OFF  option can
be used to prevent this automatic inlining.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 531Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=531

In the code sample above, the FUNCTION_INSTANTIATE pragma results in three different
implementations of function func_sub, each optimized for the specified values of incr,
reducing the area and improving the performance of the function implementation.

Syntax

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS FUNCTION_INSTANTIATE variable=<variable>

Where:

• variable=<variable>: A required argument that defines the function argument to use as
a constant.

Examples

In the following example, the FUNCTION_INSTANTIATE pragma, placed in function swInt,
allows each instance of function swInt to be independently optimized with respect to the maxv
function argument.

void swInt(unsigned int *readRefPacked, short *maxr, short *maxc, short
*maxv){
#pragma HLS FUNCTION_INSTANTIATE variable=maxv
 uint2_t d2bit[MAXCOL];
 uint2_t q2bit[MAXROW];
#pragma HLS array partition variable=d2bit,q2bit cyclic factor=FACTOR

 intTo2bit<MAXCOL/16>((readRefPacked + MAXROW/16), d2bit);
 intTo2bit<MAXROW/16>(readRefPacked, q2bit);
 sw(d2bit, q2bit, maxr, maxc, maxv);
}

See Also

• set_directive_function_instantiate

• pragma HLS allocation

• pragma HLS inline

pragma HLS inline
Description

Removes a function as a separate entity in the hierarchy. After inlining, the function is dissolved
into the calling function and no longer appears as a separate level of hierarchy in the RTL.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 532Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=532

IMPORTANT! Inlining a child function also dissolves any pragmas or directives applied to that function. In
Vitis HLS, any pragmas applied in the child context are ignored.

In some cases, inlining a function allows operations within the function to be shared and
optimized more effectively with the calling function. However, an inlined function cannot be
shared or reused, so if the parent function calls the inlined function multiple times, this can
increase the area required for implementing the RTL.

The INLINE pragma applies differently to the scope it is defined in depending on how it is
specified:

• INLINE: Without arguments, the pragma means that the function it is specified in should be
inlined upward into any calling functions.

• INLINE OFF: Specifies that the function it is specified in should not be inlined upward into
any calling functions. This disables the inline of a specific function that can be automatically
inlined or inlined as part of recursion.

• INLINE RECURSIVE: Applies the pragma to the body of the function it is assigned in. It
applies downward, recursively inlining the contents of the function.

By default, inlining is only performed on the next level of function hierarchy, not sub-functions.
However, the recursive option lets you specify inlining through levels of the hierarchy.

Syntax

Place the pragma in the C source within the body of the function or region of code.

#pragma HLS inline <recursive | off>

Where:

• recursive: By default, only one level of function inlining is performed, and functions within
the specified function are not inlined. The recursive option inlines all functions recursively
within the specified function or region.

• off: Disables function inlining to prevent specified functions from being inlined. For example,
if recursive is specified in a function, this option can prevent a particular called function
from being inlined when all others are.

TIP: The Vitis HLS tool automatically inlines small functions, and using the INLINE pragma with the
off option can be used to prevent this automatic inlining.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 533Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=533

Example 1

The following example inlines all functions within the body of func_top inlining recursively
down through the function hierarchy, except function func_sub is not inlined. The recursive
pragma is placed in function func_top. The pragma to disable inlining is placed in the function
func_sub:

func_sub (p, q) {
#pragma HLS inline off
int q1 = q + 10;
func(p1,q);// foo_3
...
}
void func_top { a, b, c, d} {
 #pragma HLS inline recursive
 ...
 func(a,b);//func_1
 func(a,c);//func_2
 func_sub(a,d);
 ...
}

TIP: Notice in this example that INLINE RECURSIVE applies downward to the contents of function
func_top, but INLINE OFF applies to func_sub directly.

Example 2

This example inlines the copy_output function into any functions or regions calling
copy_output.

void copy_output(int *out, int out_lcl[OSize * OSize], int output) {
#pragma HLS INLINE
 // Calculate each work_item's result update location
 int stride = output * OSize * OSize;

 // Work_item updates output filter/image in DDR
 writeOut: for(int itr = 0; itr < OSize * OSize; itr++) {
 #pragma HLS PIPELINE
 out[stride + itr] = out_lcl[itr];
 }

See Also

• set_directive_inline

• pragma HLS allocation

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 534Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=pragma-hls-allocation-zof1504034359187.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=534

pragma HLS interface
Description

In C/C++ code, all input and output operations are performed, in zero time, through formal
function arguments. In a RTL design, these same input and output operations must be performed
through a port in the design interface and typically operate using a specific input/output (I/O)
protocol. For more information, see Defining Interfaces.

The INTERFACE pragma specifies how RTL ports are created from the function definition during
interface synthesis. The ports in the RTL implementation are derived from the following:

• Block-level I/O protocols: Provide signals to control when the function starts operation, and
indicate when function operation ends, is idle, and is ready for new inputs. The
implementation of a block-level protocol is:

○ Specified by the <mode> values ap_ctrl_none, ap_ctrl_hs, or ap_ctrl_chain. The
ap_ctrl_chain block protocol is the default.

○ Associated with the function name.

• Function arguments: Each function argument can be specified to have its own port-level (I/O)
interface protocol, such as valid handshake (ap_vld), or acknowledge handshake (ap_ack).
Port-level interface protocols are created for each argument in the top-level function and the
function return, if the function returns a value. The default I/O protocol created depends on
the type of C argument. After the block-level protocol has been used to start the operation of
the block, the port-level I/O protocols are used to sequence data into and out of the block.

TIP: Global variables required on the interface must be explicitly defined as an argument of the top-
level function as described in Global Variables. If a global variable is accessed, but all read and write
operations are local to the design, the resource is created in the design. There is no need for an I/O port
in the RTL.

TIP: The Vitis HLS tool automatically determines the I/O protocol used by any sub-functions. You cannot
specify the INTERFACE pragma or directive for sub-functions.

Specifying Burst Mode

When specifying burst-mode for interfaces, using the max_read_burst_length or
max_write_burst_length options (as described in the Syntax section) there are limitations
and related considerations that are derived from the AXI standard:

1. The burst length should be less than, or equal to 256 words per transaction, because ARLEN
& AWLEN are 8 bits; the actual burst length is AxLEN+1.

2. In total, less than 4 KB is transferred per burst transaction.

3. Do not cross the 4 KB address boundary.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 535Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=535

4. The bus width is specified as a power of 2, between 32 bits and 512 bits (that is, 32, 64, 128,
256, 512 bits) or in bytes: 4, 8, 16, 32, 64.

With the 4 KB limit, the max burst length for a bus width of:

• 4 bytes (32 bits) is 256 words transferred in a single burst transaction. In this case, the total
bytes transferred per transaction would be 1024.

• 8 bytes (64 bits) is 256 words transferred in a single burst transaction. The total bytes
transferred per transaction would be 2048.

• 16 bytes (128 bits) is 256 words transferred in a single burst transaction. The total bytes
transferred per transaction would be 4096.

• 32 bytes (256 bits) is 128 words transferred in a single burst transaction. The total bytes
transferred per transaction would be 4096.

• 64 bytes (512 bits) is 64 words transferred in a single burst transaction. The total bytes
transferred per transaction would be 4096.

TIP: The IP generated by the HLS tool might not actually perform the maximum burst length as this is
design dependent. Refer to AXI Burst Transfers for more information.

For example, pipelined accesses from a for-loop of 100 iterations will not fill the max burst
length when max_read_burst_length or max_write_burst_length is set to 128.

However, if the design is doing longer accesses than the specified maximum burst length, the
access will be split into multiple bursts. For example, a pipelined for-loop with 100 accesses,
and max_read_burst_length or max_write_burst_length of 64, will be split into 2
transactions: one sized to the max burst length (64), and one with the remaining data (burst of
length 36 words).

Syntax

Place the pragma within the boundaries of the function.

#pragma HLS interface mode=<mode> port=<name> bundle=<string> \
register register_mode=<mode> depth=<int> offset=<string> latency=<value>\
clock=<string> name=<string> storage_type=<value>\
num_read_outstanding=<int> num_write_outstanding=<int> \
max_read_burst_length=<int> max_write_burst_length=<int>

Where:

• mode=<mode>: Specifies the interface protocol mode for function arguments used by the
function, or the block-level control protocols. The mode can be specified as one of the
following:

• ap_none: No protocol. The interface is a data port.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 536Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=536

• ap_stable: No protocol. The interface is a data port. The HLS tool assumes the data port
is always stable after reset, which allows internal optimizations to remove unnecessary
registers.

• ap_vld: Implements the data port with an associated valid port to indicate when the
data is valid for reading or writing.

• ap_ack: Implements the data port with an associated acknowledge port to acknowledge
that the data was read or written.

• ap_hs: Implements the data port with associated valid and acknowledge ports to
provide a two-way handshake to indicate when the data is valid for reading and writing and
to acknowledge that the data was read or written.

• ap_ovld: Implements the output data port with an associated valid port to indicate
when the data is valid for reading or writing.

IMPORTANT! The HLS tool implements the input argument or the input half of any read/write
arguments with mode ap_none.

• ap_fifo: Implements the port with a standard FIFO interface using data input and output
ports with associated active-Low FIFO empty and full ports.

Note: You can only use this interface on read arguments or write arguments. The ap_fifo mode
does not support bidirectional read/write arguments.

• ap_memory: Implements array arguments as a standard RAM interface. If you use the RTL
design in the Vivado IP integrator, the memory interface appears as discrete ports.

• bram: Implements array arguments as a standard RAM interface. If you use the RTL design
in the IP integrator, the memory interface appears as a single port.

• axis: Implements all ports as an AXI4-Stream interface.

• s_axilite: Implements all ports as an AXI4-Lite interface. The HLS tool produces an
associated set of C driver files during the Export RTL process.

• m_axi: Implements all ports as an AXI4 interface. You can use the config_interface
command to specify either 32-bit (default) or 64-bit address ports and to control any
address offset.

• ap_ctrl_chain: Implements a set of block-level control ports to start the design
operation, continue operation, and indicate when the design is idle, done, and ready
for new input data.

Note: The ap_ctrl_chain interface mode is similar to ap_ctrl_hs but provides an additional
input signal ap_continue to apply back pressure. Xilinx recommends using the ap_ctrl_chain
block-level I/O protocol when chaining the HLS tool blocks together.

Note: The ap_ctrl_chain is the default block-level I/O protocol.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 537Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=537

• ap_ctrl_hs: Implements a set of block-level control ports to start the design operation
and to indicate when the design is idle, done, and ready for new input data.

• ap_ctrl_none: No block-level I/O protocol.

Note: Using the ap_ctrl_none mode might prevent the design from being verified using the
C//RTL co-simulation feature.

• port=<name>: Specifies the name of the function argument or function return which the
INTERFACE pragma applies to.

TIP: Block-level I/O protocols (ap_ctrl_none, ap_ctrl_hs, or ap_ctrl_chain) can be
assigned to a port for the function return  value.

• bundle=<string>: By default, the HLS tool groups or bundles function arguments with
compatible options into interface ports in the RTL code. All AXI4-Lite (s_axilite) interfaces
are bundled into a single AXI4-Lite port whenever possible. Similarly, all function arguments
specified as an AXI4 (m_axi) interface are bundled into a single AXI4 port by default. All
interface ports with compatible options, such as mode, offset, and bundle, are grouped
into a single interface port. The port name is derived automatically from a combination of the
mode and bundle, or is named as specified by -name.

IMPORTANT! When specifying the bundle  name you should use all lower-case characters.

• register: An optional keyword to register the signal and any relevant protocol signals, and
causes the signals to persist until at least the last cycle of the function execution. This option
applies to the following interface modes:

• s_axilite

• ap_fifo

• ap_none

• ap_hs

• ap_ack

• ap_vld

• ap_ovld

• ap_stable

TIP: The -register_io  option of the config_interface  command globally controls
registering all inputs/outputs on the top function.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 538Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=538

• register_mode=<forward|reverse|both|off>: This option applies to AXI4-Stream
interfaces, and specifies if registers are placed on the forward path (TDATA and TVALID), the
reverse path (TREADY), on both paths (TDATA, TVALID, and TREADY), or if none of the ports
signals are to be registered (off). The default is both. AXI4-Stream side-channel signals are
considered to be data signals and are registered whenever the TDATA is registered.

• depth=<int>: Specifies the maximum number of samples for the test bench to process. This
setting indicates the maximum size of the FIFO needed in the verification adapter that the
HLS tool creates for RTL co-simulation.

TIP: While depth  is usually an option, it is required for m_axi  interfaces and determines the amount
of resources allocated for the adapter as explained in AXI4 Master Interface.

• offset=<string>: Controls the address offset in AXI4-Lite (s_axilite) and AXI4
memory mapped (m_axi) interfaces for the specified port.

• In an s_axilite interface, <string> specifies the address in the register map.

• In an m_axi interface this option overrides the global option specified by the
config_interface -m_axi_offset option, and <string> is specified as:

○ off: Do not generate an offset port.

○ direct: Generate a scalar input offset port.

○ slave: Generate an offset port and automatically map it to an AXI4-Lite slave interface.
This is the default offset.

• clock=<name>: Optionally specified only for interface mode s_axilite. This defines the
clock signal to use for the interface. By default, the AXI4-Lite interface clock is the same clock
as the system clock. This option is used to specify a separate clock for the AXI4-Lite
(s_axilite) interface.

TIP: If the bundle  option is used to group multiple top-level function arguments into a single AXI4-
Lite interface, the clock option need only be specified on one of the bundle members.

• name=<string>: Specifies a name for the port which will be used in the generated RTL.

• latency=<value>: When mode is m_axi, this specifies the expected latency of the AXI4
interface, allowing the design to initiate a bus request a number of cycles (latency) before the
read or write is expected. If this figure is too low, the design will be ready too soon and might
stall waiting for the bus. If this figure is too high, bus access can be granted but the bus might
stall waiting on the design to start the access.

• storage_impl=<impl>: For use with s_axilite only. This options defines a storage
implementation to assign to the interface. Supported implementation values include auto,
bram, and uram. The default is auto.

TIP: uram  is a synchronous memory with only a single clock for two ports. Therefore uram  cannot be
specified for an s_axilite  adapter with a second clock.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 539Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=539

• storage_type=<value>: For use with ap_memory and bram interfaces only. This options
specifies a storage type (that is, RAM_T2P) to assign to the variable.Supported types include:
ram_1p, ram_1wnr, ram_2p, ram_s2p, ram_t2p, rom_1p, rom_2p, and rom_np.

TIP: This can also be specified using the BIND_STORAGE pragma or directive for an object not on the
interface.

• num_read_outstanding=<int>: For AXI4 (m_axi) interfaces, this option specifies how
many read requests can be made to the AXI4 bus, without a response, before the design stalls.
This implies internal storage in the design, a FIFO of size:
num_read_outstanding*max_read_burst_length*word_size.

• num_write_outstanding=<int>: For AXI4 (m_axi) interfaces, this option specifies how
many write requests can be made to the AXI4 bus, without a response, before the design
stalls. This implies internal storage in the design, a FIFO of size:
num_write_outstanding*max_write_burst_length*word_size.

• max_read_burst_length=<int>:

• For AXI4 (m_axi) interfaces, this option specifies the maximum number of data values read
during a burst transfer.

• max_write_burst_length=<int>:

• For AXI4 (m_axi) interfaces, this option specifies the maximum number of data values
written during a burst transfer.

TIP: If the port is a read-only port, then set the num_write_outstanding=1  and
max_write_burst_length=2  to conserve memory resources. For write-only ports, set the
num_read_outstanding=1  and max_read_burst_length=2.

• -max_widen_bitwidth <int>: Specifies the maximum bit width available for the
interface when automatically widening the interface. This overrides the global value specified
by the config_interface -m_axi_max_bitwidth command.

Example 1

In this example, both function arguments are implemented using an AXI4-Stream interface:

void example(int A[50], int B[50]) {
 //Set the HLS native interface types
 #pragma HLS INTERFACE mode=axis port=A
 #pragma HLS INTERFACE mode=axis port=B
 int i;
 for(i = 0; i < 50; i++){
 B[i] = A[i] + 5;
 }
}

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 540Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=540

Example 2

The following turns off block-level I/O protocols, and is assigned to the function return value:

#pragma HLS interface mode=ap_ctrl_none port=return

The function argument InData is specified to use the ap_vld interface and also indicates the
input should be registered:

#pragma HLS interface mode=ap_vld register port=InData

Example 3

This example defines the INTERFACE standards for the ports of the top-level transpose
function. Notice the use of the bundle= option to group signals.

// TOP LEVEL - TRANSPOSE
void transpose(int* input, int* output) {
 #pragma HLS INTERFACE mode=m_axi port=input offset=slave bundle=gmem0
 #pragma HLS INTERFACE mode=m_axi port=output offset=slave bundle=gmem1

 #pragma HLS INTERFACE mode=s_axilite port=input bundle=control
 #pragma HLS INTERFACE mode=s_axilite port=output bundle=control
 #pragma HLS INTERFACE mode=s_axilite port=return bundle=control

 #pragma HLS dataflow

See Also

• set_directive_interface

• pragma HLS bind_storage

pragma HLS latency
Description

Specifies a minimum or maximum latency value, or both, for the completion of functions, loops,
and regions.

• Latency: Number of clock cycles required to produce an output.

• Function latency: Number of clock cycles required for the function to compute all output
values, and return.

• Loop latency: Number of cycles to execute all iterations of the loop.

Vitis HLS always tries to minimize latency in the design. When the LATENCY pragma is specified,
the tool behavior is as follows:

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 541Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=knt1585343372285.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://docs.xilinx.com/access/sources/dita/topic?resourceid=pragma-hls-bind_storage-chr1584844747152.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=541

• Latency is greater than the minimum, or less than the maximum: The constraint is satisfied. No
further optimizations are performed.

• Latency is less than the minimum: If the HLS tool can achieve less than the minimum specified
latency, it extends the latency to the specified value, potentially enabling increased sharing.

• Latency is greater than the maximum: If the HLS tool cannot schedule within the maximum
limit, it increases effort to achieve the specified constraint. If it still fails to meet the maximum
latency, it issues a warning, and produces a design with the smallest achievable latency in
excess of the maximum.

TIP: You can also use the LATENCY pragma to limit the efforts of the tool to find an optimum solution.
Specifying latency constraints for scopes within the code: loops, functions, or regions, reduces the possible
solutions within that scope and can improve tool runtime. Refer to Improving Synthesis Runtime and
Capacity for more information.

If the intention is to limit the total latency of all loop iterations, the latency directive should be
applied to a region that encompasses the entire loop, as in this example:

Region_All_Loop_A: {
#pragma HLS latency max=10
Loop_A: for (i=0; i<N; i++)
 {
 ..Loop Body...
 }
}

In this case, even if the loop is unrolled, the latency directive sets a maximum limit on all loop
operations.

If Vitis HLS cannot meet a maximum latency constraint it relaxes the latency constraint and tries
to achieve the best possible result.

If a minimum latency constraint is set and Vitis HLS can produce a design with a lower latency
than the minimum required it inserts dummy clock cycles to meet the minimum latency.

Syntax

Place the pragma within the boundary of a function, loop, or region of code where the latency
must be managed.

#pragma HLS latency min=<int> max=<int>

Where:

• min=<int>: Optionally specifies the minimum latency for the function, loop, or region of
code.

• max=<int>: Optionally specifies the maximum latency for the function, loop, or region of
code.

Note: Although both min and max are described as optional, at least one must be specified.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 542Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=542

Example 1

Function foo is specified to have a minimum latency of 4 and a maximum latency of 8.

int foo(char x, char a, char b, char c) {
 #pragma HLS latency min=4 max=8
 char y;
 y = x*a+b+c;
 return y
}

Example 2

In the following example, loop_1 is specified to have a maximum latency of 12. Place the
pragma in the loop body as shown.

void foo (num_samples, ...) {
 int i;
 ...
 loop_1: for(i=0;i< num_samples;i++) {
 #pragma HLS latency max=12
 ...
 result = a + b;
 }
}

Example 3

The following example creates a code region and groups signals that need to change in the same
clock cycle by specifying zero latency.

// create a region { } with a latency = 0
{
 #pragma HLS LATENCY max=0 min=0
 *data = 0xFF;
 *data_vld = 1;
}

See Also

• set_directive_latency

pragma HLS loop_flatten
Description

Allows nested loops to be flattened into a single loop hierarchy with improved latency.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 543Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=gpc1585343452979.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=543

In the RTL implementation, it requires one clock cycle to move from an outer loop to an inner
loop, and from an inner loop to an outer loop. Flattening nested loops allows them to be
optimized as a single loop. This saves clock cycles, potentially allowing for greater optimization of
the loop body logic.

Apply the LOOP_FLATTEN pragma to the loop body of the inner-most loop in the loop hierarchy.
Only perfect and semi-perfect loops can be flattened in this manner:

• Perfect loop nests:

• Only the innermost loop has loop body content.

• There is no logic specified between the loop statements.

• All loop bounds are constant.

• Semi-perfect loop nests:

• Only the innermost loop has loop body content.

• There is no logic specified between the loop statements.

• The outermost loop bound can be a variable.

• Imperfect loop nests: When the inner loop has variable bounds (or the loop body is not
exclusively inside the inner loop), try to restructure the code, or unroll the loops in the loop
body to create a perfect loop nest.

Syntax

Place the pragma in the C source within the boundaries of the nested loop.

#pragma HLS loop_flatten off

Where:

• off: Optional keyword. Prevents flattening from taking place, and can prevent some loops
from being flattened while all others in the specified location are flattened.

IMPORTANT! The presence of the LOOP_FLATTEN pragma or directive enables the optimization. The
addition of off  disables it.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 544Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=544

Example 1

Flattens loop_1 in function foo and all (perfect or semi-perfect) loops above it in the loop
hierarchy, into a single loop. Place the pragma in the body of loop_1.

void foo (num_samples, ...) {
 int i;
 ...
 loop_1: for(i=0;i< num_samples;i++) {
 #pragma HLS loop_flatten
 ...
 result = a + b;
 }
}

Example 2

Prevents loop flattening in loop_1.

loop_1: for(i=0;i< num_samples;i++) {
 #pragma HLS loop_flatten off
 ...

See Also

• set_directive_loop_flatten

• pragma HLS loop_merge

• pragma HLS unroll

pragma HLS loop_merge
Description

Merges consecutive loops into a single loop to reduce overall latency, increase sharing, and
improve logic optimization. Merging loops:

• Reduces the number of clock cycles required in the RTL to transition between the loop-body
implementations.

• Allows the loops be implemented in parallel (if possible).

The LOOP_MERGE pragma will seek to merge all loops within the scope it is placed. For example,
if you apply a LOOP_MERGE pragma in the body of a loop, the Vitis HLS tool applies the pragma
to any sub-loops within the loop but not to the loop itself.

The rules for merging loops are:

• If the loop bounds are variables, they must have the same value (number of iterations).

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 545Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=wdw1585343459092.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://docs.xilinx.com/access/sources/dita/topic?resourceid=pragma-hls-loop_merge-rzx1504034366923.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://docs.xilinx.com/access/sources/dita/topic?resourceid=pragma-hls-unroll-uyd1504034366571.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=545

• If the loop bounds are constants, the maximum constant value is used as the bound of the
merged loop.

• Loops with both variable bounds and constant bounds cannot be merged.

• The code between loops to be merged cannot have side effects. Multiple execution of this
code should generate the same results (a=b is allowed, a=a+1 is not).

• Loops cannot be merged when they contain FIFO reads. Merging changes the order of the
reads. Reads from a FIFO or FIFO interface must always be in sequence.

Syntax

Place the pragma in the C source within the required scope or region of code.

#pragma HLS loop_merge force

Where:

• force: Optional keyword to force loops to be merged even when the HLS tool issues a
warning.

IMPORTANT! In this case, you must manually ensure that the merged loop will function correctly.

Examples

Merges all consecutive loops in function foo into a single loop.

void foo (num_samples, ...) {
 #pragma HLS loop_merge
 int i;
 ...
 loop_1: for(i=0;i< num_samples;i++) {
 ...

All loops inside loop_2 (but not loop_2 itself) are merged by using the force option. Place the
pragma in the body of loop_2.

loop_2: for(i=0;i< num_samples;i++) {
#pragma HLS loop_merge force
...

See Also

• set_directive_loop_merge

• pragma HLS loop_flatten

• pragma HLS unroll

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 546Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=erm1585343464361.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://docs.xilinx.com/access/sources/dita/topic?resourceid=pragma-hls-loop_flatten-igd1504034366745.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://docs.xilinx.com/access/sources/dita/topic?resourceid=pragma-hls-unroll-uyd1504034366571.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=546

pragma HLS loop_tripcount
Description

When manually applied to a loop, specifies the total number of iterations performed by a loop.

IMPORTANT! The LOOP_TRIPCOUNT pragma or directive is for analysis only, and does not impact the
results of synthesis.

The Vitis HLS tool reports the total latency of each loop, which is the number of clock cycles to
execute all iterations of the loop. Therefore, the loop latency is a function of the number of loop
iterations, or tripcount.

The tripcount can be a constant value. It can depend on the value of variables used in the loop
expression (for example, x < y), or depend on control statements used inside the loop. In some
cases, the HLS tool cannot determine the tripcount, and the latency is unknown. This includes
cases in which the variables used to determine the tripcount are:

• Input arguments or

• Variables calculated by dynamic operation.

In the following example, the maximum iteration of the for-loop is determined by the value of
input num_samples. The value of num_samples is not defined in the C function, but comes
into the function from the outside.

void foo (num_samples, ...) {
 int i;
 ...
 loop_1: for(i=0;i< num_samples;i++) {
 ...
 result = a + b;
 }
}

In cases where the loop latency is unknown or cannot be calculated, the LOOP_TRIPCOUNT
pragma lets you specify minimum, maximum, and average iterations for a loop. This lets the tool
analyze how the loop latency contributes to the total design latency in the reports, and helps you
determine appropriate optimizations for the design.

TIP: If a C assert macro is used in to limit the size of a loop variable Vitis HLS can use it to both define loop
limits for reporting, and create hardware that is exactly sized to these limits.

Syntax

Place the pragma in the C source within the body of the loop.

#pragma HLS loop_tripcount min=<int> max=<int> avg=<int>

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 547Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=547

Where:

• max= <int>: Specifies the maximum number of loop iterations.

• min=<int>: Specifies the minimum number of loop iterations.

• avg=<int>: Specifies the average number of loop iterations.

Examples

In the following example, loop_1 in function foo is specified to have a minimum tripcount of
12, and a maximum tripcount of 16:

void foo (num_samples, ...) {
 int i;
 ...
 loop_1: for(i=0;i< num_samples;i++) {
 #pragma HLS loop_tripcount min=12 max=16
 ...
 result = a + b;
 }
}

See Also

• set_directive_loop_tripcount

pragma HLS occurrence
Description

When pipelining functions or loops, the OCCURRENCE pragma specifies that the code in a
pipelined function call within the pipelined function or loop is executed less frequently than the
code in the enclosing function or loop. This allows the pipelined call that is executed less often to
be pipelined at a slower rate, thus potentially improving the resource sharing potential within the
top-level pipeline. To determine the OCCURRENCE pragma, do the following:

• A loop iterates <N> times.

• However, part of the loop body is enabled by a conditional statement, and as a result only
executes <M> times, where <N> is an integer multiple of <M>.

• The conditional code has an occurrence that is N/M times slower than the rest of the loop
body.

For example, in a loop that executes 10 times, a conditional statement within the loop only
executes two times has an occurrence of 5 (or 10/2).

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 548Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=mko1585343471006.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=548

Identifying a region with the OCCURRENCE pragma allows the functions and loops in that region
to be pipelined with a higher initiation interval that is slower than the enclosing function or loop.

Syntax

Place the pragma in the C source within a block of code that contains the pipelined function
call(s).

#pragma HLS occurrence cycle=<int>

Where:

• cycle=<int>: Specifies the occurrence N/M.

• <N>: Number of times the enclosing function or loop is executed.

• <M>: Number of times the conditional region is executed.

IMPORTANT! <N>  must be an integer multiple of <M>.

Examples

In this example, the call of subfunction within the if statement (but not the memory read and
write, since they are not inside a pipelined function) has an occurrence of 4 (it executes at a rate
four times less often than the surrounding code that contains it). Hence, while without the
occurrence pragma it would be pipelined with the same II as the caller, with the occurrence
pragma it will be pipelined with an II=4. This will expose more resource sharing oppportunities
within it and with other functions.

void subfunction(...) {
#pragma HLS pipeline II=...
// Without the occurrence pragma,
// this will be automatically pipelined with an II=1,
// regardless of its own pipeline pragma,
// since it is called in a pipeline with II=1
// With the pragma, it has an II=4.
 ...
}
for (int i = 0; i < 16; i++) {
#pragma HLS pipeline II=1
 if (i % 4 == 0) {
#pragma HLS occurrence cycle=4
 subfunction(...);
 a[i+1] = b[i];
 }
}

See Also

• set_directive_occurrence

• pragma HLS pipeline

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 549Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=yth1585343748232.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://docs.xilinx.com/access/sources/dita/topic?resourceid=pragma-hls-pipeline-fde1504034360078.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=549

pragma HLS performance
Description

Note: The PERFORMANCE pragma applies to loops and loop nests, and requires a known loop tripcount to
determine the performance. If your loop has a variable tripcount then you must also specify the
TRIPCOUNT pragma.

The PERFORMANCE pragma lets you specify a high-level constraint (target_ti) defining the
number of clock cycles between successive starts of a loop, and lets the tool infer lower-level
UNROLL, PIPELINE, ARRAY_PARTITION, and INLINE pragmas needed to achieve the desired
result. The PERFORMANCE pragma does not guarantee the specified value will be achieved, and
so it is only a target.

Note: The INLINE pragma is applied automatically to functions inside any pipelined loop that has II=1 to
improve throughput. If you apply the PERFORMANCE pragma that infers a pipeline with II=1, it will also
trigger the auto-inline optimization. You can disable this for specific functions by using #pragma HLS
INLINE OFF

The target transaction interval (target_ti) specifies a performance target for loops, where a
transaction is a complete set of loop iterations (tripcount) and the interval is the time between
when the first transaction starts and the second transaction starts.

• Target Transaction Interval (target_ti): Specifies the number of clock cycles between
successive starts of the loop. In other words, the clock cycles from the start of the first
transaction of a loop, or nested loop, and the start of the next transaction of the loop.

The transaction interval is the initiation interval (II) of the loop times the number of iterations, or
tripcount: target_ti = II * loop tripcount. Conversely, target_ti = FreqHz / Operations per
second.

For example, assuming an image processing function that processes a single frame per invocation
with a throughput goal of 60 fps, then the target throughput for the function is 60 invocations
per second. If the clock frequency is 180 MHz, then target_ti is 180M/60, or 3 million clock
cycles per function invocation.

Syntax

Place the pragma within the boundary a loop, or the outer loop of a loop nest.

#pragma HLS performance target_ti=<value>

Where:

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 550Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=550

• target_ti=<value>: Specifies a target transaction interval defined as the number of clock
cycles for the function, loop, or region of code to complete an iteration. The <value> can be
specified as an integer, floating point, or constant expression that is resolved by the tool as an
integer.

Note: A warning will be returned if truncation occurs.

Example 1

The outer loop is specified to have target transaction interval of 1000 clock cycles.

 for (int i =0; i < 1000; ++i) {
#pragma HLS performance target_ti=1000
 for (int j = 0; j < 8; ++j) {
 int tmp = b_buf[j].read();
 b[i * 8 + j] = tmp + 2;
 }
 }

See Also

• set_directive_performance

• pragma HLS inline

pragma HLS pipeline
Description

Reduces the initiation interval (II) for a function or loop by allowing the concurrent execution of
operations. The default type of pipeline is defined by the config_compile -
pipeline_style command, but can be overridden in the PIPELINE pragma or directive.

A pipelined function or loop can process new inputs every <N> clock cycles, where <N> is the II
of the loop or function. An II of 1 processes a new input every clock cycle. You can specify the
initiation interval through the use of the II option for the pragma.

As a default behavior, with the PIPELINE pragma or directive Vitis HLS will generate the
minimum II for the design according to the specified clock period constraint. The emphasis will be
on meeting timing, rather than on achieving II unless the II option is specified.

If the Vitis HLS tool cannot create a design with the specified II, it issues a warning and creates a
design with the lowest possible II.

You can then analyze this design with the warning message to determine what steps must be
taken to create a design that satisfies the required initiation interval.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 551Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=551

Pipelining a loop allows the operations of the loop to be implemented in a concurrent manner as
shown in the following figure. In the figure, (A) shows the default sequential operation where
there are three clock cycles between each input read (II=3), and it requires eight clock cycles
before the last output write is performed. (B) shows the pipelined operations that show one cycle
between reads (II=1), and 4 cycles to the last write.

Figure 121: Loop Pipeline

void func(m,n,o) {

 for (i=2;i>=0;i--) {
 op_Read;
 op_Compute;
 op_Write;

 }
}

4 cycles

RD

3 cycles

8 cycles

1 cycle
RD CMP WR

RD CMP WR

RD CMP WR

(A) Without Loop Pipelining (B) With Loop Pipelining
X14277-110217

CMP WR RD CMP WR RD CMP WR

IMPORTANT! Loop carry dependencies can prevent pipelining. Use the DEPENDENCE pragma or
directive to provide additional information to overcome loop-carry dependencies, and allow loops to be
pipelined (or pipelined with lower intervals).

Syntax

Place the pragma in the C source within the body of the function or loop.

#pragma HLS pipeline II=<int> off rewind style=<value>

Where:

• II=<int>: Specifies the desired initiation interval for the pipeline. The HLS tool tries to meet
this request. Based on data dependencies, the actual result might have a larger initiation
interval.

• off: Optional keyword. Turns off pipeline for a specific loop or function. This can be used to
disable pipelining for a specific loop when config_compile -pipeline_loops is used to
globally pipeline loops.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 552Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=552

• rewind: Optional keyword. Enables rewinding as described in Rewinding Pipelined Loops for
Performance. This enables continuous loop pipelining with no pause between one execution
of the loop ending and the next execution starting. Rewinding is effective only if there is one
single loop (or a perfect loop nest) inside the top-level function. The code segment before the
loop:

• Is considered as initialization.

• Is executed only once in the pipeline.

• Cannot contain any conditional operations (if-else).

TIP: This feature is only supported for pipelined loops; it is not supported for pipelined functions.

• style=<stp | frp | flp>: Specifies the type of pipeline to use for the specified
function or loop. For more information on pipeline styles refer to Flushing Pipelines and
Pipeline Types. The types of pipelines include:

• stp: Stall pipeline. Runs only when input data is available otherwise it stalls. This is the
default setting, and is the type of pipeline used by Vitis HLS for both loop and function
pipelining. Use this when a flushable pipeline is not required. For example, when there are
no performance or deadlock issue due to stalls.

• flp: This option defines the pipeline as a flushable pipeline. This type of pipeline typically
consumes more resources and/or can have a larger II because resources cannot be shared
among pipeline iterations.

• frp: Free-running, flushable pipeline. Runs even when input data is not available. Use this
when you need better timing due to reduced pipeline control signal fanout, or when you
need improved performance to avoid deadlocks. However, this pipeline style can consume
more power as the pipeline registers are clocked even if there is no data.

IMPORTANT! This is a hint not a hard constraint. The tool checks design conditions for enabling
pipelining. Some loops might not conform to a particular style and the tool reverts to the default style
(stp) if necessary.

Examples

In this example, function func is pipelined with an initiation interval of 1.

void func { a, b, c, d} {
 #pragma HLS pipeline II=1
 ...
}

See Also

• set_directive_pipeline

• pragma HLS dependence

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 553Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=muj1585343754477.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://docs.xilinx.com/access/sources/dita/topic?resourceid=pragma-hls-dependence-dxe1504034360397.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=553

• config_compile

pragma HLS protocol
Description

This commands specifies a region of code, a protocol region, in which no clock operations will be
inserted by Vitis HLS unless explicitly specified in the code. Vitis HLS will not insert any clocks
between operations in the region, including those which read from or write to function
arguments. The order of read and writes will therefore be strictly followed in the synthesized
RTL.

A region of code can be created in the C/C++ code by enclosing the region in braces "{ }" and
naming it. The following defines a region named io_section:

io_section:{
...
lines of code
...
}

A clock operation can be explicitly specified in C/C++ code using an ap_wait() statement, and
may be specified in C++ code by using the wait() statement. The ap_wait and wait
statements have no effect on the simulation of the design.

Syntax

Place the pragma in the C source within the body of the function or protocol region.

#pragma HLS protocol [floating | fixed]

Options

• floating: Lets code statements outside the protocol region overlap and execute in parallel
with statements in the protocol region in the final RTL. The protocol region remains cycle
accurate, but outside operations can occur at the same time. This is the default mode.

• fixed: The fixed mode ensures that statements outside the protocol region do not execute in
parallel with the protocol region.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 554Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=iuh1585334861472.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=554

Examples

This example defines a protocol region, io_section in function foo where the pragma defines
that region as a floating protocol region as the default mode:

io_section: {
#pragma HLS protocol
...
}

See Also

• set_directive_protocol

pragma HLS reset
Description

Adds or removes resets for specific state variables (global or static).

The reset port is used to restore the registers and block RAM, connected to the port, to an initial
value any time the reset signal is applied. The presence and behavior of the RTL reset port is
controlled using the config_rtl settings. The reset settings include the ability to set the
polarity of the reset, and specify whether the reset is synchronous or asynchronous, but more
importantly it controls, through the reset option, which registers are reset when the reset signal
is applied. For more information, see Controlling Initialization and Reset Behavior.

Greater control over reset is provided through the RESET pragma. If a variable is a static or
global, the RESET pragma is used to explicitly add a reset, or the variable can be removed from
the reset by turning off the pragma. This can be particularly useful when static or global arrays
are present in the design.

Syntax

Place the pragma in the C source within the boundaries of the variable life cycle.

#pragma HLS reset variable=<a> off

Where:

• variable=<a>: Specifies the variable to which the RESET pragma is applied.

• off: Indicates that reset is not generated for the specified variable.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 555Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=xpy1584808547974.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=555

Example 1

This example adds reset to the variable a in function foo even when the global reset setting is
none or control.

void foo(int in[3], char a, char b, char c, int out[3]) {
#pragma HLS reset variable=a

Example 2

Removes reset from variable a in function foo even when the global reset setting is state or
all.

void foo(int in[3], char a, char b, char c, int out[3]) {
#pragma HLS reset variable=a off

See Also

• set_directive_reset

• config_rtl

pragma HLS stable
Description

The STABLE pragma is applied to arguments of a DATAFLOW or PIPELINE region and is used to
indicate that an input or output of this region can be ignored when generating the
synchronizations at entry and exit of the DATAFLOW region. This means that the reading
processes (resp. read accesses) of that argument do not need to be part of the “first stage” of the
task-level (resp. fine-grain) pipeline for inputs, and the writing process (resp. write accesses) do
not need to be part of the last stage of the task-level (resp. fine-grain) pipeline for outputs.

The pragma can be specified at any point in the hierarchy, on a scalar or an array, and
automatically applies to all the DATAFLOW or PIPELINE regions below that point. The effect of
STABLE for an input is that a DATAFLOW or PIPELINE region can start another iteration even
though the value of the previous iteration has not been read yet. For an output, this implies that
a write of the next iteration can occur although the previous iteration is not done.

Syntax

#pragma HLS stable variable=<a>

Where:

• variable=<a>: Specifies the variable to which the STABLE pragma is applied.

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 556Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=zyf1585343882118.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=556

Examples

In the following example, without the STABLE pragma, proc1 and proc2 would be
synchronized to acknowledge the reading of their inputs (including A). With the pragma, A is no
longer considered as an input that needs synchronization.

void dataflow_region(int A[...], int B[…] ...
#pragma HLS stable variable=A
#pragma HLS dataflow
 proc1(...);
 proc2(A, ...);

See Also

• set_directive_stable

• pragma HLS dataflow

• pragma HLS pipeline

pragma HLS stream
Description

By default, array variables are implemented as RAM:

• Top-level function array parameters are implemented as a RAM interface port.

• General arrays are implemented as RAMs for read-write access.

• Arrays involved in sub-functions, or loop-based DATAFLOW optimizations are implemented
as a RAM ping pong buffer channel.

If the data stored in the array is consumed or produced in a sequential manner, a more efficient
communication mechanism is to use streaming data as specified by the STREAM pragma, where
FIFOs are used instead of RAMs.

IMPORTANT! When an argument of the top-level function is specified as INTERFACE type ap_fifo ,
the array is automatically implemented as streaming. See Defining Interfaces for more information.

Syntax

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS stream variable=<variable> type=<type> depth=<int>

Where:

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 557Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=557

• variable=<variable>: Specifies the name of the array to implement as a streaming
interface.

• depth=<int>: Relevant only for array streaming in DATAFLOW channels. By default, the
depth of the FIFO implemented in the RTL is the same size as the array specified in the C
code. This option lets you modify the size of the FIFO to specify a different depth.

When the array is implemented in a DATAFLOW region, it is common to use the depth
option to reduce the size of the FIFO. For example, in a DATAFLOW region when all loops and
functions are processing data at a rate of II=1, there is no need for a large FIFO because data
is produced and consumed in each clock cycle. In this case, the depth option can be used to
reduce the FIFO size to 1 to substantially reduce the area of the RTL design.

TIP: The config_dataflow -depth  command provides the ability to stream all arrays in a
DATAFLOW region. The depth  option specified in the STREAM pragma overrides the
config_dataflow -depth  setting for the specified <variable>.

• type=<arg>: Specify a mechanism to select between FIFO, PIPO, synchronized shared
(shared), and un-synchronized shared (unsync). The supported types include:

• fifo: A FIFO buffer with the specified depth.

• pipo: A regular Ping-Pong buffer, with as many “banks” as the specified depth (default is
2).

• shared: A shared channel, synchronized like a regular Ping-Pong buffer, with depth, but
without duplicating the array data. Consistency can be ensured by setting the depth small
enough, which acts as the distance of synchronization between the producer and
consumer.

TIP: The default depth for shared is 1.

• unsync: Does not have any synchronization except for individual memory reads and
writes. Consistency (read-write and write-write order) must be ensured by the design itself.

Example 1

The following example specifies array A[10] to be streaming, and implemented as a FIFO.

#pragma HLS STREAM variable=A

Example 2

In this example, array B is set to streaming with a FIFO depth of 12.

#pragma HLS STREAM variable=B depth=12 type=fifo

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 558Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=558

Example 3

Array C has streaming implemented as a PIPO.

#pragma HLS STREAM variable=C type=pipo

See Also

• set_directive_stream

• pragma HLS dataflow

• pragma HLS interface

• config_dataflow

pragma HLS top
Description

Attaches a name to a function, which can then be used with the set_top command to
synthesize the function and any functions called from the specified top-level. This is typically
used to synthesize member functions of a class in C/C++.

Specify the TOP pragma in an active solution, and then use the set_top command with the
new name.

Syntax

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS top name=<string>

Where:

• name=<string>: Specifies the name to be used by the set_top command.

Examples

Function foo_long_name is designated the top-level function, and renamed to DESIGN_TOP.
After the pragma is placed in the code, the set_top command must still be issued from the Tcl
command line, or from the top-level specified in the IDE project settings.

void foo_long_name () {
 #pragma HLS top name=DESIGN_TOP
 ...
}

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 559Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=559

Followed by the set_top DESIGN_TOP command.

See Also

• set_directive_top

• set_top

pragma HLS unroll
Description

You can unroll loops to create multiple independent operations rather than a single collection of
operations. The UNROLL pragma transforms loops by creating multiples copies of the loop body
in the RTL design, which allows some or all loop iterations to occur in parallel.

Loops in the C/C++ functions are kept rolled by default. When loops are rolled, synthesis creates
the logic for one iteration of the loop, and the RTL design executes this logic for each iteration of
the loop in sequence. A loop is executed for the number of iterations specified by the loop
induction variable. The number of iterations might also be impacted by logic inside the loop body
(for example, break conditions or modifications to a loop exit variable). Using the UNROLL
pragma you can unroll loops to increase data access and throughput.

The UNROLL pragma allows the loop to be fully or partially unrolled. Fully unrolling the loop
creates a copy of the loop body in the RTL for each loop iteration, so the entire loop can be run
concurrently. Partially unrolling a loop lets you specify a factor N, to create N copies of the loop
body and reduce the loop iterations accordingly.

TIP: To unroll a loop completely, the loop bounds must be known at compile time. This is not required for
partial unrolling.

Partial loop unrolling does not require N to be an integer factor of the maximum loop iteration
count. The Vitis HLS tool adds an exit check to ensure that partially unrolled loops are
functionally identical to the original loop. For example, given the following code:

for(int i = 0; i < X; i++) {
 pragma HLS unroll factor=2
 a[i] = b[i] + c[i];
}

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 560Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?resourceid=iqn1585344049689.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://docs.xilinx.com/access/sources/dita/topic?resourceid=tit1585340262816.html&Doc_Version=2022.2%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=560

Loop unrolling by a factor of 2 effectively transforms the code to look like the following code
where the break construct is used to ensure the functionality remains the same, and the loop
exits at the appropriate point.

for(int i = 0; i < X; i += 2) {
 a[i] = b[i] + c[i];
 if (i+1 >= X) break;
 a[i+1] = b[i+1] + c[i+1];
}

In the example above, because the maximum iteration count, X, is a variable, the HLS tool might
not be able to determine its value, so it adds an exit check and control logic to partially unrolled
loops. However, if you know that the specified unrolling factor, 2 in this example, is an integer
factor of the maximum iteration count X, the skip_exit_check option lets you remove the
exit check and associated logic. This helps minimize the area and simplify the control logic.

TIP: When the use of pragmas like ARRAY_PARTITION or ARRAY_RESHAPE let more data be accessed in
a single clock cycle, the HLS tool automatically unrolls any loops consuming this data, if doing so improves
the throughput. The loop can be fully or partially unrolled to create enough hardware to consume the
additional data in a single clock cycle. This automatic unrolling is controlled using the config_unroll 
command.

Syntax

Place the pragma in the C source within the body of the loop to unroll.

#pragma HLS unroll factor=<N> region skip_exit_check

Where:

• factor=<N>: Specifies a non-zero integer indicating that partial unrolling is requested. The
loop body is repeated the specified number of times, and the iteration information is adjusted
accordingly. If factor= is not specified, the loop is fully unrolled.

• skip_exit_check: Optional keyword that applies only if partial unrolling is specified with
factor=. The elimination of the exit check is dependent on whether the loop iteration count
is known or unknown:

• Fixed bounds

No exit condition check is performed if the iteration count is a multiple of the factor.

If the iteration count is not an integer multiple of the factor, the tool:

○ Prevents unrolling.

○ Issues a warning that the exit check must be performed to proceed.

• Variable bounds

The exit condition check is removed. You must ensure that:

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 561Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=561

○ The variable bounds is an integer multiple of the factor.

○ No exit check is in fact required.

Example 1

The following example fully unrolls loop_1 in function foo. Place the pragma in the body of
loop_1 as shown.

loop_1: for(int i = 0; i < N; i++) {
 #pragma HLS unroll
 a[i] = b[i] + c[i];
}

Example 2

This example specifies an unroll factor of 4 to partially unroll loop_2 of function foo, and
removes the exit check.

void foo (...) {
 int8 array1[M];
 int12 array2[N];
 ...
 loop_2: for(i=0;i<M;i++) {
 #pragma HLS unroll skip_exit_check factor=4
 array1[i] = ...;
 array2[i] = ...;
 ...
 }
 ...
}

Example 3

The following example fully unrolls all loops inside loop_1 in function foo, but not loop_1
itself because the presence of the region keyword.

void foo(int data_in[N], int scale, int data_out1[N], int data_out2[N]) {
 int temp1[N];
 loop_1: for(int i = 0; i < N; i++) {
 #pragma HLS unroll region
 temp1[i] = data_in[i] * scale;
 loop_2: for(int j = 0; j < N; j++) {
 data_out1[j] = temp1[j] * 123;
 }
 loop_3: for(int k = 0; k < N; k++) {
 data_out2[k] = temp1[k] * 456;
 }
 }
}

See Also

• set_directive_unroll

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 562Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=562

• pragma HLS loop_flatten

• pragma HLS loop_merge

Section IV: Vitis HLS Command Reference
Chapter 24: HLS Pragmas

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 563Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=563

Section V

Vitis HLS C Driver Reference
This section contains the following chapter:

• AXI4-Lite Slave C Driver Reference

Section V: Vitis HLS C Driver Reference

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 564Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=564

Chapter 25

AXI4-Lite Slave C Driver Reference

X<DUT>_Initialize
Syntax

int X<DUT>_Initialize(X<DUT> *InstancePtr, u16 DeviceId);
int X<DUT>_Initialize(X<DUT> *InstancePtr, const char* InstanceName);

Description

int X<DUT>_Initialize(X<DUT> *InstancePtr, u16 DeviceId): For use on
standalone systems, initialize a device. This API will write a proper value to InstancePtr which
then can be used in other APIs. Xilinx recommends calling this API to initialize a device except
when an MMU is used in the system, in which case refer to function X<DUT>_CfgInitialize.

int X<DUT>_Initialize(X<DUT> *InstancePtr, const char* InstanceName):
For use on Linux systems, initialize a specifically named uio device. Create up to five memory
mappings and assign the slave base addresses by mmap, utilizing the uio device information in
sysfs.

• InstancePtr: A pointer to the device instance.

• DeviceId: Device ID as defined in xparameters.h.

• InstanceName: The name of the uio device.

Return

XST_SUCCESS indicates success, otherwise fail.

Section V: Vitis HLS C Driver Reference
Chapter 25: AXI4-Lite Slave C Driver Reference

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 565Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=565

X<DUT>_CfgInitialize
Syntax

X<DUT>_CfgInitializeint X<DUT>_CfgInitialize(X<DUT> *InstancePtr,
X<DUT>_Config *ConfigPtr);

Description

Initialize a device when an MMU is used in the system. In such a case the effective address of the
AXI4-Lite slave is different from that defined in xparameters.h and API is required to initialize
the device.

• InstancePtr: A pointer to the device instance.

• DeviceId: A pointer to a X<DUT>_Config.

Return

XST_SUCCESS indicates success, otherwise fail.

X<DUT>_LookupConfig
Syntax

X<DUT>_Config* X<DUT>_LookupConfig(u16 DeviceId);

Description

This function is used to obtain the configuration information of the device by ID.

• DeviceId: Device ID as defined in xparameters.h.

Return

A pointer to a X<DUT>_LookupConfig variable that holds the configuration information of the
device whose ID is DeviceId. NULL if no matching DeviceId is found.

Section V: Vitis HLS C Driver Reference
Chapter 25: AXI4-Lite Slave C Driver Reference

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 566Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=566

X<DUT>_Release
Syntax

int X<DUT>_Release(X<DUT> *InstancePtr);

Description

Release the uio device. Delete the mappings by munmap. The mapping will automatically be
deleted if the process is terminated.

• InstanceName: The name of the uio device.

Return

XST_SUCCESS indicates success, otherwise fail.

X<DUT>_Start
Syntax

void X<DUT>_Start(X<DUT> *InstancePtr);

Description

Start the device. This function will assert the ap_start port on the device. Available only if
there is ap_start port on the device.

• InstancePtr: A pointer to the device instance.

X<DUT>_IsDone
Syntax

void X<DUT>_IsDone(X<DUT> *InstancePtr);

Description

Check if the device has finished the previous execution: this function will return the value of the
ap_done port on the device. Available only if there is an ap_done port on the device.

Section V: Vitis HLS C Driver Reference
Chapter 25: AXI4-Lite Slave C Driver Reference

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 567Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=567

• InstancePtr: A pointer to the device instance.

X<DUT>_IsIdle
Syntax

void X<DUT>_IsIdle(X<DUT> *InstancePtr);

Description

Check if the device is in idle state: this function will return the value of the ap_idle port.
Available only if there is an ap_idle port on the device.

• InstancePtr: A pointer to the device instance.

X<DUT>_IsReady
Syntax

void X<DUT>_IsReady(X<DUT> *InstancePtr);

Description

Check if the device is ready for the next input: this function will return the value of the
ap_ready port. Available only if there is an ap_ready port on the device.

• InstancePtr: A pointer to the device instance.

X<DUT>_Continue
Syntax

void XExample_Continue(XExample *InstancePtr);

Description

Assert port ap_continue. Available only if there is an ap_continue port on the device.

• InstancePtr: A pointer to the device instance.

Section V: Vitis HLS C Driver Reference
Chapter 25: AXI4-Lite Slave C Driver Reference

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 568Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=568

X<DUT>_EnableAutoRestart
Syntax

void X<DUT>_EnableAutoRestart(X<DUT> *InstancePtr);

Description

Enables “auto restart” on device. When this is enabled,

• Port ap_start will be asserted as soon as ap_done is asserted by the device and the device
will auto-start the next transaction.

• Alternatively, if the block-level I/O protocol ap_ctrl_chain is implemented on the device,
the next transaction will auto-restart (ap_start will be asserted) when ap_ready is
asserted by the device and if ap_continue is asserted when ap_done is asserted by the
device.

Available only if there is an ap_start port.

• InstancePtr: A pointer to the device instance.

X<DUT>_DisableAutoRestart
Syntax

void X<DUT>_DisableAutoRestart(X<DUT> *InstancePtr);

Description

Disable the “auto restart” function. Available only if there is an ap_start port.

• InstancePtr: A pointer to the device instance.

X<DUT>_Set_ARG
Syntax

void X<DUT>_Set_ARG(X<DUT> *InstancePtr, u32 Data);

Section V: Vitis HLS C Driver Reference
Chapter 25: AXI4-Lite Slave C Driver Reference

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 569Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=569

Description

Write a value to port ARG (a scalar argument of the top-level function). Available only if ARG is an
input port.

• InstancePtr: A pointer to the device instance.

• Data: Value to write.

X<DUT>_Set_ARG_vld
Syntax

void X<DUT>_Set_ARG_vld(X<DUT> *InstancePtr);

Description

Assert port ARG_vld. Available only if ARG is an input port and implemented with an ap_hs or
ap_vld interface protocol.

• InstancePtr: A pointer to the device instance.

X<DUT>_Set_ARG_ack
Syntax

void X<DUT>_Set_ARG_ack(X<DUT> *InstancePtr);

Description

Assert port ARG_ack. Available only if ARG is an output port and implemented with an ap_hs or
ap_ack interface protocol.

• InstancePtr: A pointer to the device instance.

Section V: Vitis HLS C Driver Reference
Chapter 25: AXI4-Lite Slave C Driver Reference

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 570Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=570

X<DUT>_Get_ARG
Syntax

u32 X<DUT>_Get_ARG(X<DUT> *InstancePtr);

Description

Read a value from ARG. Only available if port ARG is an output port on the device.

• InstancePtr: A pointer to the device instance.

Return

Value of ARG.

X<DUT>_Get_ARG_vld
Syntax

u32 X<DUT>_Get_ARG_vld(X<DUT> *InstancePtr);

Description

Read a value from ARG_vld. Only available if port ARG is an output port on the device and
implemented with an ap_hs or ap_vld interface protocol.

• InstancePtr: A pointer to the device instance.

Return

Value of ARG_vld.

X<DUT>_Get_ARG_ack
Syntax

u32 X<DUT>_Get_ARG_ack(X<DUT> *InstancePtr);

Section V: Vitis HLS C Driver Reference
Chapter 25: AXI4-Lite Slave C Driver Reference

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 571Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=571

Description

Read a value from ARG_ack. Only available if port ARG is an input port on the device and
implemented with an ap_hs or ap_ack interface protocol.

• InstancePtr: A pointer to the device instance.

Return

Value of ARG_ack.

X<DUT>_Get_ARG_BaseAddress
Syntax

u32 X<DUT>_Get_ARG_BaseAddress(X<DUT> *InstancePtr);

Description

Return the base address of the array inside the interface. Only available when ARG is an array
grouped into the AXI4-Lite interface.

• InstancePtr: A pointer to the device instance.

Return

Base address of the array.

X<DUT>_Get_ARG_HighAddress
Syntax

u32 X<DUT>_Get_ARG_HighAddress(X<DUT> *InstancePtr);

Description

Return the address of the uppermost element of the array. Only available when ARG is an array
grouped into the AXI4-Lite interface.

• InstancePtr: A pointer to the device instance.

Section V: Vitis HLS C Driver Reference
Chapter 25: AXI4-Lite Slave C Driver Reference

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 572Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=572

Return

Address of the uppermost element of the array.

X<DUT>_Get_ARG_TotalBytes
Syntax

u32 X<DUT>_Get_ARG_TotalBytes(X<DUT> *InstancePtr);

Description

Return the total number of bytes used to store the array. Only available when ARG is an array
grouped into the AXI4-Lite interface.

If the elements in the array are less than 16-bit, Vitis™ HLS groups multiple elements into the 32-
bit data width of the AXI4-Lite interface. If the bit width of the elements exceeds 32-bit, Vitis
HLS stores each element over multiple consecutive addresses.

• InstancePtr: A pointer to the device instance.

Return

The total number of bytes used to store the array.

X<DUT>_Get_ARG_BitWidth
Syntax

u32 X<DUT>_Get_ARG_BitWidth(X<DUT> *InstancePtr);

Description

Return the bit width of each element in the array. Only available when ARG is an array grouped
into the AXI4-Lite interface.

If the elements in the array are less than 16-bit, Vitis HLS groups multiple elements into the 32-
bit data width of the AXI4-Lite interface. If the bit width of the elements exceeds 32-bit, Vitis
HLS stores each element over multiple consecutive addresses.

• InstancePtr: A pointer to the device instance.

Section V: Vitis HLS C Driver Reference
Chapter 25: AXI4-Lite Slave C Driver Reference

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 573Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=573

Return

The bit-width of each element in the array.

X<DUT>_Get_ARG_Depth
Syntax

u32 X<DUT>_Get_ARG_Depth(X<DUT> *InstancePtr);

Description

Return the total number of elements in the array. Only available when ARG is an array grouped
into the AXI4-Lite interface.

If the elements in the array are less than 16-bit, Vitis HLS groups multiple elements into the 32-
bit data width of the AXI4-Lite interface. If the bit width of the elements exceeds 32-bit, Vitis
HLS stores each element over multiple consecutive addresses.

• InstancePtr: A pointer to the device instance.

Return

The total number of elements in the array.

X<DUT>_Write_ARG_Words
Syntax

u32 X<DUT>_Write_ARG_Words(X<DUT> *InstancePtr, int offset, int *data, int
length);

Description

Write the length of a 32-bit word into the specified address of the AXI4-Lite interface. This API
requires the offset address from BaseAddress and the length of the data to be stored. Only
available when ARG is an array grouped into the AXI4-Lite interface.

• InstancePtr: A pointer to the device instance.

• offset: The address in the AXI4-Lite interface.

• data: A pointer to the data value to be stored.

Section V: Vitis HLS C Driver Reference
Chapter 25: AXI4-Lite Slave C Driver Reference

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 574Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=574

• length: The length of the data to be stored.

Return

Write length of data from the specified address.

X<DUT>_Read_ARG_Words
Syntax

u32 X<DUT>_Read_ARG_Words(X<DUT> *InstancePtr, int offset, int *data, int
length);

Description

Read the length of a 32-bit word from the array. This API requires the data target, the offset
address from BaseAddress, and the length of the data to be stored. Only available when ARG is
an array grouped into the AXI4-Lite interface.

• InstancePtr: A pointer to the device instance.

• offset: The address in the ARG.

• data: A pointer to the data buffer.

• length: The length of the data to be stored.

Return

Read length of data from the specified address.

X<DUT>_Write_ARG_Bytes
Syntax

u32 X<DUT>_Write_ARG_Bytes(X<DUT> *InstancePtr, int offset, char *data, int
length);

Description

Write the length of bytes into the specified address of theAXI4-Lite interface. This API requires
the offset address from BaseAddress and the length of the data to be stored. Only available
when ARG is an array grouped into the AXI4-Lite interface.

Section V: Vitis HLS C Driver Reference
Chapter 25: AXI4-Lite Slave C Driver Reference

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 575Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=575

• InstancePtr: A pointer to the device instance.

• offset: The address in the ARG.

• data: A pointer to the data value to be stored.

• length: The length of the data to be stored.

Return

Write length of data from the specified address.

X<DUT>_Read_ARG_Bytes
Syntax

u32 X<DUT>_Read_ARG_Bytes(X<DUT> *InstancePtr, int offset, char *data, int
length);

Description

Read the length of bytes from the array. This API requires the data target, the offset address from
Base Address, and the length of data to be loaded. Only available when ARG is an array grouped
into the AXI4-Lite interface.

• InstancePtr: A pointer to the device instance.

• offset: The address in the ARG.

• data: A pointer to the data buffer.

• length: The length of the data to be loaded.

Return

Read length of data from the specified address.

X<DUT>_InterruptGlobalEnable
Syntax

void X<DUT>_InterruptGlobalEnable(X<DUT> *InstancePtr);

Section V: Vitis HLS C Driver Reference
Chapter 25: AXI4-Lite Slave C Driver Reference

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 576Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=576

Description

Enable the interrupt output. Interrupt functions are available only if there is ap_start.

• InstancePtr: A pointer to the device instance.

X<DUT>_InterruptGlobalDisable
Syntax

void X<DUT>_InterruptGlobalDisable(X<DUT> *InstancePtr);

Description

Disable the interrupt output.

• InstancePtr: A pointer to the device instance.

X<DUT>_InterruptEnable
Syntax

void X<DUT>_InterruptEnable(X<DUT> *InstancePtr, u32 Mask);

Description

Enable the interrupt source. There can be at most two interrupt sources (source 0 for
ap_done and source 1 for ap_ready).

• InstancePtr: A pointer to the device instance.

• Mask: Bit mask.

• Bit n = 1: enable interrupt source n.

• Bit n = 0: no change.

Section V: Vitis HLS C Driver Reference
Chapter 25: AXI4-Lite Slave C Driver Reference

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 577Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=577

X<DUT>_InterruptDisable
Syntax

void X<DUT>_InterruptDisable(X<DUT> *InstancePtr, u32 Mask);

Description

Disable the interrupt source.

• InstancePtr: A pointer to the device instance.

• Mask: Bit mask.

• Bit n = 1: disable interrupt source n.

• Bit n = 0: no change.

X<DUT>_InterruptClear
Syntax

void X<DUT>_InterruptClear(X<DUT> *InstancePtr, u32 Mask);

Description

Clear the interrupt status.

• InstancePtr: A pointer to the device instance.

• Mask: Bit mask.

• Bit n = 1: toggle interrupt source n.

• Bit n = 0: no change.

X<DUT>_InterruptGetEnabled
Syntax

u32 X<DUT>_InterruptGetEnabled(X<DUT> *InstancePtr);

Section V: Vitis HLS C Driver Reference
Chapter 25: AXI4-Lite Slave C Driver Reference

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 578Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=578

Description

Check which interrupt sources are enabled.

• InstancePtr: A pointer to the device instance.

Return

Bit mask.

• Bit n = 1: enabled.

• Bit n = 0: disabled.

X<DUT>_InterruptGetStatus
Syntax

u32 X<DUT>_InterruptGetStatus(X<DUT> *InstancePtr);

Description

Check which interrupt sources are triggered.

• InstancePtr: A pointer to the device instance.

Return

Bit mask.

• Bit n = 1: triggered.

• Bit n = 0: not triggered.

Section V: Vitis HLS C Driver Reference
Chapter 25: AXI4-Lite Slave C Driver Reference

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 579Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=579

Section VI

Vitis HLS Libraries Reference
This section contains the following chapters:

• Arbitrary Precision Data Types Library

• Vitis HLS Math Library

• HLS Stream Library

• HLS IP Libraries

Section VI: Vitis HLS Libraries Reference

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 580Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=580

Chapter 26

C/C++ Builtin Functions
Vitis HLS supports the following C/C++ builtin functions:

• __builtin_clz(unsigned int x): Returns the number of leading 0-bits in x, starting at
the most significant bit position. If x is 0, the result is undefined.

• __builtin_ctz(unsigned int x): Returns the number of trailing 0-bits in x, starting at
the least significant bit position. If x is 0, the result is undefined.

The following example shows how these functions may be used. This example returns the sum of
the number of leading zeros in in0 and trailing zeros in in1:

int foo (int in0, int in1) {
 int ldz0 = __builtin_clz(in0);
 int ldz1 = __builtin_ctz(in1);
 return (ldz0 + ldz1);
}

Section VI: Vitis HLS Libraries Reference
Chapter 26: C/C++ Builtin Functions

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 581Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=581

Chapter 27

Arbitrary Precision Data Types
Library

C-based native data types are on 8-bit boundaries (8, 16, 32, 64 bits). RTL buses (corresponding
to hardware) support arbitrary lengths. HLS needs a mechanism to allow the specification of
arbitrary precision bit-width and not rely on the artificial boundaries of native C data types: if a
17-bit multiplier is required, you should not be forced to implement this with a 32-bit multiplier.

Vitis™ HLS provides both integer and fixed-point arbitrary precision data types for C++. The
advantage of arbitrary precision data types is that they allow the C code to be updated to use
variables with smaller bit-widths and then for the C simulation to be re-executed to validate that
the functionality remains identical or acceptable.

Using Arbitrary Precision Data Types
Vitis HLS provides arbitrary precision integer data types that manage the value of the integer
numbers within the boundaries of the specified width, as shown in the following table.

Table 39: Arbitrary Precision Data Types

Language Integer Data Type Required Header
C++ ap_[u]int<W> (1024 bits)

Can be extended to 4K bits wide as
explained in C++ Arbitrary Precision
Integer Types.

#include “ap_int.h”

C++ ap_[u]fixed<W,I,Q,O,N> #include “ap_fixed.h”

The header files define the arbitrary precision types are also provided with Vitis HLS as a
standalone package with the rights to use them in your own source code. The package,
xilinx_hls_lib_<release_number>.tgz, is provided in the include directory in the
Vitis HLS installation area.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 582Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=582

Arbitrary Integer Precision Types with C++
The header file ap_int.h defines the arbitrary precision integer data type for the C++
ap_[u]int data types. To use arbitrary precision integer data types in a C++ function:

• Add header file ap_int.h to the source code.

• Change the bit types to ap_int<N> for signed types or ap_uint<N> for unsigned types,
where N is a bit-size from 1 to 1024.

The following example shows how the header file is added and two variables implemented to use
9-bit integer and 10-bit unsigned integer types:

#include "ap_int.h"

void foo_top () {

 ap_int<9> var1; // 9-bit
 ap_uint<10> var2; // 10-bit unsigned

IMPORTANT! One disadvantage of AP data types is that arrays are not automatically initialized with a
value of 0. You must manually initialize the array if desired.

Arbitrary Precision Fixed-Point Data Types
In Vitis HLS, it is important to use fixed-point data types, because the behavior of the C++
simulations performed using fixed-point data types match that of the resulting hardware created
by synthesis. This allows you to analyze the effects of bit-accuracy, quantization, and overflow
with fast C-level simulation.

These data types manage the value of real (non-integer) numbers within the boundaries of a
specified total width and integer width, as shown in the following figure.

Figure 122: Fixed-Point Data Type

I-1 ... 1 0 -1 ... -B

MSB

Binary point
 W = I + B

LSB

X14268-100620

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 583Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=583

Fixed-Point Identifier Summary

The following table provides a brief overview of operations supported by fixed-point types.

Table 40: Fixed-Point Identifier Summary

Identifier Description
W Word length in bits

I The number of bits used to represent the integer value, that is, the number of integer bits to the left of
the binary point. When this value is negative, it represents the number of implicit sign bits (for signed
representation), or the number of implicit zero bits (for unsigned representation) to the right of the
binary point. For example,

ap_fixed<2, 0> a = -0.5; // a can be -0.5,

ap_ufixed<1, 0> x = 0.5; // 1-bit representation. x can be 0 or 0.5
ap_ufixed<1, -1> y = 0.25; // 1-bit representation. y can be 0 or 0.25
const ap_fixed<1, -7> z = 1.0/256; // 1-bit representation for z = 2^-8

Q Quantization mode: This dictates the behavior when greater precision is generated than can be defined
by smallest fractional bit in the variable used to store the result.

ap_fixed Types Description

AP_RND Round to plus infinity

AP_RND_ZERO Round to zero

AP_RND_MIN_INF Round to minus infinity

AP_RND_INF Round to infinity

AP_RND_CONV Convergent rounding

AP_TRN Truncation to minus infinity (default)

AP_TRN_ZERO Truncation to zero

O Overflow mode: This dictates the behavior when the result of an operation exceeds the maximum (or
minimum in the case of negative numbers) possible value that can be stored in the variable used to
store the result.

ap_fixed Types Description

AP_SAT1 Saturation

AP_SAT_ZERO1 Saturation to zero

AP_SAT_SYM1 Symmetrical saturation

AP_WRAP Wrap around (default)

AP_WRAP_SM Sign magnitude wrap around

N This defines the number of saturation bits in overflow wrap modes.

Notes:
1. Using the AP_SAT* modes can result in higher resource usage as extra logic will be needed to perform saturation and

this extra cost can be as high as 20% additional LUT usage.
2. Fixed-point math functions from the hls_math library do not support the ap_[u]fixed template parameters Q,O,

and N, for quantization mode, overflow mode, and the number of saturation bits, respectively. The quantization and
overflow modes are only effective when an ap_[u]fixed variable is on the left hand of assignment or being
initialized, but not during the calculation.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 584Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=584

Example Using ap_fixed

In this example the Vitis HLS ap_fixed type is used to define an 18-bit variable with 6 bits
representing the numbers above the decimal point and 12-bits representing the value below the
decimal point. The variable is specified as signed, the quantization mode is set to round to plus
infinity and the default wrap-around mode is used for overflow.

#include <ap_fixed.h>
...
ap_fixed<18,6,AP_RND > my_type;
...

C++ Arbitrary Precision Integer Types
The native data types in C++ are on 8-bit boundaries (8, 16, 32, and 64 bits). RTL signals and
operations support arbitrary bit-lengths.

Vitis HLS provides arbitrary precision data types for C++ to allow variables and operations in the
C++ code to be specified with any arbitrary bit-widths: 6-bit, 17-bit, 234-bit, up to 1024 bits.

TIP: The default maximum width allowed is 1024 bits. You can override this default by defining the macro
AP_INT_MAX_W  with a positive integer value less than or equal to 4096 before inclusion of the
ap_int.h  header file.

Arbitrary precision data types have are two primary advantages over the native C++ types:

• Better quality hardware: If for example, a 17-bit multiplier is required, arbitrary precision types
can specify that exactly 17-bit are used in the calculation.

Without arbitrary precision data types, such a multiplication (17-bit) must be implemented
using 32-bit integer data types and result in the multiplication being implemented with
multiple DSP modules.

• Accurate C++ simulation/analysis: Arbitrary precision data types in the C++ code allows the C
++ simulation to be performed using accurate bit-widths and for the C++ simulation to
validate the functionality (and accuracy) of the algorithm before synthesis.

The arbitrary precision types in C++ have none of the disadvantages of those in C:

• C++ arbitrary types can be compiled with standard C++ compilers (there is no C++ equivalent
of apcc).

• C++ arbitrary precision types do not suffer from Integer Promotion Issues.

It is not uncommon for users to change a file extension from .c to .cpp so the file can be
compiled as C++, where neither of these issues are present.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 585Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=585

For the C++ language, the header file ap_int.h defines the arbitrary precision integer data
types ap_(u)int<W>. For example, ap_int<8> represents an 8-bit signed integer data type
and ap_uint<234> represents a 234-bit unsigned integer type.

The ap_int.h file is located in the directory $HLS_ROOT/include, where $HLS_ROOT is the
Vitis HLS installation directory.

The code shown in the following example is a repeat of the code shown in the Basic Arithmetic
example in Standard Types. In this example, the data types in the top-level function to be
synthesized are specified as dinA_t, dinB_t, and so on.

#include "cpp_ap_int_arith.h"

void cpp_ap_int_arith(din_A inA, din_B inB, din_C inC, din_D inD,
 dout_1 *out1, dout_2 *out2, dout_3 *out3, dout_4 *out4
) {

 // Basic arithmetic operations
 *out1 = inA * inB;
 *out2 = inB + inA;
 *out3 = inC / inA;
 *out4 = inD % inA;

}

In this latest update to this example, the C++ arbitrary precision types are used:

• Add header file ap_int.h to the source code.

• Change the native C++ types to arbitrary precision types ap_int<N> or ap_uint<N>, where
N is a bit-size from 1 to 1024 (as noted above, this can be extended to 4K-bits if required).

The data types are defined in the header cpp_ap_int_arith.h.

Compared with the Basic Arithmetic example in Standard Types, the input data types have simply
been reduced to represent the maximum size of the real input data (for example, 8-bit input inA
is reduced to 6-bit input). The output types have been refined to be more accurate, for example,
out2, the sum of inA and inB, need only be 13-bit and not 32-bit.

The following example shows basic arithmetic with C++ arbitrary precision types.

#ifndef _CPP_AP_INT_ARITH_H_
#define _CPP_AP_INT_ARITH_H_

#include <stdio.h>
#include "ap_int.h"

#define N 9

// Old data types
//typedef char dinA_t;
//typedef short dinB_t;
//typedef int dinC_t;
//typedef long long dinD_t;
//typedef int dout1_t;

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 586Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=586

//typedef unsigned int dout2_t;
//typedef int32_t dout3_t;
//typedef int64_t dout4_t;

typedef ap_int<6> dinA_t;
typedef ap_int<12> dinB_t;
typedef ap_int<22> dinC_t;
typedef ap_int<33> dinD_t;

typedef ap_int<18> dout1_t;
typedef ap_uint<13> dout2_t;
typedef ap_int<22> dout3_t;
typedef ap_int<6> dout4_t;

void cpp_ap_int_arith(dinA_t inA,dinB_t inB,dinC_t inC,dinD_t inD,dout1_t
*out1,dout2_t *out2,dout3_t *out3,dout4_t *out4);

#endif

If C++ Arbitrary Precision Integer Types are synthesized, it results in a design that is functionally
identical to Standard Types. Rather than use the C++ cout operator to output the results to a
file, the built-in ap_int method .to_int() is used to convert the ap_int results to integer
types used with the standard fprintf function.

fprintf(fp, %d*%d=%d; %d+%d=%d; %d/%d=%d; %d mod %d=%d;\n,
 inA.to_int(), inB.to_int(), out1.to_int(),
 inB.to_int(), inA.to_int(), out2.to_int(),
 inC.to_int(), inA.to_int(), out3.to_int(),
 inD.to_int(), inA.to_int(), out4.to_int());

C++ Arbitrary Precision Integer Types: Reference
Information
For comprehensive information on the methods, synthesis behavior, and all aspects of using the
ap_(u)int<N> arbitrary precision data types, see C++ Arbitrary Precision Types. This section
includes:

• Techniques for assigning constant and initialization values to arbitrary precision integers
(including values greater than 1024-bit).

• A description of Vitis HLS helper methods, such as printing, concatenating, bit-slicing and
range selection functions.

• A description of operator behavior, including a description of shift operations (a negative shift
values, results in a shift in the opposite direction).

C++ Arbitrary Precision Types

Vitis HLS provides a C++ template class, ap_[u]int<>, that implements arbitrary precision (or
bit-accurate) integer data types with consistent, bit-accurate behavior between software and
hardware modeling.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 587Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=587

This class provides all arithmetic, bitwise, logical and relational operators allowed for native C
integer types. In addition, this class provides methods to handle some useful hardware
operations, such as allowing initialization and conversion of variables of widths greater than 64
bits. Details for all operators and class methods are discussed below.

Compiling ap_[u]int<> Types

To use the ap_[u]int<> classes, you must include the ap_int.h header file in all source files
that reference ap_[u]int<> variables.

When compiling software models that use these classes, it may be necessary to specify the
location of the Vitis HLS header files, for example by adding the -I/<HLS_HOME>/include
option for g++ compilation.

Declaring/Defining ap_[u] Variables

There are separate signed and unsigned classes:

• ap_int<int_W> (signed)

• ap_uint<int_W> (unsigned)

The template parameter int_W specifies the total width of the variable being declared.

User-defined types may be created with the C/C++ typedef statement as shown in the
following examples:

include "ap_int.h"// use ap_[u]fixed<> types

typedef ap_uint<128> uint128_t; // 128-bit user defined type
ap_int<96> my_wide_var; // a global variable declaration

The default maximum width allowed is 1024 bits. This default may be overridden by defining the
macro AP_INT_MAX_W with a positive integer value less than or equal to 4096 before inclusion
of the ap_int.h header file.

CAUTION! Setting the value of AP_INT_MAX_W  too High can cause slow software compile and
runtimes.

Following is an example of overriding AP_INT_MAX_W:

#define AP_INT_MAX_W 4096 // Must be defined before next line
#include "ap_int.h"

ap_int<4096> very_wide_var;

Initialization and Assignment from Constants (Literals)

The class constructor and assignment operator overloads, allows initialization of and assignment
to ap_[u]int<> variables using standard C/C++ integer literals.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 588Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=588

This method of assigning values to ap_[u]int<> variables is subject to the limitations of C++
and the system upon which the software will run. This typically leads to a 64-bit limit on integer
literals (for example, for those LL or ULL suffixes).

To allow assignment of values wider than 64-bits, the ap_[u]int<> classes provide
constructors that allow initialization from a string of arbitrary length (less than or equal to the
width of the variable).

By default, the string provided is interpreted as a hexadecimal value as long as it contains only
valid hexadecimal digits (that is, 0-9 and a-f). To assign a value from such a string, an explicit C++
style cast of the string to the appropriate type must be made.

Following are examples of initialization and assignments, including for values greater than 64-bit,
are:

ap_int<42> a_42b_var(-1424692392255LL); // long long decimal format
a_42b_var = 0x14BB648B13FLL; // hexadecimal format

a_42b_var = -1; // negative int literal sign-extended to full width

ap_uint<96> wide_var(“76543210fedcba9876543210”, 16); // Greater than 64-bit
wide_var = ap_int<96>(“0123456789abcdef01234567”, 16);

Note: To avoid unexpected behavior during co-simulation, do not initialize ap_uint<N> a ={0}.

The ap_[u]<> constructor may be explicitly instructed to interpret the string as representing
the number in radix 2, 8, 10, or 16 formats. This is accomplished by adding the appropriate radix
value as a second parameter to the constructor call.

A compilation error occurs if the string literal contains any characters that are invalid as digits for
the radix specified.

The following examples use different radix formats:

ap_int<6> a_6bit_var(“101010”, 2); // 42d in binary format
a_6bit_var = ap_int<6>(“40”, 8); // 32d in octal format
a_6bit_var = ap_int<6>(“55”, 10); // decimal format
a_6bit_var = ap_int<6>(“2A”, 16); // 42d in hexadecimal format

a_6bit_var = ap_int<6>(“42”, 2); // COMPILE-TIME ERROR! “42” is not binary

The radix of the number encoded in the string can also be inferred by the constructor, when it is
prefixed with a zero (0) followed by one of the following characters: “b”, “o” or “x”. The prefixes
“0b”, “0o” and “0x” correspond to binary, octal and hexadecimal formats respectively.

The following examples use alternate initializer string formats:

ap_int<6> a_6bit_var(“0b101010”, 2); // 42d in binary format
a_6bit_var = ap_int<6>(“0o40”, 8); // 32d in octal format
a_6bit_var = ap_int<6>(“0x2A”, 16); // 42d in hexidecimal format

a_6bit_var = ap_int<6>(“0b42”, 2); // COMPILE-TIME ERROR! “42” is not binary

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 589Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=589

If the bit-width is greater than 53-bits, the ap_[u]int<> value must be initialized with a string,
for example:

ap_uint<72 Val(“2460508560057040035.375”);

Support for Console I/O (Printing)

As with initialization and assignment to ap_[u]fixed<> variables, Vitis HLS supports printing
values that require more than 64-bits to represent.

Using the C++ Standard Output Stream

The easiest way to output any value stored in an ap_[u]int variable is to use the C++ standard
output stream:

std::cout (#include <iostream> or <iostream.h>)

The stream insertion operator (<<) is overloaded to correctly output the full range of values
possible for any given ap_[u]fixed variable. The following stream manipulators are also
supported:

• dec (decimal)

• hex (hexadecimal)

• oct (octal)

These allow formatting of the value as indicated.

The following example uses cout to print values:

#include <iostream.h>
// Alternative: #include <iostream>

ap_ufixed<72> Val(“10fedcba9876543210”);

cout << Val << endl; // Yields: “313512663723845890576”
cout << hex << val << endl; // Yields: “10fedcba9876543210”
cout << oct << val << endl; // Yields: “41773345651416625031020”

Using the Standard C Library

You can also use the standard C library (#include <stdio.h>) to print out values larger than
64-bits:

1. Convert the value to a C++ std::string using the ap_[u]fixed classes method
to_string().

2. Convert the result to a null-terminated C character string using the std::string class
method c_str().

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 590Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=590

Optional Argument One (Specifying the Radix)

You can pass the ap[u]int::to_string() method an optional argument specifying the radix
of the numerical format desired. The valid radix argument values are:

• 2 (binary) (default)

• 8 (octal)

• 10 (decimal)

• 16 (hexadecimal)

Optional Argument Two (Printing as Signed Values)

A second optional argument to ap_[u]int::to_string() specifies whether to print the
non-decimal formats as signed values. This argument is boolean. The default value is false,
causing the non-decimal formats to be printed as unsigned values.

The following examples use printf to print values:

ap_int<72> Val(“80fedcba9876543210”);

printf(“%s\n”, Val.to_string().c_str()); // => “80FEDCBA9876543210”
printf(“%s\n”, Val.to_string(10).c_str()); // => “-2342818482890329542128”
printf(“%s\n”, Val.to_string(8).c_str()); // => “401773345651416625031020”
printf(“%s\n”, Val.to_string(16, true).c_str()); // => “-7F0123456789ABCDF0”

Expressions Involving ap_[u]<> types

Variables of ap_[u]<> types may generally be used freely in expressions involving C/C++
operators. Some behaviors may be unexpected. These are discussed in detail below.

Zero- and Sign-Extension on Assignment From Narrower to Wider Variables

When assigning the value of a narrower bit-width signed (ap_int<>) variable to a wider one,
the value is sign-extended to the width of the destination variable, regardless of its signedness.

Similarly, an unsigned source variable is zero-extended before assignment.

Explicit casting of the source variable may be necessary to ensure expected behavior on
assignment. See the following example:

ap_uint<10> Result;

ap_int<7> Val1 = 0x7f;
ap_uint<6> Val2 = 0x3f;

Result = Val1; // Yields: 0x3ff (sign-extended)
Result = Val2; // Yields: 0x03f (zero-padded)

Result = ap_uint<7>(Val1); // Yields: 0x07f (zero-padded)
Result = ap_int<6>(Val2); // Yields: 0x3ff (sign-extended)

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 591Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=591

Truncation on Assignment of Wider to Narrower Variables

Assigning the value of a wider source variable to a narrower one leads to truncation of the value.
All bits beyond the most significant bit (MSB) position of the destination variable are lost.

There is no special handling of the sign information during truncation. This may lead to
unexpected behavior. Explicit casting may help avoid this unexpected behavior.

Class Methods and Operators

The ap_[u]int types do not support implicit conversion from wide ap_[u]int (>64bits) to
builtin C/C++ integer types. For example, the following code example return s1, because the
implicit cast from ap_int[65] to bool in the if-statement returns a 0.

bool nonzero(ap_uint<65> data) {
 return data; // This leads to implicit truncation to 64b int
 }

int main() {
 if (nonzero((ap_uint<65>)1 << 64)) {
 return 0;
 }
 printf(FAIL\n);
 return 1;
}

To convert wide ap_[u]int types to built-in integers, use the explicit conversion functions
included with the ap_[u]int types:

• to_int()

• to_long()

• to_bool()

In general, any valid operation that can be done on a native C/C++ integer data type is supported
using operator overloading for ap_[u]int types.

In addition to these overloaded operators, some class specific operators and methods are
included to ease bit-level operations.

Binary Arithmetic Operators

Standard binary integer arithmetic operators are overloaded to provide arbitrary precision
arithmetic. These operators take either:

• Two operands of ap_[u]int, or

• One ap_[u]int type and one C/C++ fundamental integer data type

For example:

• char

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 592Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=592

• short

• int

The width and signedness of the resulting value is determined by the width and signedness of
the operands, before sign-extension, zero-padding or truncation are applied based on the width
of the destination variable (or expression). Details of the return value are described for each
operator.

When expressions contain a mix of ap_[u]int and C/C++ fundamental integer types, the C++
types assume the following widths:

• char (8-bits)

• short (16-bits)

• int (32-bits)

• long (32-bits)

• long long (64-bits)

Addition

ap_(u)int::RType ap_(u)int::operator + (ap_(u)int op)

Returns the sum of:

• Two ap_[u]int, or

• One ap_[u]int and a C/C++ integer type

The width of the sum value is:

• One bit more than the wider of the two operands, or

• Two bits if and only if the wider is unsigned and the narrower is signed

The sum is treated as signed if either (or both) of the operands is of a signed type.

Subtraction

ap_(u)int::RType ap_(u)int::operator - (ap_(u)int op)

Returns the difference of two integers.

The width of the difference value is:

• One bit more than the wider of the two operands, or

• Two bits if and only if the wider is unsigned and the narrower signed

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 593Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=593

This is true before assignment, at which point it is sign-extended, zero-padded, or truncated
based on the width of the destination variable.

The difference is treated as signed regardless of the signedness of the operands.

Multiplication

ap_(u)int::RType ap_(u)int::operator * (ap_(u)int op)

Returns the product of two integer values.

The width of the product is the sum of the widths of the operands.

The product is treated as a signed type if either of the operands is of a signed type.

Division

ap_(u)int::RType ap_(u)int::operator / (ap_(u)int op)

Returns the quotient of two integer values.

The width of the quotient is the width of the dividend if the divisor is an unsigned type.
Otherwise, it is the width of the dividend plus one.

The quotient is treated as a signed type if either of the operands is of a signed type.

Modulus

ap_(u)int::RType ap_(u)int::operator % (ap_(u)int op)

Returns the modulus, or remainder of integer division, for two integer values.

The width of the modulus is the minimum of the widths of the operands, if they are both of the
same signedness.

If the divisor is an unsigned type and the dividend is signed, then the width is that of the divisor
plus one.

The quotient is treated as having the same signedness as the dividend.

IMPORTANT! Vitis HLS synthesis of the modulus (%) operator will lead to instantiation of appropriately
parameterized Xilinx LogiCORE divider cores in the generated RTL.

Following are examples of arithmetic operators:

ap_uint<71> Rslt;

ap_uint<42> Val1 = 5;
ap_int<23> Val2 = -8;

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 594Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=594

Rslt = Val1 + Val2; // Yields: -3 (43 bits) sign-extended to 71 bits
Rslt = Val1 - Val2; // Yields: +3 sign extended to 71 bits
Rslt = Val1 * Val2; // Yields: -40 (65 bits) sign extended to 71 bits
Rslt = 50 / Val2; // Yields: -6 (33 bits) sign extended to 71 bits
Rslt = 50 % Val2; // Yields: +2 (23 bits) sign extended to 71 bits

Bitwise Logical Operators

The bitwise logical operators all return a value with a width that is the maximum of the widths of
the two operands. It is treated as unsigned if and only if both operands are unsigned. Otherwise,
it is of a signed type.

Sign-extension (or zero-padding) may occur, based on the signedness of the expression, not the
destination variable.

Bitwise OR

ap_(u)int::RType ap_(u)int::operator | (ap_(u)int op)

Returns the bitwise OR of the two operands.

Bitwise AND

ap_(u)int::RType ap_(u)int::operator & (ap_(u)int op)

Returns the bitwise AND of the two operands.

Bitwise XOR

ap_(u)int::RType ap_(u)int::operator ^ (ap_(u)int op)

Returns the bitwise XOR of the two operands.

Unary Operators

Addition

ap_(u)int ap_(u)int::operator + ()

Returns the self copy of the ap_[u]int operand.

Subtraction

ap_(u)int::RType ap_(u)int::operator - ()

Returns the following:

• The negated value of the operand with the same width if it is a signed type, or

• Its width plus one if it is unsigned.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 595Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=595

The return value is always a signed type.

Bitwise Inverse

ap_(u)int::RType ap_(u)int::operator ~ ()

Returns the bitwise-NOT of the operand with the same width and signedness.

Logical Invert

bool ap_(u)int::operator ! ()

Returns a Boolean false value if and only if the operand is not equal to zero (0).

Returns a Boolean true value if the operand is equal to zero (0).

Ternary Operators

When you use the ternary operator with the standard C int type, you must explicitly cast from
one type to the other to ensure that both results have the same type. For example:

// Integer type is cast to ap_int type
ap_int<32> testc3(int a, ap_int<32> b, ap_int<32> c, bool d) {
 return d?ap_int<32>(a):b;
}
// ap_int type is cast to an integer type
ap_int<32> testc4(int a, ap_int<32> b, ap_int<32> c, bool d) {
 return d?a+1:(int)b;
}
// Integer type is cast to ap_int type
ap_int<32> testc5(int a, ap_int<32> b, ap_int<32> c, bool d) {
 return d?ap_int<33>(a):b+1;
}

Shift Operators

Each shift operator comes in two versions:

• One version for unsigned right-hand side (RHS) operands

• One version for signed right-hand side (RHS) operands

A negative value supplied to the signed RHS versions reverses the shift operations direction.
That is, a shift by the absolute value of the RHS operand in the opposite direction occurs.

The shift operators return a value with the same width as the left-hand side (LHS) operand. As
with C/C++, if the LHS operand of a shift-right is a signed type, the sign bit is copied into the
most significant bit positions, maintaining the sign of the LHS operand.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 596Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=596

Unsigned Integer Shift Right

ap_(u)int ap_(u)int::operator >> (ap_uint<int_W2> op)

Integer Shift Right

ap_(u)int ap_(u)int::operator >> (ap_int<int_W2> op)

Unsigned Integer Shift Left

ap_(u)int ap_(u)int::operator << (ap_uint<int_W2> op)

Integer Shift Left

ap_(u)int ap_(u)int::operator << (ap_int<int_W2> op)

CAUTION! When assigning the result of a shift-left operator to a wider destination variable, some or all
information may be lost. Xilinx recommends that you explicitly cast the shift expression to the destination
type to avoid unexpected behavior.

Following are examples of shift operations:

ap_uint<13> Rslt;

ap_uint<7> Val1 = 0x41;

Rslt = Val1 << 6; // Yields: 0x0040, i.e. msb of Val1 is lost
Rslt = ap_uint<13>(Val1) << 6; // Yields: 0x1040, no info lost

ap_int<7> Val2 = -63;
Rslt = Val2 >> 4; //Yields: 0x1ffc, sign is maintained and extended

Compound Assignment Operators

Vitis HLS supports compound assignment operators:

*=
/=
%=
+=
-=
<<=
>>=
&=
^=
|=

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 597Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=597

The RHS expression is first evaluated then supplied as the RHS operand to the base operator, the
result of which is assigned back to the LHS variable. The expression sizing, signedness, and
potential sign-extension or truncation rules apply as discussed above for the relevant operations.

ap_uint<10> Val1 = 630;
ap_int<3> Val2 = -3;
ap_uint<5> Val3 = 27;

Val1 += Val2 - Val3; // Yields: 600 and is equivalent to:

// Val1 = ap_uint<10>(ap_int<11>(Val1) +
// ap_int<11>((ap_int<6>(Val2) -
// ap_int<6>(Val3))));

Increment and Decrement Operators

The increment and decrement operators are provided. All return a value of the same width as the
operand and which is unsigned if and only if both operands are of unsigned types and signed
otherwise.

Pre-Increment

ap_(u)int& ap_(u)int::operator ++ ()

Returns the incremented value of the operand.

Assigns the incremented value to the operand.

Post-Increment

const ap_(u)int ap_(u)int::operator ++ (int)

Returns the value of the operand before assignment of the incremented value to the operand
variable.

Pre-Decrement

ap_(u)int& ap_(u)int::operator -- ()

Returns the decremented value of, as well as assigning the decremented value to, the operand.

Post-Decrement

const ap_(u)int ap_(u)int::operator -- (int)

Returns the value of the operand before assignment of the decremented value to the operand
variable.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 598Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=598

Relational Operators

Vitis HLS supports all relational operators. They return a Boolean value based on the result of the
comparison. You can compare variables of ap_[u]int types to C/C++ fundamental integer
types with these operators.

Equality

bool ap_(u)int::operator == (ap_(u)int op)

Inequality

bool ap_(u)int::operator != (ap_(u)int op)

Less than

bool ap_(u)int::operator < (ap_(u)int op)

Greater than

bool ap_(u)int::operator > (ap_(u)int op)

Less than or equal to

bool ap_(u)int::operator <= (ap_(u)int op)

Greater than or equal to

bool ap_(u)int::operator >= (ap_(u)int op)

Other Class Methods, Operators, and Data Members

The following sections discuss other class methods, operators, and data members.

Bit-Level Operations

The following methods facilitate common bit-level operations on the value stored in ap_[u]int
type variables.

Length

int ap_(u)int::length ()

Returns an integer value providing the total number of bits in the ap_[u]int variable.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 599Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=599

Concatenation

ap_concat_ref ap_(u)int::concat (ap_(u)int low)
ap_concat_ref ap_(u)int::operator , (ap_(u)int high, ap_(u)int low)

Concatenates two ap_[u]int variables, the width of the returned value is the sum of the
widths of the operands.

The High and Low arguments are placed in the higher and lower order bits of the result
respectively; the concat() method places the argument in the lower order bits.

When using the overloaded comma operator, the parentheses are required. The comma operator
version may also appear on the LHS of assignment.

RECOMMENDED: To avoid unexpected results, explicitly cast C/C++ native types (including integer
literals) to an appropriate ap_[u]int  type before concatenating.

ap_uint<10> Rslt;

ap_int<3> Val1 = -3;
ap_int<7> Val2 = 54;

Rslt = (Val2, Val1); // Yields: 0x1B5
Rslt = Val1.concat(Val2); // Yields: 0x2B6
(Val1, Val2) = 0xAB; // Yields: Val1 == 1, Val2 == 43

Bit Selection

ap_bit_ref ap_(u)int::operator [] (int bit)

Selects one bit from an arbitrary precision integer value and returns it.

The returned value is a reference value that can set or clear the corresponding bit in this
ap_[u]int.

The bit argument must be an int value. It specifies the index of the bit to select. The least
significant bit has index 0. The highest permissible index is one less than the bit-width of this
ap_[u]int.

The result type ap_bit_ref represents the reference to one bit of this ap_[u]int instance
specified by bit.

Range Selection

ap_range_ref ap_(u)int::range (unsigned Hi, unsigned Lo)
ap_range_ref ap_(u)int::operator () (unsigned Hi, unsigned Lo)

Returns the value represented by the range of bits specified by the arguments.

The Hi argument specifies the most significant bit (MSB) position of the range, and Lo specifies
the least significant bit (LSB).

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 600Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=600

The LSB of the source variable is in position 0. If the Hi argument has a value less than Lo, the
bits are returned in reverse order.

ap_uint<4> Rslt;

ap_uint<8> Val1 = 0x5f;
ap_uint<8> Val2 = 0xaa;

Rslt = Val1.range(3, 0); // Yields: 0xF
Val1(3,0) = Val2(3, 0); // Yields: 0x5A
Val1(3,0) = Val2(4, 1); // Yields: 0x55
Rslt = Val1.range(4, 7); // Yields: 0xA; bit-reversed!

Note: The object returned by range select is not an ap_(u)int object and lacks operators, but can be
used for assignment. To use the range select result in a chained expression with ap_(u)int methods, add
an explicit constructor like below.

ap_uint<32> v = 0x8fff0000;
bool r = ap_uint<16>(v.range(23, 8)).xor_reduce();

AND reduce

bool ap_(u)int::and_reduce ()

• Applies the AND operation on all bits in this ap_(u)int.

• Returns the resulting single bit.

• Equivalent to comparing this value against -1 (all ones) and returning true if it matches,
false otherwise.

OR reduce

bool ap_(u)int::or_reduce ()

• Applies the OR operation on all bits in this ap_(u)int.

• Returns the resulting single bit.

• Equivalent to comparing this value against 0 (all zeros) and returning false if it matches,
true otherwise.

XOR reduce

bool ap_(u)int::xor_reduce ()

• Applies the XOR operation on all bits in this ap_int.

• Returns the resulting single bit.

• Equivalent to counting the number of 1 bits in this value and returning false if the count is
even or true if the count is odd.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 601Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=601

NAND reduce

bool ap_(u)int::nand_reduce ()

• Applies the NAND operation on all bits in this ap_int.

• Returns the resulting single bit.

• Equivalent to comparing this value against -1 (all ones) and returning false if it matches,
true otherwise.

NOR reduce

bool ap_int::nor_reduce ()

• Applies the NOR operation on all bits in this ap_int.

• Returns the resulting single bit.

• Equivalent to comparing this value against 0 (all zeros) and returning true if it matches,
false otherwise.

XNOR reduce

bool ap_(u)int::xnor_reduce ()

• Applies the XNOR operation on all bits in this ap_(u)int.

• Returns the resulting single bit.

• Equivalent to counting the number of 1 bits in this value and returning true if the count is
even or false if the count is odd.

Bit Reduction Method Examples

ap_uint<8> Val = 0xaa;

bool t = Val.and_reduce(); // Yields: false
t = Val.or_reduce(); // Yields: true
t = Val.xor_reduce(); // Yields: false
t = Val.nand_reduce(); // Yields: true
t = Val.nor_reduce(); // Yields: false
t = Val.xnor_reduce(); // Yields: true

Bit Reverse

void ap_(u)int::reverse ()

Reverses the contents of ap_[u]int instance:

• The LSB becomes the MSB.

• The MSB becomes the LSB.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 602Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=602

Reverse Method Example

ap_uint<8> Val = 0x12;

Val.reverse(); // Yields: 0x48

Test Bit Value

bool ap_(u)int::test (unsigned i)

Checks whether specified bit of ap_(u)int instance is 1.

Returns true if Yes, false if No.

Test Method Example

ap_uint<8> Val = 0x12;
bool t = Val.test(5); // Yields: true

Set Bit Value

void ap_(u)int::set (unsigned i, bool v)
void ap_(u)int::set_bit (unsigned i, bool v)

Sets the specified bit of the ap_(u)int instance to the value of integer V.

Set Bit (to 1)

void ap_(u)int::set (unsigned i)

Sets the specified bit of the ap_(u)int instance to the value 1 (one).

Clear Bit (to 0)

void ap_(u)int:: clear(unsigned i)

Sets the specified bit of the ap_(u)int instance to the value 0 (zero).

Invert Bit

void ap_(u)int:: invert(unsigned i)

Inverts the bit specified in the function argument of the ap_(u)int instance. The specified bit
becomes 0 if its original value is 1 and vice versa.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 603Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=603

Example of bit set, clear and invert bit methods:

ap_uint<8> Val = 0x12;
Val.set(0, 1); // Yields: 0x13
Val.set_bit(4, false); // Yields: 0x03
Val.set(7); // Yields: 0x83
Val.clear(1); // Yields: 0x81
Val.invert(4); // Yields: 0x91

Rotate Right

void ap_(u)int:: rrotate(unsigned n)

Rotates the ap_(u)int instance n places to right.

Rotate Left

void ap_(u)int:: lrotate(unsigned n)

Rotates the ap_(u)int instance n places to left.

ap_uint<8> Val = 0x12;

Val.rrotate(3); // Yields: 0x42
Val.lrotate(6); // Yields: 0x90

Bitwise NOT

void ap_(u)int:: b_not()

• Complements every bit of the ap_(u)int instance.

ap_uint<8> Val = 0x12;

Val.b_not(); // Yields: 0xED

Bitwise NOT Example

Test Sign

bool ap_int:: sign()

• Checks whether the ap_(u)int instance is negative.

• Returns true if negative.

• Returns false if positive.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 604Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=604

Explicit Conversion Methods

To C/C++ “(u)int”

int ap_(u)int::to_int ()
unsigned ap_(u)int::to_uint ()

• Returns native C/C++ (32-bit on most systems) integers with the value contained in the
ap_[u]int.

• Truncation occurs if the value is greater than can be represented by an [unsigned] int.

To C/C++ 64-bit “(u)int”

long long ap_(u)int::to_int64 ()
unsigned long long ap_(u)int::to_uint64 ()

• Returns native C/C++ 64-bit integers with the value contained in the ap_[u]int.

• Truncation occurs if the value is greater than can be represented by an [unsigned] int.

To C/C++ “double”

double ap_(u)int::to_double ()

• Returns a native C/C++ double 64-bit floating point representation of the value contained in
the ap_[u]int.

• If the ap_[u]int is wider than 53 bits (the number of bits in the mantissa of a double), the
resulting double may not have the exact value expected.

RECOMMENDED: Xilinx recommends that you explicitly call member functions instead of using C-style
cast to convert ap_[u]int  to other data types.

Sizeof

The standard C++ sizeof() function should not be used with ap_[u]int or other classes or
instance of object. The ap_int<> data type is a class and sizeof returns the storage used by
that class or instance object. sizeof(ap_int<N>) always returns the number of bytes used.
For example:

 sizeof(ap_int<127>)=16
 sizeof(ap_int<128>)=16
 sizeof(ap_int<129>)=24
 sizeof(ap_int<130>)=24

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 605Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=605

Compile Time Access to Data Type Attributes

The ap_[u]int<> types are provided with a static member that allows the size of the variables
to be determined at compile time. The data type is provided with the static const member
width, which is automatically assigned the width of the data type:

static const int width = _AP_W;

You can use the width data member to extract the data width of an existing ap_[u]int<>
data type to create another ap_[u]int<> data type at compile time. The following example
shows how the size of variable Res is defined as 1-bit greater than variables Val1 and Val2:

// Definition of basic data type
#define INPUT_DATA_WIDTH 8
typedef ap_int<INPUT_DATA_WIDTH> data_t;
// Definition of variables
data_t Val1, Val2;
// Res is automatically sized at compile-time to be 1-bit greater than data
type
data_t
ap_int<data_t::width+1> Res = Val1 + Val2;

This ensures that Vitis HLS correctly models the bit-growth caused by the addition even if you
update the value of INPUT_DATA_WIDTH for data_t.

C++ Arbitrary Precision Fixed-Point Types
C++ functions can take advantage of the arbitrary precision fixed-point types included with Vitis
HLS. The following figure summarizes the basic features of these fixed-point types:

• The word can be signed (ap_fixed) or unsigned (ap_ufixed).

• A word with of any arbitrary size W can be defined.

• The number of places above the decimal point I, also defines the number of decimal places in
the word, W-I (represented by B in the following figure).

• The type of rounding or quantization (Q) can be selected.

• The overflow behavior (O and N) can be selected.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 606Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=606

Figure 123: Arbitrary Precision Fixed-Point Types

I-1 ... 1 0 -1 ... -B

ap_[u]fixed<W,I,Q,O,N>

Binary point : W = I + B

X14233-100620

TIP: The arbitrary precision fixed-point types can be used when header file ap_fixed.h  is included in
the code.

Arbitrary precision fixed-point types use more memory during C simulation. If using very large
arrays of ap_[u]fixed types.

The advantages of using fixed-point types are:

• They allow fractional number to be easily represented.

• When variables have a different number of integer and decimal place bits, the alignment of
the decimal point is handled.

• There are numerous options to handle how rounding should happen: when there are too few
decimal bits to represent the precision of the result.

• There are numerous options to handle how variables should overflow: when the result is
greater than the number of integer bits can represent.

These attributes are summarized by examining the code in the example below. First, the header
file ap_fixed.h is included. The ap_fixed types are then defined using the typedef
statement:

• A 10-bit input: 8-bit integer value with 2 decimal places.

• A 6-bit input: 3-bit integer value with 3 decimal places.

• A 22-bit variable for the accumulation: 17-bit integer value with 5 decimal places.

• A 36-bit variable for the result: 30-bit integer value with 6 decimal places.

The function contains no code to manage the alignment of the decimal point after operations are
performed. The alignment is done automatically.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 607Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=607

The following code sample shows ap_fixed type.

#include "ap_fixed.h"

typedef ap_ufixed<10,8, AP_RND, AP_SAT> din1_t;
typedef ap_fixed<6,3, AP_RND, AP_WRAP> din2_t;
typedef ap_fixed<22,17, AP_TRN, AP_SAT> dint_t;
typedef ap_fixed<36,30> dout_t;

dout_t cpp_ap_fixed(din1_t d_in1, din2_t d_in2) {

 static dint_t sum;
 sum += d_in1;
 return sum * d_in2;
}

Using ap_(u)fixed types, the C++ simulation is bit accurate. Fast simulation can validate the
algorithm and its accuracy. After synthesis, the RTL exhibits the identical bit-accurate behavior.

Arbitrary precision fixed-point types can be freely assigned literal values in the code. This is
shown in the test bench (see the example below) used with the example above, in which the
values of in1 and in2 are declared and assigned constant values.

When assigning literal values involving operators, the literal values must first be cast to
ap_(u)fixed types. Otherwise, the C compiler and Vitis HLS interpret the literal as an integer
or float/double type and may fail to find a suitable operator. As shown in the following
example, in the assignment of in1 = in1 + din1_t(0.25), the literal 0.25 is cast to an
ap_fixed type.

#include <cmath>
#include <fstream>
#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;
#include "ap_fixed.h"

typedef ap_ufixed<10,8, AP_RND, AP_SAT> din1_t;
typedef ap_fixed<6,3, AP_RND, AP_WRAP> din2_t;
typedef ap_fixed<22,17, AP_TRN, AP_SAT> dint_t;
typedef ap_fixed<36,30> dout_t;

dout_t cpp_ap_fixed(din1_t d_in1, din2_t d_in2);
int main()
 {
 ofstream result;
 din1_t in1 = 0.25;
 din2_t in2 = 2.125;
 dout_t output;
 int retval=0;

 result.open(result.dat);
 // Persistent manipulators
 result << right << fixed << setbase(10) << setprecision(15);

 for (int i = 0; i <= 250; i++)
 {

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 608Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=608

 output = cpp_ap_fixed(in1,in2);

 result << setw(10) << i;
 result << setw(20) << in1;
 result << setw(20) << in2;
 result << setw(20) << output;
 result << endl;

 in1 = in1 + din1_t(0.25);
 in2 = in2 - din2_t(0.125);
 }
 result.close();

 // Compare the results file with the golden results
 retval = system(diff --brief -w result.dat result.golden.dat);
 if (retval != 0) {
 printf(Test failed !!!\n);
 retval=1;
 } else {
 printf(Test passed !\n);
 }

 // Return 0 if the test passes
 return retval;
}

Fixed-Point Identifier Summary
The following table shows the quantization and overflow modes.

TIP: Quantization and overflow modes that do more than the default behavior of standard hardware
arithmetic (wrap and truncate) result in operators with more associated hardware. It costs logic (LUTs) to
implement the more advanced modes, such as round to minus infinity or saturate symmetrically.

Table 41: Fixed-Point Identifier Summary

Identifier Description
W Word length in bits

I The number of bits used to represent the integer value, that is, the number of integer bits to the left of
the binary point. When this value is negative, it represents the number of implicit sign bits (for signed
representation), or the number of implicit zero bits (for unsigned representation) to the right of the
binary point. For example,

ap_fixed<2, 0> a = -0.5; // a can be -0.5,

ap_ufixed<1, 0> x = 0.5; // 1-bit representation. x can be 0 or 0.5
ap_ufixed<1, -1> y = 0.25; // 1-bit representation. y can be 0 or 0.25
const ap_fixed<1, -7> z = 1.0/256; // 1-bit representation for z = 2^-8

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 609Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=609

Table 41: Fixed-Point Identifier Summary (cont'd)

Identifier Description
Q Quantization mode: This dictates the behavior when greater precision is generated than can be defined

by smallest fractional bit in the variable used to store the result.

ap_fixed Types Description

AP_RND Round to plus infinity

AP_RND_ZERO Round to zero

AP_RND_MIN_INF Round to minus infinity

AP_RND_INF Round to infinity

AP_RND_CONV Convergent rounding

AP_TRN Truncation to minus infinity (default)

AP_TRN_ZERO Truncation to zero

O Overflow mode: This dictates the behavior when the result of an operation exceeds the maximum (or
minimum in the case of negative numbers) possible value that can be stored in the variable used to
store the result.

ap_fixed Types Description

AP_SAT1 Saturation

AP_SAT_ZERO1 Saturation to zero

AP_SAT_SYM1 Symmetrical saturation

AP_WRAP Wrap around (default)

AP_WRAP_SM Sign magnitude wrap around

N This defines the number of saturation bits in overflow wrap modes.

Notes:
1. Using the AP_SAT* modes can result in higher resource usage as extra logic will be needed to perform saturation and

this extra cost can be as high as 20% additional LUT usage.
2. Fixed-point math functions from the hls_math library do not support the ap_[u]fixed template parameters Q,O,

and N, for quantization mode, overflow mode, and the number of saturation bits, respectively. The quantization and
overflow modes are only effective when an ap_[u]fixed variable is on the left hand of assignment or being
initialized, but not during the calculation.

C++ Arbitrary Precision Fixed-Point Types: Reference
Information
For comprehensive information on the methods, synthesis behavior, and all aspects of using the
ap_(u)fixed<N> arbitrary precision fixed-point data types, see C++ Arbitrary Precision Fixed-
Point Types. This section includes:

• Techniques for assigning constant and initialization values to arbitrary precision integers
(including values greater than 1024-bit).

• A detailed description of the overflow and saturation modes.

• A description of Vitis HLS helper methods, such as printing, concatenating, bit-slicing and
range selection functions.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 610Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=610

• A description of operator behavior, including a description of shift operations (a negative shift
values, results in a shift in the opposite direction).

IMPORTANT! For the compiler to process, you must use the appropriate header files for the language.

C++ Arbitrary Precision Fixed-Point Types

Vitis HLS supports fixed-point types that allow fractional arithmetic to be easily handled. The
advantage of fixed-point arithmetic is shown in the following example.

ap_fixed<11, 6> Var1 = 22.96875; // 11-bit signed word, 5 fractional bits
ap_ufixed<12,11> Var2 = 512.5; // 12-bit word, 1 fractional bit
ap_fixed<16,11> Res1; // 16-bit signed word, 5 fractional bits

Res1 = Var1 + Var2; // Result is 535.46875

Even though Var1 and Var2 have different precisions, the fixed-point type ensures that the
decimal point is correctly aligned before the operation (an addition in this case), is performed.
You are not required to perform any operations in the C code to align the decimal point.

The type used to store the result of any fixed-point arithmetic operation must be large enough
(in both the integer and fractional bits) to store the full result.

If this is not the case, the ap_fixed type performs:

• overflow handling (when the result has more MSBs than the assigned type supports)

• quantization (or rounding, when the result has fewer LSBs than the assigned type supports)

The ap_[u]fixed type provides various options on how the overflow and quantization are
performed. The options are discussed below.

ap_[u]fixed Representation

In ap[u]fixed types, a fixed-point value is represented as a sequence of bits with a specified
position for the binary point.

• Bits to the left of the binary point represent the integer part of the value.

• Bits to the right of the binary point represent the fractional part of the value.

ap_[u]fixed type is defined as follows:

ap_[u]fixed<int W,
 int I,
 ap_q_mode Q,
 ap_o_mode O,
 ap_sat_bits N>;

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 611Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=611

Quantization Modes

Rounding to plus infinity AP_RND
Rounding to zero AP_RND_ZERO
Rounding to minus infinity AP_RND_MIN_INF
Rounding to infinity AP_RND_INF
Convergent rounding AP_RND_CONV
Truncation AP_TRN
Truncation to zero AP_TRN_ZERO

AP_RND

• Round the value to the nearest representable value for the specific ap_[u]fixed type.

ap_fixed<3, 2, AP_RND, AP_SAT> UAPFixed4 = 1.25; // Yields: 1.5
ap_fixed<3, 2, AP_RND, AP_SAT> UAPFixed4 = -1.25; // Yields: -1.0

AP_RND_ZERO

• Round the value to the nearest representable value.

• Round towards zero.

○ For positive values, delete the redundant bits.

○ For negative values, add the least significant bits to get the nearest representable value.

ap_fixed<3, 2, AP_RND_ZERO, AP_SAT> UAPFixed4 = 1.25; // Yields: 1.0
ap_fixed<3, 2, AP_RND_ZERO, AP_SAT> UAPFixed4 = -1.25; // Yields: -1.0

AP_RND_MIN_INF

• Round the value to the nearest representable value.

• Round towards minus infinity.

○ For positive values, delete the redundant bits.

○ For negative values, add the least significant bits.

ap_fixed<3, 2, AP_RND_MIN_INF, AP_SAT> UAPFixed4 = 1.25; // Yields: 1.0
ap_fixed<3, 2, AP_RND_MIN_INF, AP_SAT> UAPFixed4 = -1.25; // Yields: -1.5

AP_RND_INF

• Round the value to the nearest representable value.

• The rounding depends on the least significant bit.

○ For positive values, if the least significant bit is set, round towards plus infinity. Otherwise,
round towards minus infinity.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 612Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=612

○ For negative values, if the least significant bit is set, round towards minus infinity.
Otherwise, round towards plus infinity.

ap_fixed<3, 2, AP_RND_INF, AP_SAT> UAPFixed4 = 1.25; // Yields: 1.5
ap_fixed<3, 2, AP_RND_INF, AP_SAT> UAPFixed4 = -1.25; // Yields: -1.5

AP_RND_CONV

• Round to the nearest representable value with "ties" rounding to even, that is, the least
significant bit (after rounding) is forced to zero.

• A "tie" is the midpoint of two representable values and occurs when the bit following the least
significant bit (after rounding) is 1 and all the bits below it are zero.

// For the following examples, bit3 of the 8-bit value becomes the
// LSB of the final 5-bit value (after rounding).
// Notes:
// * bit7 of the 8-bit value is the MSB (sign bit)
// * the 3 LSBs of the 8-bit value (bit2, bit1, bit0) are treated as
// guard, round and sticky bits.
// * See http://pages.cs.wisc.edu/~david/courses/cs552/S12/handouts/
guardbits.pdf

ap_fixed<8,3> p1 = 1.59375; // p1 = 001.10011
ap_fixed<5,3,AP_RND_CONV> rconv1 = p1; // rconv1 = 1.5 (001.10)

ap_fixed<8,3> p2 = 1.625; // p2 = 001.10100 => tie with bit3 (LSB-to-be)
= 0
ap_fixed<5,3,AP_RND_CONV> rconv2 = p2; // rconv2 = 1.5 (001.10) => lsb is
already zero, just truncate

ap_fixed<8,3> p3 = 1.375; // p3 = 001.01100 => tie with bit3 (LSB-to-be)
= 1
ap_fixed<5,3,AP_RND_CONV> rconv3 = p3; // rconv3 = 1.5 (001.10) => lsb is
made zero by rounding up

ap_fixed<8,3> p3 = 1.65625; // p3 = 001.10101
ap_fixed<5,3,AP_RND_CONV> rconv3 = p3; // rconv3 = 1.75 (001.11) => round
up

AP_TRN

• Always round the value towards minus infinity.

ap_fixed<3, 2, AP_TRN, AP_SAT> UAPFixed4 = 1.25; // Yields: 1.0
ap_fixed<3, 2, AP_TRN, AP_SAT> UAPFixed4 = -1.25; // Yields: -1.5

AP_TRN_ZERO

Round the value to:

• For positive values, the rounding is the same as mode AP_TRN.

• For negative values, round towards zero.

ap_fixed<3, 2, AP_TRN_ZERO, AP_SAT> UAPFixed4 = 1.25; // Yields: 1.0
ap_fixed<3, 2, AP_TRN_ZERO, AP_SAT> UAPFixed4 = -1.25; // Yields: -1.0

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 613Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=613

Overflow Modes

Saturation AP_SAT
Saturation to zero AP_SAT_ZERO
Symmetrical saturation AP_SAT_SYM
Wrap-around AP_WRAP
Sign magnitude wrap-around AP_WRAP_SM

AP_SAT

Saturate the value.

• To the maximum value in case of overflow.

• To the negative maximum value in case of negative overflow.

ap_fixed<4, 4, AP_RND, AP_SAT> UAPFixed4 = 19.0; // Yields: 7.0
ap_fixed<4, 4, AP_RND, AP_SAT> UAPFixed4 = -19.0; // Yields: -8.0
ap_ufixed<4, 4, AP_RND, AP_SAT> UAPFixed4 = 19.0; // Yields: 15.0
ap_ufixed<4, 4, AP_RND, AP_SAT> UAPFixed4 = -19.0; // Yields: 0.0

AP_SAT_ZERO

Force the value to zero in case of overflow, or negative overflow.

ap_fixed<4, 4, AP_RND, AP_SAT_ZERO> UAPFixed4 = 19.0; // Yields: 0.0
ap_fixed<4, 4, AP_RND, AP_SAT_ZERO> UAPFixed4 = -19.0; // Yields: 0.0
ap_ufixed<4, 4, AP_RND, AP_SAT_ZERO> UAPFixed4 = 19.0; // Yields: 0.0
ap_ufixed<4, 4, AP_RND, AP_SAT_ZERO> UAPFixed4 = -19.0; // Yields: 0.0

AP_SAT_SYM

Saturate the value:

• To the maximum value in case of overflow.

• To the minimum value in case of negative overflow.

○ Negative maximum for signed ap_fixed types

○ Zero for unsigned ap_ufixed types

ap_fixed<4, 4, AP_RND, AP_SAT_SYM> UAPFixed4 = 19.0; // Yields: 7.0
ap_fixed<4, 4, AP_RND, AP_SAT_SYM> UAPFixed4 = -19.0; // Yields: -7.0
ap_ufixed<4, 4, AP_RND, AP_SAT_SYM> UAPFixed4 = 19.0; // Yields: 15.0
ap_ufixed<4, 4, AP_RND, AP_SAT_SYM> UAPFixed4 = -19.0; // Yields: 0.0

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 614Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=614

AP_WRAP

Wrap the value around in case of overflow.

ap_fixed<4, 4, AP_RND, AP_WRAP> UAPFixed4 = 31.0; // Yields: -1.0
ap_fixed<4, 4, AP_RND, AP_WRAP> UAPFixed4 = -19.0; // Yields: -3.0
ap_ufixed<4, 4, AP_RND, AP_WRAP> UAPFixed4 = 19.0; // Yields: 3.0
ap_ufixed<4, 4, AP_RND, AP_WRAP> UAPFixed4 = -19.0; // Yields: 13.0

If the value of N is set to zero (the default overflow mode):

• All MSB bits outside the range are deleted.

• For unsigned numbers. After the maximum it wraps around to zero.

• For signed numbers. After the maximum, it wraps to the minimum values.

If N>0:

• When N > 0, N MSB bits are saturated or set to 1.

• The sign bit is retained, so positive numbers remain positive and negative numbers remain
negative.

• The bits that are not saturated are copied starting from the LSB side.

AP_WRAP_SM

The value should be sign-magnitude wrapped around.

ap_fixed<4, 4, AP_RND, AP_WRAP_SM> UAPFixed4 = 19.0; // Yields: -4.0
ap_fixed<4, 4, AP_RND, AP_WRAP_SM> UAPFixed4 = -19.0; // Yields: 2.0

If the value of N is set to zero (the default overflow mode):

• This mode uses sign magnitude wrapping.

• Sign bit set to the value of the least significant deleted bit.

• If the most significant remaining bit is different from the original MSB, all the remaining bits
are inverted.

• If MSBs are same, the other bits are copied over.

1. Delete redundant MSBs.

2. The new sign bit is the least significant bit of the deleted bits. 0 in this case.

3. Compare the new sign bit with the sign of the new value.

• If different, invert all the numbers. They are different in this case.

If N>0:

• Uses sign magnitude saturation

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 615Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=615

• N MSBs are saturated to 1.

• Behaves similar to a case in which N = 0, except that positive numbers stay positive and
negative numbers stay negative.

Compiling ap_[u]fixed<> Types

To use the ap_[u]fixed<> classes, you must include the ap_fixed.h header file in all
source files that reference ap_[u]fixed<> variables.

When compiling software models that use these classes, it may be necessary to specify the
location of the Vitis HLS header files, for example by adding the “-I/<HLS_HOME>/include”
option for g++ compilation.

Declaring and Defining ap_[u]fixed<> Variables

There are separate signed and unsigned classes:

• ap_fixed<W,I> (signed)

• ap_ufixed<W,I> (unsigned)

You can create user-defined types with the C/C++ typedef statement:

#include "ap_fixed.h" // use ap_[u]fixed<> types

typedef ap_ufixed<128,32> uint128_t; // 128-bit user defined type,
 // 32 integer bits

Initialization and Assignment from Constants (Literals)

You can initialize ap_[u]fixed variable with normal floating point constants of the usual C/C+
+ width:

• 32 bits for type float

• 64 bits for type double

That is, typically, a floating point value that is single precision type or in the form of double
precision. Note that the value assigned to the fixed-point variable will be limited by the precision
of the constant.

#include <ap_fixed.h>

ap_ufixed<30, 15> my15BitInt = 3.1415;
ap_fixed<42, 23> my42BitInt = -1158.987;
ap_ufixed<99, 40> = 287432.0382911;
ap_fixed<36,30> = -0x123.456p-1;

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 616Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=616

You can also use string initialization to ensure that all bits of the fixed-point variable are
populated according to the precision described by the string.

ap_ufixed<2, 0> x = "0b0.01"; // 0.25 in “dot” format
ap_ufixed<2, 0> y = "0b01p-2"; // 0.25 in binary “scientific”
format
ap_ufixed<2, 0> z = "0x4p-4"; // 0.25 in hex “scientific” format
ap_ufixed<62, 2> my_pi =
“0b11.001001000011111101101010100010001000010110100011000010001101"; // pi
with 60 fractional bits

The ap_[u]fixed types do not support initialization if they are used in an array of
std::complex types.

typedef ap_fixed<DIN_W, 1, AP_TRN, AP_SAT> coeff_t; // MUST have IW >= 1
std::complex<coeff_t> twid_rom[REAL_SZ/2] = {{ 1, -0 },{ 0.9,-0.006 }, etc.}

The initialization values must first be cast to std::complex:

typedef ap_fixed<DIN_W, 1, AP_TRN, AP_SAT> coeff_t; // MUST have IW >= 1
std::complex<coeff_t> twid_rom[REAL_SZ/2] = {std::complex<coeff_t>(1,
-0),
std::complex<coeff_t>(0.9,-0.006),etc.}

Support for Console I/O (Printing)

As with initialization and assignment to ap_[u]fixed<> variables, Vitis HLS supports printing
values that require more than 64 bits to represent.

The easiest way to output any value stored in an ap_[u]fixed variable is to use the C++
standard output stream, std::cout (#include <iostream> or <iostream.h>). The
stream insertion operator, “<<“, is overloaded to correctly output the full range of values possible
for any given ap_[u]fixed variable. The following stream manipulators are also supported,
allowing formatting of the value as shown.

• dec (decimal)

• hex (hexadecimal)

• oct (octal)

#include <iostream.h>
// Alternative: #include <iostream>

ap_fixed<6,3, AP_RND, AP_WRAP> Val = 3.25;

cout << Val << endl; // Yields: 3.25

Using the Standard C Library

You can also use the standard C library (#include <stdio.h>) to print out values larger than
64-bits:

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 617Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=617

1. Convert the value to a C++ std::string using the ap_[u]fixed classes method
to_string().

2. Convert the result to a null-terminated C character string using the std::string class
method c_str().

Optional Argument One (Specifying the Radix)

You can pass the ap[u]int::to_string() method an optional argument specifying the radix
of the numerical format desired. The valid radix argument values are:

• 2 (binary)

• 8 (octal

• 10 (decimal)

• 16 (hexadecimal) (default)

Optional Argument Two (Printing as Signed Values)

A second optional argument to ap_[u]int::to_string() specifies whether to print the
non-decimal formats as signed values. This argument is boolean. The default value is false,
causing the non-decimal formats to be printed as unsigned values.

ap_fixed<6,3, AP_RND, AP_WRAP> Val = 3.25;

printf("%s \n", in2.to_string().c_str()); // Yields: 0b011.010
printf("%s \n", in2.to_string(10).c_str()); //Yields: 3.25

The ap_[u]fixed types are supported by the following C++ manipulator functions:

• setprecision

• setw

• setfill

The setprecision manipulator sets the decimal precision to be used. It takes one parameter f as
the value of decimal precision, where n specifies the maximum number of meaningful digits to
display in total (counting both those before and those after the decimal point).

The default value of f is 6, which is consistent with native C float type.

ap_fixed<64, 32> f =3.14159;
cout << setprecision (5) << f << endl;
cout << setprecision (9) << f << endl;
f = 123456;
cout << setprecision (5) << f << endl;

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 618Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=618

The example above displays the following results where the printed results are rounded when the
actual precision exceeds the specified precision:

 3.1416
 3.14159
 1.2346e+05

The setw manipulator:

• Sets the number of characters to be used for the field width.

• Takes one parameter w as the value of the width

where

○ w determines the minimum number of characters to be written in some output
representation.

If the standard width of the representation is shorter than the field width, the representation is
padded with fill characters. Fill characters are controlled by the setfill manipulator which takes
one parameter f as the padding character.

For example, given:

 ap_fixed<65,32> aa = 123456;
 int precision = 5;
 cout<<setprecision(precision)<<setw(13)<<setfill('T')<<a<<endl;

The output is:

 TTT1.2346e+05

Expressions Involving ap_[u]fixed<> types

Arbitrary precision fixed-point values can participate in expressions that use any operators
supported by C/C++. After an arbitrary precision fixed-point type or variable is defined, their
usage is the same as for any floating point type or variable in the C/C++ languages.

Observe the following caveats:

• Zero and Sign Extensions

All values of smaller bit-width are zero or sign-extended depending on the sign of the source
value. You may need to insert casts to obtain alternative signs when assigning smaller bit-
widths to larger.

• Truncations

Truncation occurs when you assign an arbitrary precision fixed-point of larger bit-width than
the destination variable.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 619Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=619

Class Methods, Operators, and Data Members

In general, any valid operation that can be done on a native C/C++ integer data type is supported
(using operator overloading) for ap_[u]fixed types. In addition to these overloaded operators,
some class specific operators and methods are included to ease bit-level operations.

Binary Arithmetic Operators

Addition

ap_[u]fixed::RType ap_[u]fixed::operator + (ap_[u]fixed op)

Adds an arbitrary precision fixed-point with a given operand op.

The operands can be any of the following integer types:

• ap_[u]fixed

• ap_[u]int

• C/C++

The result type ap_[u]fixed::RType depends on the type information of the two operands.

ap_fixed<76, 63> Result;

ap_fixed<5, 2> Val1 = 1.125;
ap_fixed<75, 62> Val2 = 6721.35595703125;

Result = Val1 + Val2; //Yields 6722.480957

Because Val2 has the larger bit-width on both integer part and fraction part, the result type has
the same bit-width and plus one to be able to store all possible result values.

Specifying the data's width controls resources by using the power functions, as shown below. In
similar cases, Xilinx recommends specifying the width of the stored result instead of specifying
the width of fixed point operations.

ap_ufixed<16,6> x=5;
ap_ufixed<16,7>y=hl::rsqrt<16,6>(x+x);

Subtraction

ap_[u]fixed::RType ap_[u]fixed::operator - (ap_[u]fixed op)

Subtracts an arbitrary precision fixed-point with a given operand op.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 620Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=620

The result type ap_[u]fixed::RType depends on the type information of the two operands.

ap_fixed<76, 63> Result;

ap_fixed<5, 2> Val1 = 1625.153;
ap_fixed<75, 62> Val2 = 6721.355992351;

Result = Val2 - Val1; // Yields 6720.23057

Because Val2 has the larger bit-width on both integer part and fraction part, the result type has
the same bit-width and plus one to be able to store all possible result values.

Multiplication

ap_[u]fixed::RType ap_[u]fixed::operator * (ap_[u]fixed op)

Multiplies an arbitrary precision fixed-point with a given operand op.

ap_fixed<80, 64> Result;

ap_fixed<5, 2> Val1 = 1625.153;
ap_fixed<75, 62> Val2 = 6721.355992351;

Result = Val1 * Val2; // Yields 7561.525452

This shows the multiplication of Val1 and Val2. The result type is the sum of their integer part
bit-width and their fraction part bit width.

Division

ap_[u]fixed::RType ap_[u]fixed::operator / (ap_[u]fixed op)

Divides an arbitrary precision fixed-point by a given operand op.

ap_fixed<84, 66> Result;

ap_fixed<5, 2> Val1 = 1625.153;
ap_fixed<75, 62> Val2 = 6721.355992351;

Val2 / Val1; // Yields 5974.538628

This shows the division of Val2 and Val1. To preserve enough precision:

• The integer bit-width of the result type is sum of the integer bit-width of Val2 and the
fraction bit-width of Val1.

• The fraction bit-width of the result type is equal to the fraction bit-width of Val2.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 621Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=621

Bitwise Logical Operators

Bitwise OR

ap_[u]fixed::RType ap_[u]fixed::operator | (ap_[u]fixed op)

Applies a bitwise operation on an arbitrary precision fixed-point and a given operand op.

ap_fixed<75, 62> Result;

ap_fixed<5, 2> Val1 = 1625.153;
ap_fixed<75, 62> Val2 = 6721.355992351;

Result = Val1 | Val2; // Yields 6271.480957

Bitwise AND

ap_[u]fixed::RType ap_[u]fixed::operator & (ap_[u]fixed op)

Applies a bitwise operation on an arbitrary precision fixed-point and a given operand op.

ap_fixed<75, 62> Result;

ap_fixed<5, 2> Val1 = 1625.153;
ap_fixed<75, 62> Val2 = 6721.355992351;

Result = Val1 & Val2; // Yields 1.00000

Bitwise XOR

ap_[u]fixed::RType ap_[u]fixed::operator ^ (ap_[u]fixed op)

Applies an xor bitwise operation on an arbitrary precision fixed-point and a given operand op.

ap_fixed<75, 62> Result;

ap_fixed<5, 2> Val1 = 1625.153;
ap_fixed<75, 62> Val2 = 6721.355992351;

Result = Val1 ^ Val2; // Yields 6720.480957

Increment and Decrement Operators

Pre-Increment

ap_[u]fixed ap_[u]fixed::operator ++ ()

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 622Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=622

This operator function prefix increases an arbitrary precision fixed-point variable by 1.

ap_fixed<25, 8> Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = ++Val1; // Yields 6.125000

Post-Increment

ap_[u]fixed ap_[u]fixed::operator ++ (int)

This operator function postfix:

• Increases an arbitrary precision fixed-point variable by 1.

• Returns the original val of this arbitrary precision fixed-point.

ap_fixed<25, 8> Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = Val1++; // Yields 5.125000

Pre-Decrement

ap_[u]fixed ap_[u]fixed::operator -- ()

This operator function prefix decreases this arbitrary precision fixed-point variable by 1.

ap_fixed<25, 8> Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = --Val1; // Yields 4.125000

Post-Decrement

ap_[u]fixed ap_[u]fixed::operator -- (int)

This operator function postfix:

• Decreases this arbitrary precision fixed-point variable by 1.

• Returns the original val of this arbitrary precision fixed-point.

ap_fixed<25, 8> Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = Val1--; // Yields 5.125000

Unary Operators

Addition

ap_[u]fixed ap_[u]fixed::operator + ()

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 623Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=623

Returns a self copy of an arbitrary precision fixed-point variable.

ap_fixed<25, 8> Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = +Val1; // Yields 5.125000

Subtraction

ap_[u]fixed::RType ap_[u]fixed::operator - ()

Returns a negative value of an arbitrary precision fixed-point variable.

ap_fixed<25, 8> Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = -Val1; // Yields -5.125000

Equality Zero

bool ap_[u]fixed::operator ! ()

This operator function:

• Compares an arbitrary precision fixed-point variable with 0,

• Returns the result.

bool Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = !Val1; // Yields false

Bitwise Inverse

ap_[u]fixed::RType ap_[u]fixed::operator ~ ()

Returns a bitwise complement of an arbitrary precision fixed-point variable.

ap_fixed<25, 15> Result;
ap_fixed<8, 5> Val1 = 5.125;

Result = ~Val1; // Yields -5.25

Shift Operators

Unsigned Shift Left

ap_[u]fixed ap_[u]fixed::operator << (ap_uint<_W2> op)

This operator function:

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 624Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=624

• Shifts left by a given integer operand.

• Returns the result.

The operand can be a C/C++ integer type:

• char

• short

• int

• long

The return type of the shift left operation is the same width as the type being shifted.

Note: Shift does not support overflow or quantization modes.

ap_fixed<25, 15> Result;
ap_fixed<8, 5> Val = 5.375;

ap_uint<4> sh = 2;

Result = Val << sh; // Yields -10.5

The bit-width of the result is (W = 25, I = 15). Because the shift left operation result type is
same as the type of Val:

• The high order two bits of Val are shifted out.

• The result is -10.5.

If a result of 21.5 is required, Val must be cast to ap_fixed<10, 7> first -- for example,
ap_ufixed<10, 7>(Val).

Signed Shift Left

ap_[u]fixed ap_[u]fixed::operator << (ap_int<_W2> op)

This operator:

• Shifts left by a given integer operand.

• Returns the result.

The shift direction depends on whether the operand is positive or negative.

• If the operand is positive, a shift right is performed.

• If the operand is negative, a shift left (opposite direction) is performed.

The operand can be a C/C++ integer type:

• char

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 625Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=625

• short

• int

• long

The return type of the shift right operation is the same width as the type being shifted.

ap_fixed<25, 15, false> Result;
ap_uint<8, 5> Val = 5.375;

ap_int<4> Sh = 2;
Result = Val << sh; // Shift left, yields -10.25

Sh = -2;
Result = Val << sh; // Shift right, yields 1.25

Unsigned Shift Right

ap_[u]fixed ap_[u]fixed::operator >> (ap_uint<_W2> op)

This operator function:

• Shifts right by a given integer operand.

• Returns the result.

The operand can be a C/C++ integer type:

• char

• short

• int

• long

The return type of the shift right operation is the same width as the type being shifted.

ap_fixed<25, 15> Result;
ap_fixed<8, 5> Val = 5.375;

ap_uint<4> sh = 2;

Result = Val >> sh; // Yields 1.25

If it is necessary to preserve all significant bits, extend fraction part bit-width of the Val first, for
example ap_fixed<10, 5>(Val).

Signed Shift Right

ap_[u]fixed ap_[u]fixed::operator >> (ap_int<_W2> op)

This operator:

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 626Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=626

• Shifts right by a given integer operand.

• Returns the result.

The shift direction depends on whether operand is positive or negative.

• If the operand is positive, a shift right performed.

• If operand is negative, a shift left (opposite direction) is performed.

The operand can be a C/C++ integer type (char, short, int, or long).

The return type of the shift right operation is the same width as type being shifted. For example:

ap_fixed<25, 15, false> Result;
ap_uint<8, 5> Val = 5.375;

ap_int<4> Sh = 2;
Result = Val >> sh; // Shift right, yields 1.25

Sh = -2;
Result = Val >> sh; // Shift left, yields -10.5

1.25

Relational Operators

Equality

bool ap_[u]fixed::operator == (ap_[u]fixed op)

This operator compares the arbitrary precision fixed-point variable with a given operand.

Returns true if they are equal and false if they are not equal.

The type of operand op can be ap_[u]fixed, ap_int or C/C++ integer types. For example:

bool Result;

ap_ufixed<8, 5> Val1 = 1.25;
ap_fixed<9, 4> Val2 = 17.25;
ap_fixed<10, 5> Val3 = 3.25;

Result = Val1 == Val2; // Yields true
Result = Val1 == Val3; // Yields false

Inequality

bool ap_[u]fixed::operator != (ap_[u]fixed op)

This operator compares this arbitrary precision fixed-point variable with a given operand.

Returns true if they are not equal and false if they are equal.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 627Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=627

The type of operand op can be:

• ap_[u]fixed

• ap_int

• C or C++ integer types

For example:

bool Result;

ap_ufixed<8, 5> Val1 = 1.25;
ap_fixed<9, 4> Val2 = 17.25;
ap_fixed<10, 5> Val3 = 3.25;

Result = Val1 != Val2; // Yields false
Result = Val1 != Val3; // Yields true

Greater than or equal to

bool ap_[u]fixed::operator >= (ap_[u]fixed op)

This operator compares a variable with a given operand.

Returns true if they are equal or if the variable is greater than the operator and false
otherwise.

The type of operand op can be ap_[u]fixed, ap_int or C/C++ integer types.

For example:

bool Result;

ap_ufixed<8, 5> Val1 = 1.25;
ap_fixed<9, 4> Val2 = 17.25;
ap_fixed<10, 5> Val3 = 3.25;

Result = Val1 >= Val2; // Yields true
Result = Val1 >= Val3; // Yields false

Less than or equal to

bool ap_[u]fixed::operator <= (ap_[u]fixed op)

This operator compares a variable with a given operand, and return true if it is equal to or less
than the operand and false if not.

The type of operand op can be ap_[u]fixed, ap_int or C/C++ integer types.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 628Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=628

For example:

bool Result;

ap_ufixed<8, 5> Val1 = 1.25;
ap_fixed<9, 4> Val2 = 17.25;
ap_fixed<10, 5> Val3 = 3.25;

Result = Val1 <= Val2; // Yields true
Result = Val1 <= Val3; // Yields true

Greater than

bool ap_[u]fixed::operator > (ap_[u]fixed op)

This operator compares a variable with a given operand, and return true if it is greater than the
operand and false if not.

The type of operand op can be ap_[u]fixed, ap_int, or C/C++ integer types.

For example:

bool Result;

ap_ufixed<8, 5> Val1 = 1.25;
ap_fixed<9, 4> Val2 = 17.25;
ap_fixed<10, 5> Val3 = 3.25;

Result = Val1 > Val2; // Yields false
Result = Val1 > Val3; // Yields false

Less than

bool ap_[u]fixed::operator < (ap_[u]fixed op)

This operator compares a variable with a given operand, and return true if it is less than the
operand and false if not.

The type of operand op can be ap_[u]fixed, ap_int, or C/C++ integer types. For example:

bool Result;

ap_ufixed<8, 5> Val1 = 1.25;
ap_fixed<9, 4> Val2 = 17.25;
ap_fixed<10, 5> Val3 = 3.25;

Result = Val1 < Val2; // Yields false
Result = Val1 < Val3; // Yields true

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 629Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=629

Bit Operator

Bit-Select and Set

af_bit_ref ap_[u]fixed::operator [] (int bit)

This operator selects one bit from an arbitrary precision fixed-point value and returns it.

The returned value is a reference value that can set or clear the corresponding bit in the
ap_[u]fixed variable. The bit argument must be an integer value and it specifies the index of
the bit to select. The least significant bit has index 0. The highest permissible index is one less
than the bit-width of this ap_[u]fixed variable.

The result type is af_bit_ref with a value of either 0 or 1. For example:

ap_int<8, 5> Value = 1.375;

Value[3]; // Yields 1
Value[4]; // Yields 0

Value[2] = 1; // Yields 1.875
Value[3] = 0; // Yields 0.875

Bit Range

af_range_ref af_(u)fixed::range (unsigned Hi, unsigned Lo)
af_range_ref af_(u)fixed::operator [] (unsigned Hi, unsigned Lo)

This operation is similar to bit-select operator [] except that it operates on a range of bits instead
of a single bit.

It selects a group of bits from the arbitrary precision fixed-point variable. The Hi argument
provides the upper range of bits to be selected. The Lo argument provides the lowest bit to be
selected. If Lo is larger than Hi the bits selected are returned in the reverse order.

The return type af_range_ref represents a reference in the range of the ap_[u]fixed
variable specified by Hi and Lo. For example:

ap_uint<4> Result = 0;
ap_ufixed<4, 2> Value = 1.25;
ap_uint<8> Repl = 0xAA;

Result = Value.range(3, 0); // Yields: 0x5
Value(3, 0) = Repl(3, 0); // Yields: -1.5

// when Lo > Hi, return the reverse bits string
Result = Value.range(0, 3); // Yields: 0xA

Range Select

af_range_ref af_(u)fixed::range ()
af_range_ref af_(u)fixed::operator []

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 630Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=630

This operation is the special case of the range select operator []. It selects all bits from this
arbitrary precision fixed-point value in the normal order.

The return type af_range_ref represents a reference to the range specified by Hi = W - 1 and
Lo = 0. For example:

ap_uint<4> Result = 0;

ap_ufixed<4, 2> Value = 1.25;
ap_uint<8> Repl = 0xAA;

Result = Value.range(); // Yields: 0x5
Value() = Repl(3, 0); // Yields: -1.5

Length

int ap_[u]fixed::length ()

This function returns an integer value that provides the number of bits in an arbitrary precision
fixed-point value. It can be used with a type or a value. For example:

ap_ufixed<128, 64> My128APFixed;

int bitwidth = My128APFixed.length(); // Yields 128

Explicit Conversion Methods

Fixed to Double

double ap_[u]fixed::to_double ()

This member function returns this fixed-point value in form of IEEE double precision format. For
example:

ap_ufixed<256, 77> MyAPFixed = 333.789;
double Result;

Result = MyAPFixed.to_double(); // Yields 333.789

Fixed to Float

float ap_[u]fixed::to_float()

This member function returns this fixed-point value in form of IEEE float precision format. For
example:

ap_ufixed<256, 77> MyAPFixed = 333.789;
float Result;

Result = MyAPFixed.to_float(); // Yields 333.789

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 631Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=631

Fixed to Half-Precision Floating Point

half ap_[u]fixed::to_half()

This member function return this fixed-point value in form of HLS half-precision (16-bit) float
precision format. For example:

ap_ufixed<256, 77> MyAPFixed = 333.789;
half Result;

Result = MyAPFixed.to_half(); // Yields 333.789

Fixed to ap_int

ap_int ap_[u]fixed::to_ap_int ()

This member function explicitly converts this fixed-point value to ap_int that captures all
integer bits (fraction bits are truncated). For example:

ap_ufixed<256, 77> MyAPFixed = 333.789;
ap_uint<77> Result;

Result = MyAPFixed.to_ap_int(); //Yields 333

Fixed to Integer

int ap_[u]fixed::to_int ()
unsigned ap_[u]fixed::to_uint ()
ap_slong ap_[u]fixed::to_int64 ()
ap_ulong ap_[u]fixed::to_uint64 ()

This member function explicitly converts this fixed-point value to C built-in integer types. For
example:

ap_ufixed<256, 77> MyAPFixed = 333.789;
unsigned int Result;

Result = MyAPFixed.to_uint(); //Yields 333

unsigned long long Result;
Result = MyAPFixed.to_uint64(); //Yields 333

RECOMMENDED: Xilinx recommends that you explicitly call member functions instead of using C-style
cast to convert ap_[u]fixed  to other data types.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 632Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=632

Compile Time Access to Data Type Attributes

The ap_[u]fixed<> types are provided with several static members that allow the size and
configuration of data types to be determined at compile time. The data type is provided with the
static const members: width, iwidth, qmode and omode:

static const int width = _AP_W;
static const int iwidth = _AP_I;
static const ap_q_mode qmode = _AP_Q;
static const ap_o_mode omode = _AP_O;

You can use these data members to extract the following information from any existing
ap_[u]fixed<> data type:

• width: The width of the data type.

• iwidth: The width of the integer part of the data type.

• qmode: The quantization mode of the data type.

• omode: The overflow mode of the data type.

For example, you can use these data members to extract the data width of an existing
ap_[u]fixed<> data type to create another ap_[u]fixed<> data type at compile time.

The following example shows how the size of variable Res is automatically defined as 1-bit
greater than variables Val1 and Val2 with the same quantization modes:

// Definition of basic data type
#define INPUT_DATA_WIDTH 12
#define IN_INTG_WIDTH 6
#define IN_QMODE AP_RND_ZERO
#define IN_OMODE AP_WRAP
typedef ap_fixed<INPUT_DATA_WIDTH, IN_INTG_WIDTH, IN_QMODE, IN_OMODE>
data_t;
// Definition of variables
data_t Val1, Val2;
// Res is automatically sized at run-time to be 1-bit greater than
INPUT_DATA_WIDTH
// The bit growth in Res will be in the integer bits
ap_int<data_t::width+1, data_t::iwidth+1, data_t::qmode, data_t::omode> Res
= Val1 +
Val2;

This ensures that Vitis HLS correctly models the bit-growth caused by the addition even if you
update the value of INPUT_DATA_WIDTH, IN_INTG_WIDTH, or the quantization modes for
data_t.

Section VI: Vitis HLS Libraries Reference
Chapter 27: Arbitrary Precision Data Types Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 633Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=633

Chapter 28

Vitis HLS Math Library
The Vitis™ HLS Math Library (hls_math.h) provides coverage of math functions from C++
(cmath) libraries, and can be used in both C simulation and synthesis. It offers floating-point
(single-precision, double-precision, and half-precision) for all functions and fixed-point support
for the majority of the functions. The functions in hls_math.h is grouped in hls namespace,
and can be used as in-place replacement of function of std namespace from the standard C++
math library (cmath).

IMPORTANT! Using hls_math.h  header in C code is not supported.

HLS Math Library Accuracy
The HLS math functions are implemented as synthesizable bit-approximate functions from the
hls_math.h library. Bit-approximate HLS math library functions do not provide the same
accuracy as the standard C function. To achieve the desired result, the bit-approximate
implementation might use a different underlying algorithm than the standard C math library
version. The accuracy of the function is specified in terms of ULP (Unit of Least Precision). This
difference in accuracy has implications for both C simulation and C/RTL co-simulation.

The ULP difference is typically in the range of 1-4 ULP.

• If the standard C math library is used in the C source code, there may be a difference between
the C simulation and the C/RTL co-simulation due to the fact that some functions exhibit a
ULP difference from the standard C math library.

• If the HLS math library is used in the C source code, there will be no difference between the C
simulation and the C/RTL co-simulation. A C simulation using the HLS math library, may
however differ from a C simulation using the standard C math library.

In addition, the following seven functions might show some differences, depending on the C
standard used to compile and run the C simulation:

• copysign

• fpclassify

• isinf

Section VI: Vitis HLS Libraries Reference
Chapter 28: Vitis HLS Math Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 634Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=634

• isfinite

• isnan

• isnormal

• signbit

C90 mode

Only isinf, isnan, and copysign are usually provided by the system header files, and they
operate on doubles. In particular, copysign always returns a double result. This might result in
unexpected results after synthesis if it must be returned to a float, because a double-to-float
conversion block is introduced into the hardware.

C99 mode (-std=c99)

All seven functions are usually provided under the expectation that the system header files will
redirect them to __isnan(double) and __isnan(float). The usual GCC header files do not
redirect isnormal, but implement it in terms of fpclassify.

C++ Using math.h

All seven are provided by the system header files, and they operate on doubles.

copysign always returns a double result. This might cause unexpected results after synthesis if
it must be returned to a float, because a double-to-float conversion block is introduced into the
hardware.

C++ Using cmath

Similar to C99 mode(-std=c99), except that:

• The system header files are usually different.

• The functions are properly overloaded for:

○ float(). snan(double)

○ isinf(double)

copysign and copysignf are handled as built-ins even when using namespace std;.

C++ Using cmath and namespace std

No issues. Xilinx recommends using the following for best results:

• -std=c99 for C

• -fno-builtin for C and C++

Section VI: Vitis HLS Libraries Reference
Chapter 28: Vitis HLS Math Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 635Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=635

Note: To specify the C compile options, such as -std=c99, use the Tcl command add_files with the -
cflags option. Alternatively, use the Edit CFLAGs button in the Project Settings dialog box.

HLS Math Library
The following functions are provided in the HLS math library. Each function supports half-
precision (type half), single-precision (type float) and double precision (type double).

IMPORTANT! For each function func  listed below, there is also an associated half-precision only
function named half_func  and single-precision only function named funcf  provided in the library.

When mixing half-precision, single-precision and double-precision data types, check for common
synthesis errors to prevent introducing type-conversion hardware in the final FPGA
implementation.

Trigonometric Functions

acos acospi asin asinpi
atan atan2 atan2pi cos
cospi sin sincos sinpi
tan tanpi

Hyperbolic Functions

acosh asinh atanh cosh
sinh tanh

Exponential Functions

exp exp10 exp2 expm1
frexp ldexp modf

Logarithmic Functions

ilogb log log10 log1p

Power Functions

cbrt hypot pow rsqrt
sqrt

Error Functions

erf erfc

Section VI: Vitis HLS Libraries Reference
Chapter 28: Vitis HLS Math Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 636Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=636

Rounding Functions

ceil floor llrint llround
lrint lround nearbyint rint
round trunc

Remainder Functions

fmod remainder remquo

Floating-point

copysign nan nextafter nexttoward

Difference Functions

fdim fmax fmin maxmag
minmag

Other Functions

abs divide fabs fma
fract mad recip

Classification Functions

fpclassify isfinite isinf isnan
isnormal signbit

Comparison Functions

isgreater isgreaterequal isless islessequal
islessgreater isunordered

Relational Functions

all any bitselect isequal
isnotequal isordered select

Fixed-Point Math Functions
Fixed-point implementations are also provided for the following math functions.

Section VI: Vitis HLS Libraries Reference
Chapter 28: Vitis HLS Math Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 637Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=637

All fixed-point math functions support ap_[u]fixed and ap_[u]int data types with following bit-
width specification,

1. ap_fixed<W,I> where I<=33 and W-I<=32

2. ap_ufixed<W,I> where I<=32 and W-I<=32

3. ap_int<I> where I<=33

4. ap_uint<I> where I<=32

IMPORTANT! Fixed-point math functions from the hls_math  library do not support the
ap_[u]fixed  template parameters Q,O, and N, for quantization mode, overflow mode, and the number
of saturation bits, respectively. The quantization and overflow modes are only effective when an
ap_[u]fixed variable is on the left hand of assignment or being initialized, but not during the calculation.

Trigonometric Functions

cos sin tan acos asin atan atan2 sincos
cospi sinpi

Hyperbolic Functions

cosh sinh tanh acosh asinh atanh

Exponential Functions

exp frexp modf exp2 expm1

Logarithmic Functions

log log10 ilogb log1p

Power Functions

pow sqrt rsqrt cbrt hypot

Error Functions

erf erfc

Rounding Functions

ceil floor trunc round rint nearbyint

Floating Point

nextafter nexttoward

Section VI: Vitis HLS Libraries Reference
Chapter 28: Vitis HLS Math Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 638Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=638

Difference Functions

erf erfc fdim fmax fmin maxmag minmag

Other Functions

fabs recip abs fract divide

Classification Functions

signbit

Comparison Functions

isgreater isgreaterequal isless islessequal islessgreater

Relational Functions

isequal isnotequal any all bitselect

The fixed-point type provides a slightly-less accurate version of the function value, but a smaller
and faster RTL implementation.

The methodology for implementing a math function with a fixed-point data types is:

1. Determine if a fixed-point implementation is supported.

2. Update the math functions to use ap_fixed types.

3. Perform C simulation to validate the design still operates with the required precision. The C
simulation is performed using the same bit-accurate types as the RTL implementation.

4. Synthesize the design.

For example, a fixed-point implementation of the function sin is specified by using fixed-point
types with the math function as follows:

#include "hls_math.h"
#include "ap_fixed.h"

ap_fixed<32,2> my_input, my_output;

my_input = 24.675;
my_output = sin(my_input);

When using fixed-point math functions, the result type must have the same width and integer
bits as the input.

Section VI: Vitis HLS Libraries Reference
Chapter 28: Vitis HLS Math Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 639Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=639

Verification and Math Functions
If the standard C math library is used in the C source code, the C simulation results and the
C/RTL co-simulation results may be different: if any of the math functions in the source code
have an ULP difference from the standard C math library it may result in differences when the
RTL is simulated.

If the hls_math.h library is used in the C source code, the C simulation and C/RTL co-
simulation results are identical. However, the results of C simulation using hls_math.h are not
the same as those using the standard C libraries. The hls_math.h library simply ensures the C
simulation matches the C/RTL co-simulation results. In both cases, the same RTL implementation
is created. The following explains each of the possible options which are used to perform
verification when using math functions.

Verification Option 1: Standard Math Library and
Verify Differences
In this option, the standard C math libraries are used in the source code. If any of the functions
synthesized do have exact accuracy the C/RTL co-simulation is different than the C simulation.
The following example highlights this approach.

#include <cmath>
#include <fstream>
#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;

typedef float data_t;

data_t cpp_math(data_t angle) {
 data_t s = sinf(angle);
 data_t c = cosf(angle);
 return sqrtf(s*s+c*c);
}

In this case, the results between C simulation and C/RTL co-simulation are different. Keep in
mind when comparing the outputs of simulation, any results written from the test bench are
written to the working directory where the simulation executes:

• C simulation: Folder <project>/<solution>/csim/build

• C/RTL co-simulation: Folder <project>/<solution>/sim/<RTL>

where <project> is the project folder, <solution> is the name of the solution folder and
<RTL> is the type of RTL verified (Verilog or VHDL). The following figure shows a typical
comparison of the pre-synthesis results file on the left-hand side and the post-synthesis RTL
results file on the right-hand side. The output is shown in the third column.

Section VI: Vitis HLS Libraries Reference
Chapter 28: Vitis HLS Math Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 640Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=640

Figure 124: Pre-Synthesis and Post-Synthesis Simulation Differences

The results of pre-synthesis simulation and post-synthesis simulation differ by fractional
amounts. You must decide whether these fractional amounts are acceptable in the final RTL
implementation.

The recommended flow for handling these differences is using a test bench that checks the
results to ensure that they lie within an acceptable error range. This can be accomplished by
creating two versions of the same function, one for synthesis and one as a reference version. In
this example, only function cpp_math is synthesized.

#include <cmath>
#include <fstream>
#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;

typedef float data_t;

data_t cpp_math(data_t angle) {
 data_t s = sinf(angle);
 data_t c = cosf(angle);
 return sqrtf(s*s+c*c);
}

data_t cpp_math_sw(data_t angle) {
 data_t s = sinf(angle);
 data_t c = cosf(angle);
 return sqrtf(s*s+c*c);
}

Section VI: Vitis HLS Libraries Reference
Chapter 28: Vitis HLS Math Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 641Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=641

The test bench to verify the design compares the outputs of both functions to determine the
difference, using variable diff in the following example. During C simulation both functions
produce identical outputs. During C/RTL co-simulation function cpp_math produces different
results and the difference in results are checked.

int main() {
 data_t angle = 0.01;
 data_t output, exp_output, diff;
 int retval=0;

 for (data_t i = 0; i <= 250; i++) {
 output = cpp_math(angle);
 exp_output = cpp_math_sw(angle);

 // Check for differences
 diff = ((exp_output > output) ? exp_output - output : output -
exp_output);
 if (diff > 0.0000005) {
 printf("Difference %.10f exceeds tolerance at angle %.10f \n", diff,
angle);
 retval=1;
 }

 angle = angle + .1;
 }

 if (retval != 0) {
 printf("Test failed !!!\n");
 retval=1;
 } else {
 printf("Test passed !\n");
 }
 // Return 0 if the test passes
 return retval;
}

If the margin of difference is lowered to 0.00000005, this test bench highlights the margin of
error during C/RTL co-simulation:

Difference 0.0000000596 at angle 1.1100001335
Difference 0.0000000596 at angle 1.2100001574
Difference 0.0000000596 at angle 1.5100002289
Difference 0.0000000596 at angle 1.6100002527
etc..

When using the standard C math libraries (math.h and cmath.h) create a “smart” test bench to
verify any differences in accuracy are acceptable.

Verification Option 2: HLS Math Library and Validate
Differences
An alternative verification option is to convert the source code to use the HLS math library. With
this option, there are no differences between the C simulation and C/RTL co-simulation results.
The following example shows how the code above is modified to use the hls_math.h library.

Section VI: Vitis HLS Libraries Reference
Chapter 28: Vitis HLS Math Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 642Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=642

Note: This option is only available in C++.

• Include the hls_math.h header file.

• Replace the math functions with the equivalent hls:: function.

#include <cmath>
#include "hls_math.h"
#include <fstream>
#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;

typedef float data_t;

data_t cpp_math(data_t angle) {
 data_t s = hls::sinf(angle);
 data_t c = hls::cosf(angle);
 return hls::sqrtf(s*s+c*c);
}

Verification Option 3: HLS Math Library File and
Validate Differences
Including the HLS math library file lib_hlsm.cpp as a design file ensures Vitis HLS uses the
HLS math library for C simulation. This option is identical to option2 however it does not require
the C code to be modified.

The HLS math library file is located in the src directory in the Vitis HLS installation area. Simply
copy the file to your local folder and add the file as a standard design file.

Note: This option is only available in C++.

As with option 2, with this option there is now a difference between the C simulation results
using the HLS math library file and those previously obtained without adding this file. These
difference should be validated with C simulation using a “smart” test bench similar to option 1.

Common Synthesis Errors
The following are common use errors when synthesizing math functions. These are often (but not
exclusively) caused by converting C functions to C++ to take advantage of synthesis for math
functions.

Section VI: Vitis HLS Libraries Reference
Chapter 28: Vitis HLS Math Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 643Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=643

C++ cmath.h

If the C++ cmath.h header file is used, the floating point functions (for example, sinf and
cosf) can be used. These result in 32-bit operations in hardware. The cmath.h header file also
overloads the standard functions (for example, sin and cos) so they can be used for float and
double types.

C math.h

If the C math.h library is used, the single-precision functions (for example, sinf and cosf) are
required to synthesize 32-bit floating point operations. All standard function calls (for example,
sin and cos) result in doubles and 64-bit double-precision operations being synthesized.

Cautions

When converting C functions to C++ to take advantage of math.h support, be sure that the new
C++ code compiles correctly before synthesizing with Vitis HLS. For example, if sqrtf() is used
in the code with math.h, it requires the following code extern added to the C++ code to support
it:

#include <math.h>
extern “C” float sqrtf(float);

To avoid unnecessary hardware caused by type conversion, follow the warnings on mixing double
and float types discussed in Floats and Doubles.

Section VI: Vitis HLS Libraries Reference
Chapter 28: Vitis HLS Math Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 644Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=644

Chapter 29

HLS Stream Library
Streaming data is a type of data transfer in which data samples are sent in sequential order
starting from the first sample. Streaming requires no address management.

Modeling designs that use streaming data can be difficult in C. The approach of using pointers to
perform multiple read and/or write accesses can introduce issues, because there are implications
for the type qualifier and how the test bench is constructed.

IMPORTANT! The hls::stream  class is only used in C++ designs.

Vitis HLS provides a C++ template class hls::stream<> for modeling streaming data
structures. The streams implemented with the hls::stream<> class have the following
attributes.

• In the C code, an hls::stream<> behaves like a FIFO of infinite depth. There is no
requirement to define the size of an hls::stream<>.

• They are read from and written to sequentially. That is, after data is read from an
hls::stream<>, it cannot be read again.

• An hls::stream<> on the top-level interface is by default implemented with an ap_fifo
interface for the Vivado IP flow, or as an axis interface for the Vitis kernel flow.

• Streams may be defined either locally or globally and are always implemented as internal
FIFOs. Streams defined in the global scope follow the same rules as any other global variables.

• There are two possible stream declarations:

○ hls::stream<Type>: specify the data type for the stream.

An hls::stream<> internal to the design is implemented as a FIFO with a default depth
of 2. The STREAM pragma or directive can be used to change the depth.

○ hls::stream<Type, Depth> : specify the data type for the stream, and the FIFO
depth.

Set the depth to prevent stalls. If any task in the design can produce or consume samples at
a greater rate than the specified depth, the FIFOs might become empty (or full) resulting in
stalls, because it is unable to read (or write).

This section shows how the hls::stream<> class can more easily model designs with
streaming data. The topics in this section provide:

Section VI: Vitis HLS Libraries Reference
Chapter 29: HLS Stream Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 645Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=645

• An overview of modeling with streams and the RTL implementation of streams.

• How to use streams.

• Blocking reads and writes.

• Non-Blocking Reads and writes.

• Controlling the FIFO depth.

Note: The hls::stream class should always be passed between functions as a C++ reference argument.
For example, &my_stream.

C Modeling and RTL Implementation
Streams are modeled as an infinite queue in software (and in the test bench during RTL co-
simulation). There is no need to specify any depth to simulate streams in C++. Streams can be
used inside functions and on the interface to functions. Internal streams may be passed as
function parameters.

Streams can be used only in C++ based designs. Each hls::stream<> object must be written
by a single process and read by a single process.

If an hls::stream is used on the top-level interface in the Vivado IP flow it is implemented in
the RTL as a FIFO interface (ap_fifo) by default, but can be optionally implemented as an
AXI4-Stream interface (axis). In the Vitis kernel flow it is by default implemented as an AXI4-
Stream interface (axis).

If an hls::stream is used inside the design function and synthesized into hardware, it is
implemented as a FIFO with a default depth of 2. In some cases, such as when interpolation is
used, the depth of the FIFO might have to be increased to ensure the FIFO can hold all the
elements produced by the hardware. Failure to ensure the FIFO is large enough to hold all the
data samples generated by the hardware can result in a stall in the design (seen in C/RTL co-
simulation and in the hardware implementation). The depth of the FIFO can be adjusted using
the STREAM directive with the depth option. An example of this is provided in the example
design hls_stream.

IMPORTANT! Ensure hls::stream variables are correctly sized when used in the default non-
DATAFLOW regions.

Section VI: Vitis HLS Libraries Reference
Chapter 29: HLS Stream Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 646Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=646

If an hls::stream is used to transfer data between tasks (sub-functions or loops), you should
immediately consider implementing the tasks in a DATAFLOW region where data streams from
one task to the next. The default (non-DATAFLOW) behavior is to complete each task before
starting the next task, in which case the FIFOs used to implement the hls::stream variables
must be sized to ensure they are large enough to hold all the data samples generated by the
producer task. Failure to increase the size of the hls::stream variables results in the error
below:

ERROR: [XFORM 203-733] An internal stream xxxx.xxxx.V.user.V' with default
size is
used in a non-dataflow region, which may result in deadlock. Please
consider to
resize the stream using the directive 'set_directive_stream' or the 'HLS
stream'
pragma.

This error informs you that in a non-DATAFLOW region, the default FIFOs depth of 2 may not be
large enough to hold all the data samples written to the FIFO by the producer task, and deadlock
may occur.

Using HLS Streams
To use hls::stream<> objects in your code include the header file hls_stream.h as shown
below. Streaming data objects are defined by specifying the type and variable name. In this
example, a 128-bit unsigned integer type is defined and used to create a stream variable called
my_wide_stream.

#include "ap_int.h"
#include "hls_stream.h"

typedef ap_uint<128> uint128_t; // 128-bit user defined type
hls::stream<uint128_t> my_wide_stream; // A stream declaration

Streams must use scoped naming. Xilinx recommends using the scoped hls:: naming shown in
the example above. However, if you want to use the hls namespace, you can rewrite the
preceding example as:

#include <ap_int.h>
#include <hls_stream.h>
using namespace hls;

typedef ap_uint<128> uint128_t; // 128-bit user defined type
stream<uint128_t> my_wide_stream; // hls:: no longer required

Given a stream specified as hls::stream<T>, the type T can be:

• Any C++ native data type

• A Vitis HLS arbitrary precision type (for example, ap_int<>, ap_ufixed<>)

Section VI: Vitis HLS Libraries Reference
Chapter 29: HLS Stream Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 647Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=647

• A user-defined struct containing either of the above types

Note: General user-defined classes (or structures) that contain methods (member functions) should not be
used as the type (T) for a stream variable.

A stream can also be specified as hls::stream<Type, Depth>, where Depth indicates the
depth of the FIFO needed in the verification adapter that the HLS tool creates for RTL co-
simulation.

Streams can be optionally named. Providing a name for the stream allows the name to be used in
reporting. For example, Vitis HLS automatically checks to ensure all elements from an input
stream are read during simulation. Given the following two streams:

hls::stream<uint8_t> bytestr_in1;
hls::stream<uint8_t> bytestr_in2("input_stream2");

Any warning on elements of the streams are reported as follows, where it is clear that
input_stream2 refers to bytestr_in2:

WARNING: Hls::stream 'hls::stream<unsigned char>.1' contains leftover data,
which
may result in RTL simulation hanging.
WARNING: Hls::stream 'input_stream2' contains leftover data, which may
result in RTL
simulation hanging.

When streams are passed into and out of functions, they must be passed-by-reference as in the
following example:

void stream_function (
 hls::stream<uint8_t> &strm_out,
 hls::stream<uint8_t> &strm_in,
 uint16_t strm_len
)

Streaming examples are provided in the Vitis-HLS-Introductory-Examples repository on GitHub,
under Interface/Streaming. Additional design examples using streams are provided in the
Vitis_Accel_Examples also on GitHub.

Vitis HLS also supports both blocking and non-blocking access methods for hls::stream
objects, as described in the following sections.

Section VI: Vitis HLS Libraries Reference
Chapter 29: HLS Stream Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 648Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Streaming
https://github.com/Xilinx/Vitis_Accel_Examples
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=648

Blocking API
The term blocking means that operation stalls until fresh data is available on the streaming
channels. The blocking API automatically checks if the FIFO is full or empty and performs the
read/write operation on the FIFO. There is no need to manually check for full and empty
conditions of the FIFO. The blocking API is fully deterministic, which means that C-simulation
and RTL/Co-simulation will behave exactly the same way. This blocking API should only be used
in the scenarios described in the following sections. Other uses could lead to non-deterministic
behavior.

TIP: When used in blocking mode the hls::stream  may deadlock due to insufficiently sized data
streams.

Blocking Write Methods

In this example, the value of variable src_var is pushed into the stream.

// Usage of void write(const T & wdata)

hls::stream<int> my_stream;
int src_var = 42;

my_stream.write(src_var);

The << operator is overloaded such that it may be used in a similar fashion to the stream
insertion operators for C++ stream (for example, iostreams and filestreams). The
hls::stream<> object to be written to is supplied as the left-hand side argument and the
value to be written as the right-hand side.

// Usage of void operator << (T & wdata)

hls::stream<int> my_stream;
int src_var = 42;

my_stream << src_var;

Blocking Read Methods

This method reads from the head of the stream and assigns the values to the variable dst_var.

// Usage of void read(T &rdata)

hls::stream<int> my_stream;
int dst_var;

my_stream.read(dst_var);

Section VI: Vitis HLS Libraries Reference
Chapter 29: HLS Stream Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 649Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=649

Alternatively, the next object in the stream can be read by assigning (using for example =, +=) the
stream to an object on the left-hand side:

// Usage of T read(void)

hls::stream<int> my_stream;

int dst_var = my_stream.read();

The >> operator is overloaded to allow use similar to the stream extraction operator for C++
stream (for example, iostreams and filestreams). The hls::stream is supplied as the LHS
argument and the destination variable the RHS.

// Usage of void operator >> (T & rdata)

hls::stream<int> my_stream;
int dst_var;

my_stream >> dst_var;

Stream.full() Method

This method of the hls::stream objects returns true, if and only if the object is full, as shown
below:

hls::stream<int> my_stream;
int src_var = 42;
bool stream_full;

stream_full = my_stream.full();

This method can be used to ensure deterministic behavior of the blocking API.

Stream.empty() Method

This method of hls::stream objects returns true if the stream is empty, as shown below.

hls::stream<int> my_stream;
int dst_var;
bool stream_empty;

stream_empty = my_stream.empty();

The following example shows how a combination of non-blocking accesses and full/empty tests
can provide error handling functionality when the RTL FIFOs are full or empty:

#include "hls_stream.h"
using namespace hls;

typedef struct {
 short data;
 bool valid;
 bool invert;

Section VI: Vitis HLS Libraries Reference
Chapter 29: HLS Stream Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 650Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=650

} input_interface;

bool invert(stream<input_interface>& in_data_1,
 stream<input_interface>& in_data_2,
 stream<short>& output
) {
 input_interface in;
 bool full_n;

// Read an input value or return
 if (!in_data_1.read_nb(in))
 if (!in_data_2.read_nb(in))
 return false;

// If the valid data is written, return not-full (full_n) as true
 if (in.valid) {
 if (in.invert)
 full_n = output.write_nb(~in.data);
 else
 full_n = output.write_nb(in.data);
 }
 return full_n;
}

Deterministic Behavior

As discussed in Blocking API, the blocking API can have both deterministic and non-deterministic
behavior as shown in the following code example:

func1()
{
 while(!s.empty()) {
 s.read();
 }
}

During C-simulation the data to the stream is always available so the while loop runs through to
completion. However, if the data stream has a single bubble when running in hardware the
while loop will exit, and func1 will return prematurely. This will lead to non-deterministic
behavior between C-simulation and RTL execution.

The proper way to implement this loop is to use the side-channel signal tlast, as shown in the
following example. Refer to AXI4-Stream Interfaces with Side-Channels for more information.

func1()
{
 while(!tlast) {
 s1.read()
 }
}

The blocking API can be deterministic when used in one of the following ways.

Section VI: Vitis HLS Libraries Reference
Chapter 29: HLS Stream Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 651Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=651

• Case 1 - Simple read/write to the FIFO:

int data = in.read();
 if (data >= 10)
 out1.write(data);
 else
 out2.write(data);

• Case 2 - FULL and EMPTY check using blocking API:

This case does not perform any computation with side effects, i.e. read or write a stream,
memory, or static variable is still considered to use only blocking stream accesses.

void df(hls::stream<...> &s1, hls::stream<...> &s2, ...) {
#pragma HLS dataflow

 p1(s1, ...);
 p2(s2, ...);
...
}
void p1(hls::stream<...> &s1, ...) {
 if (s1.empty())
 return;
 ... = s1.read();
 ...
}
void p2(hls::stream<...> &s2, ...) {
 if (s2.full())
 return;
 ...
 s2.write(...);
}

Non-Blocking API
IMPORTANT! Non-blocking API is only supported on interfaces using the ap_fifo  protocol. More
specifically, the AXI-Stream (axis) protocol does not support non-blocking accesses.

The term non-blocking means that lack of data (or too much data) on the stream does not block
the operation of a function or the iteration of a loop. Non-blocking methods return a Boolean
value indicating the status of a read or write: true if successful, false otherwise. However,
using non-blocking APIs can lead to non-deterministic behavior which cannot be fully validated
during either C-simulation or RTL/Co-simulation, and requires an RTL testbench to test it
exhaustively. Non-deterministic behavior can occur when reading from an empty FIFO or writing
to a full FIFO.

During C simulation, streams have an infinite size. It is therefore not possible to validate with C
simulation if the stream is full. These methods can be verified only during RTL simulation when
the FIFO sizes are defined (either the default size of 1, or an arbitrary size defined with the
STREAM directive).

Section VI: Vitis HLS Libraries Reference
Chapter 29: HLS Stream Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 652Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=652

IMPORTANT! If the design is specified to use the block-level I/O protocol ap_ctrl_none  and the
design contains any hls::stream variables that employ non-blocking behavior, C/RTL co-simulation is
not guaranteed to complete.

Non-Blocking Writes

Non-Blocking Writes

This method attempts to push variable src_var into the stream my_stream, returning a
boolean true if successful. Otherwise, false is returned and the queue is unaffected.

// Usage of bool write_nb(const T & wdata)

hls::stream<int> my_stream;
int src_var = 42;

if (my_stream.write_nb(src_var)) {
 // Perform standard operations
 ...
} else {
 // Write did not occur
 return;
}

Non-Blocking Writes with Full Check

Non-blocking behavior can also be modeled using non-blocking writes with full checking
conditions, as explained in Stream.full() Method. This can lead to non-deterministic behavior and
should be verified in RTL simulation with a sophisticated test bench.

hls::stream<int> my_stream;
int src_var = 42;
bool stream_full;

stream_full = my_stream.full();
if(!stream_full)
 my_stream.write_nb(src_var);

Non-Blocking Read

Non-Blocking Reads

This method attempts to read a value from the stream, returning true if successful. Otherwise,
false is returned and the queue is unaffected.

// Usage of bool read_nb(const T & wdata)

hls::stream<int> my_stream;
int dst_var;

if (my_stream.read_nb(dst_var)) {
 // Perform standard operations

Section VI: Vitis HLS Libraries Reference
Chapter 29: HLS Stream Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 653Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=653

 ...
} else {
 // Read did not occur
 return;
}

Non-Blocking Reads with Empty Check

Non-blocking behavior can also be modeled using non-blocking read with a check for an empty
stream, as described in Stream.empty() Method. This can lead to non-deterministic behavior and
should be verified in RTL simulation with a sophisticated test bench.

READ_ONLY_LOOP:
while (check != 0) {
 if (!addr_strm.empty())
 {
 addr_strm.read_nb(addr_for_HBM);
 hbm[addr_for_HBM] = some_data;
 check[0] = 1;
 ...
 }
 ...
 ...
 check = (check << 1);
 }

Controlling the RTL FIFO Depth
For most designs using streaming data, the default RTL FIFO depth of 2 is sufficient. Streaming
data is generally processed one sample at a time.

For multirate designs in which the implementation requires a FIFO with a depth greater than 2,
you must determine (and set using the STREAM directive) the depth necessary for the RTL
simulation to complete. If the FIFO depth is insufficient, RTL co-simulation stalls.

Because stream objects cannot be viewed in the GUI directives pane, the STREAM directive
cannot be applied directly in that pane.

Right-click the function in which an hls::stream<> object is declared (or is used, or exists in
the argument list) to:

• Select the STREAM directive.

• Populate the variable field manually with name of the stream variable.

Alternatively, you can:

• Specify the STREAM directive manually in the directives.tcl file, or

• Add it as a pragma in source.

Section VI: Vitis HLS Libraries Reference
Chapter 29: HLS Stream Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 654Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=654

Chapter 30

HLS Vector Library
IMPORTANT! To use hls::vector  objects in your code include the header file hls_vector.h.

Vector Data Type Usage

The vector data type is provided to easily model and synthesize SIMD-type vector operations.
Vitis HLS vector data type can be defined as follows, where T is a primitive or user-defined type
with most of the arithmetic operations defined on it. N is an integer greater than zero. Once a
vector type variable is declared it can be used like any other primitive type variable to perform
arithmetic and logic operations.

#include <hls_vector.h>
hls::vector<T,N> aVec;

TIP: The best performance is achieved when both the bit-width of T  and N  are integer powers of 2.

Memory Layout

For any vector type defined as hls::vector<T,N>, the storage is guaranteed to be contiguous
of size sizeof(T)*N and aligned to the greatest power of 2 such that the allocated size is at
least sizeof(T)*N. In particular, when N is a power of 2 and sizeof(T) is a power of 2,
vector<T, N> is aligned to its total size. This matches vector implementation on most
architectures.

TIP: When sizeof(T)*N  is an integer power of 2, the allocated size will be exactly sizeof(T)*N,
otherwise the allocated size will be larger to make alignment possible.

The following example shows the definition of a vector class that aligns itself as described above.

constexpr size_t gp2(size_t N)
{
 return (N > 0 && N % 2 == 0) ? 2 * gp2(N / 2) : 1;
}

template<typename T, size_t N> class alignas(gp2(sizeof(T) * N)) vector
{
 std::array<T, N> data;
};

Section VI: Vitis HLS Libraries Reference
Chapter 30: HLS Vector Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 655Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=655

Following are different examples of alignment:

hls::vector<char,8> char8Vec; // aligns on 8 Bytes boundary
hls::vector<int,8> int8Vec; // aligns on 32 byte boundary

Requirements and Dependencies

Vitis HLS vector types requires support for C++ 14 or later. It has the following dependencies on
the standard headers:

• <array>

○ std::array<T, N>

• <cassert>

○ assert

• <initializer_list>

○ std::initializer_list<T>

Supported Operations

• Initialization:

hls::vector<int, 4> x; // uninitialized
hls::vector<int, 4> y = 10; // scalar initialized: all elements set to 10
hls::vector<int, 4> z = {0, 1, 2, 3}; // initializer list (must have 4
elements)
hls::vector<ap_int, 4> a; // uninitialized arbitrary precision data type

• Access:

The operator[] enables access to individual elements of the vector, similar to a standard array:

x[i] = ...; // set the element at index i
... = x[i]; // value of the element at index i

• Arithmetic:

They are defined recursively, relying on the matching operation on T.

Table 42: Arithmetic Operation

Operation In Place Expression Reduction (Left Fold)
Addition += + reduce_add

Subtraction -= - non-associative

Multiplication *= * reduce_mult

Division /= / non-associative

Remainder %= % non-associative

Bitwise AND &= & reduce_and

Section VI: Vitis HLS Libraries Reference
Chapter 30: HLS Vector Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 656Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=656

Table 42: Arithmetic Operation (cont'd)

Operation In Place Expression Reduction (Left Fold)
Bitwise OR |= | reduce_or

Bitwise XOR ^= ^ reduce_xor

Shift Left <<= << non-associative

Shift Right >>= >> non-associative

Pre-increment ++x none unary operator

Pre-decrement --x none unary operator

Post-increment x++ none unary operator

Post-decrement x-- none unary operator

• Comparison:

Lexicographic order on vectors (returns bool):

Table 43: Operation

Operation Expression
Less than <

Less or equal <=

Equal ==

Different !=

Greater or equal >=

Greater than >

Section VI: Vitis HLS Libraries Reference
Chapter 30: HLS Vector Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 657Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=657

Chapter 31

HLS Task Library
IMPORTANT! To use hls::task  objects in your code include the header file hls_task.h.

The hls::task library provides a simpler way of modeling purely streaming kernels, allowing
static instantiation of tasks with only streaming I/O (hls::stream or
hls::stream_of_blocks). This reduces the need for checks for empty stream needed to
model concurrent processes in C++.

The following is a simple example that can be found at simple_data_driven on GitHub:

void odds_and_evens(hls::stream<int> &in, hls::stream<int> &out1,
hls::stream<int> &out2) {
 hls_thread_local hls::stream<int> s1; // channel connecting t1 and
t2
 hls_thread_local hls::stream<int> s2; // channel connecting t1 and t3

 // t1 infinitely runs splitter, with input in and outputs s1 and s2
 hls_thread_local hls::task t1(splitter, in, s1, s2);
 // t2 infinitely runs function odds, with input s1 and output out1
 hls_thread_local hls::task t2(odds, s1, out1);
 // t3 infinitely runs function evens, with input s2 and output
 hls_thread_local hls::task t3(evens, s2, out2);
}

Notice the top-level function, odds_and_evens uses streaming input and output interfaces.
This is a purely streaming kernel. The top-level function includes the following:

• s1 and s2 are thread-local streams (hls_thread_local) and are used to connect the task-
channel tasks t1 and t2. These streams need to be thread-local so that they can be kept alive
across top-level calls.

• t1, t2, and t3 are the thread-local hls::task that execute the functions (splitter, odds,
and evens respectively). The tasks run infinitely and just process data on their input streams.
No synchronization is needed.

However, this type of model does have some restrictions such as:

• You cannot access non-local memory

• Non-stream data, such as scalar and array variables, must all be local to the processes and
cannot be passed as arguments

• You must explicitly describe the parallelism in the design by the specification of parallel tasks

Section VI: Vitis HLS Libraries Reference
Chapter 31: HLS Task Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 658Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/Task_level_Parallelism/Data_driven/simple_data_driven
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=658

The hls::task objects can be mixed freely with standard dataflow-style function calls, which
can move data in and out of memories (DRAM and BRAM). Tasks also support splitting channels
(hls::split) to support one-to-many data distributions to build pools of workers that process
streams of data, and merging channels (hls::merge) to support many-to-one data aggregation.

Tasks and Channels
The original DATAFLOW model lets you write sequential functions, and then requires the Vitis
HLS tool to identify dataflow processes (tasks) and make them parallel, analyze and manage
dependencies, perform scalar propagation and optimizations such as array-to-stream.
Alternatively, the use of hls::task objects requires you to explicitly instantiate tasks and
channels, managing parallelization yourself in your algorithm design. The purpose of hls::task
is to define a programming model that supports parallel tasks using only streaming data channels.
Tasks are not controlled by function call/return, but run whenever the input streams are not
empty.

TIP: The hls::task  library provides concurrent semantics so that the C-simulation will be consistent
with the RTL. This eliminates some of the problems with the sequential dataflow model.

The following is an example of tasks and channels. You can see that only streaming interfaces
(hls::stream or hls::stream_of_blocks) are used. You can also see that the top-level
function defines the tasks and stream channels using the hls_thread_local keyword.

void func1(hls::stream<int> &in, hls::stream<int> &out1, hls::stream<int>
&out2) {
 int data = in.read();
 if (data >= 10)
 out1.write(data);
 else
 out2.write(data);
}
void func2(hls::stream<int> &in, hls::stream<int> &out) {
 out.write(in.read() + 1);
}
void func3(hls::stream<int> &in, hls::stream<int> &out) {
 out.write(in.read() + 2);
}
void top-func(hls::stream<int> &in, hls::stream<int> &out1,
hls::stream<int> &out2) {
 hls_thread_local hls::stream<int> s1; // channel connecting t1 and t2
 hls_thread_local hls::stream<int> s2; // channel connecting t1 and t3

 hls_thread_local hls::task t1(func1, in, s1, s2); // t1 infinitely runs
func1, with input in and outputs s1 and s2
 hls_thread_local hls::task t2(func2, s1, out1); // t2 infinitely runs
func2, with input s1 and output out1
 hls_thread_local hls::task t3(func3, s2, out2); // t3 infinitely runs
func3, with input s2 and output out2
}

Section VI: Vitis HLS Libraries Reference
Chapter 31: HLS Task Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 659Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=659

The hls::task objects are variables that should be declared as hls_thread_local in order
to keep the variable and the underlying thread alive across multiple calls of the instantiating
function (top_func) in the example above. The task objects implicitly manage a thread that runs
a function continuously, such as func1, func2, or func3 in the example above. The function is
the task body, and has an implicit infinite loop around it.

Each hls::task must be passed a set of arguments that include the function name, input and
output channels hls::streams or hls::stream_of_blocks. The channels must also be
declared hls_thread_local to keep them alive across calls of the top-level function. Non-
stream data, such as scalar and array variables, must all be local to the task functions and cannot
be passed as arguments.

IMPORTANT! Inclusion of hls_task.h  makes hls::stream  and hls::stream_of_blocks 
read calls blocking in C-simulation. This means that code that previously relied on reading an empty stream
will now result in deadlock during simulation.

Supported I/O types

hls::task objects can only read and write streaming channels hls::stream and
hls::stream_of_blocks. Note that both hls::task and the channels that connect to
them must be declared as hls_thread_local.

Use of flushing pipelines

In general, hls::task designs must always use flushing pipelines (flp) or free-running pipelines
(frp), which also flush, because non-flushing pipelines introduce dependencies between process
executions and thus may result in unexpected deadlocks.

Nested Tasks

In the following example, there are two instances of task1 used in task2, both also instantiated as
hls::task instances. This demonstrates that in addition to sequential functions the body of an
hls::task can be functions containing only hls::task objects.

void task1(hls::stream<int> &in, hls::stream<int> &out) {
 hls_thread_local hls::stream<int> s1;

 hls_thread_local hls::task t1(func2, in, s1);
 hls_thread_local hls::task t2(func3, s1, out);
}
void task2(hls::stream<int> &in1, hls::stream<int> &in2, hls::stream<int>
&out1, hls::stream<int> &out2) {
 hls_thread_local hls::task tA(task1, in1, out1);
 hls_thread_local hls::task tB(task1, in2, out2);
}

Section VI: Vitis HLS Libraries Reference
Chapter 31: HLS Task Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 660Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=660

The use of hls_thread_local is still required to ensure safe multiple instantiation of the
intermediate network (tA and tB, both instances of task1 in this example; and safe instances of
the leaf-level processes t1 inside tA and tB, both executing different copies of func2, and t2
inside tA and tB.

Simulation and Co-simulation

C-simulation behavior for tasks and channels model will be the same as in C/RTL Co-simulation.
Reading from an empty stream was previously allowed with only a warning informing that this
condition can cause hangs during simulation. In Vitis HLS 2022.2 reading from an empty stream
can cause deadlock even in C-simulation and therefore is now an error condition with the
following messages:

• In designs containing hls::task objects:

ERROR [HLS SIM]: deadlock detected when simulating hls::tasks.
Execute C-simulation in debug mode in the GUI and examine the source code
location of all the blocked hls::stream::read() calls

• In designs that do not use hls::task:

ERROR [HLS SIM]: an hls::stream is read while empty, which may result in
RTL simulation hanging. If this is not expected, execute C simulation in
debug mode
in the GUI and examine the source code location of the blocked
hls::stream::read()
call to debug. If this is expected, add -
DHLS_STREAM_READ_EMPTY_RETURNS_GARBAGE to
-cflags to turn this error into a warning and allow empty hls::stream
reads to return
 the default value for the data type.

TIP: add -DHLS_STREAM_READ_EMPTY_RETURNS_GARBAGE  to -cflags  to turn this error into
a warning

Tasks and Dataflow
hls::task also supports the definition of tasks inside of dataflow regions. The dataflow region
allows the definition of processes that access external arrays mapped to M_AXI, scalar, or PIPO
arguments from upper levels of the design hierarchy. This requires dataflow processes identified
by the #pragma HLS dataflow statemnent, synchronized via ap_ctrl_chain, that read
data from any non-streamed C++ data structure and output it as hls::stream or
hls::stream_of_blocks channels for connection to hls::tasks. Tasks can then output
streams that are read by other dataflow processes and written to M_AXI, scalar, or PIPO
arguments.

Section VI: Vitis HLS Libraries Reference
Chapter 31: HLS Task Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 661Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=661

IMPORTANT! Because hls::task  objects cannot read or write M_AXI, scalar, or PIPO arguments
dataflow processes must read or write these interfaces and write or read stream channels to
hls::tasks  as shown in the example below.

The following example illustrates tasks and dataflow processes together. The top-level function
(top-func) is a dataflow region that defines sequential functions write_out() and
read_in(), as well as hls::task objects and hls::stream channels.

#include "hls_task.h"

// This is an I/O dataflow process
void write_out(int* out, int n, hls::stream<int> &s2) {
 for (int i=0; i<n; i++)
 out[i] = s2.read();
}
// This is an I/O dataflow process
void read_in(int* in, int n, hls::stream<int> &s1) {
 for (int i=0; i<n; i++)
 s1.write(in[i]);
}
// This is an hls::task body
void func1(hls::stream<int> &s1, hls::stream<int> &s3) {
 // No while(1) needed! This will be a task
 s3.write(... + s1.read());
}
// This is an hls::task body
void func2(hls::stream<int> &s3, hls::stream<int> &s2) {
 // No while(1) needed! This will be a task
 s2.write(... * s3.read());
}
// This could legally be at the top of the design hierarchy
void top-func(int *in, int *out, int n) {
#pragma HLS dataflow
 hls_thread_local hls::stream<int> sk3;
 hls_thread_local hls::stream<int> sk1;
 hls_thread_local hls::stream<int> sk2;

 read_in(in, n, sk1); // can access stream,
scalar or array; calling order matters
 hls_thread_local hls::task t2(func2, sk3, sk2); // can access only
stream; instance order does not matter
 hls_thread_local hls::task t1(func1, sk1, sk3); // can access only
stream; instance order does not matter
 write_out(out, n, sk2); // can access stream,
scalar or array; calling order matters
}

#pragma HLS DATFLOW is required for the two sequential functions, but the hls::task
objects do not require it. Internally, Vitis HLS will automatically split top-func, including both
regular dataflow processes and KPN processes into two dataflow regions:

1. One dataflow region using ap_ctrl_chain that contains regular dataflow processes, like
read_in() and write_out(), in the order in which they appear in the C++ code, and a
call to the ap_ctrl_none region below

2. A second dataflow region using ap_ctrl_none, containing the task and channels. The task
declaration order does not matter.

Section VI: Vitis HLS Libraries Reference
Chapter 31: HLS Task Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 662Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=662

As a result of this, you can expect to see two levels of hierarchy in the Dataflow viewer in the
Vitis HLS GUI.

Section VI: Vitis HLS Libraries Reference
Chapter 31: HLS Task Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 663Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=663

Chapter 32

HLS Split/Merge Library
IMPORTANT! To use hls::split<>  or hls::merge<>  objects in your code include the header file
hls_np_channel.h  as shown in the example below.

For use in Dataflow processes, split/merge channels let you create one-to-many or many-to-one
type channels to distribute data to multiple tasks, or aggregate data from multiple tasks. These
channels have a built-in job scheduler using either a round-robin approach in which data are
sequentially distributed or gathered across the channels, or a load balancing approach that is
determined based on channel availability.

TIP: Load balancing can lead to non-deterministic results in RTL/Co-simulation. In this case, you will need
to write a test bench that is agnostic as to the order of results.

As shown in the figure below, data is read from an input stream and split through the round-robin
scheduler mechanism, and distributed to associated worker tasks. After a worker completes the
task, it writes the output which is merged also using the round-robin scheduler, into a single
stream.

Section VI: Vitis HLS Libraries Reference
Chapter 32: HLS Split/Merge Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 664Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=664

Figure 125: Split/Merge Dataflow

A split channel has one producer and many consumers, and can be typically used to distribute
tasks to a set of workers, abstracting and implementing in RTL the distribution logic, and thus
leading to both better performance and fewer resources. The distribution of an input to one of
the N outputs can be:

• Round-robin, where the consumers read the input data in a fixed rotating order, thus ensuring
deterministic behavior, but not allowing load sharing with dynamically varying computational
loads for the workers.

• Load balancing, where the first consumer to attempt a read will read the first input data, thus
ensuring good load balancing, but with non-deterministic results.

A merge channel has many producers and a single consumer, and operates based on the reverse
logic:

• Round-robin, where the producer output data is merged using a fixed rotating order, thus
ensuring deterministic behavior, but not allowing load sharing with dynamically varying
computational loads for the workers.

• The load balancing merge channel, where the first producer that completes the work will write
first into the channel with non-deterministic results.

Section VI: Vitis HLS Libraries Reference
Chapter 32: HLS Split/Merge Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 665Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=665

The general idea of split and merge is that with the round_robin scheduler data are distributed
around to workers for the split, and read from workers for the merge, in a deterministic fashion.
So if all workers compute the same function the result is the same as with a single worker, but
the performance is better.

If the workers perform different functions, then your design must ensure that the correct data
item is sent to the correct function in the round-robin order of workers, starting from out[0] or
in[0] respectively.

Specification

Specification of split/merge channels is as follows:

hls::split::load_balancing<DATATYPE, NUM_PORTS[, DEPTH, N_PORT_DEPTH]>
name;
hls::split::round_robin<DATATYPE, NUM_PORTS[, DEPTH]> name
hls::merge::load_balancing<DATATYPE, NUM_PORTS[, DEPTH]> name
hls::merge::round_robin<DATATYPE, NUM_PORTS[, DEPTH]> name

Where:

• round_robin/load_balancing: Specifies the type of scheduler mechanism used for the
channel.

• DATATYPE: Specifies the data type on the channel. This has the same restrictions as standard
hls::stream. The DATATYPE can be:

○ Any C++ native data type

○ A Vitis HLS arbitrary precision type (for example, ap_int<>, ap_ufixed<>)

○ A user-defined struct containing either of the above types

• NUM_PORTS: Indicates the number of write ports required for split (1:num) or read-ports
required for merge (num:1) operation

• DEPTH: Optional argument is the depth of the main buffer, located before the split or after the
merge. This is optional, and the default depth is 2 when not specified.

• N_PORT_DEPTH: Optional field for round-robin to specify the depth of output buffers applied
after split, or before merge. This is optional and the default depth is 0 when not specified.

TIP: To specify the optional N_PORT_DEPTH  value, you must also specify DEPTH.

• name: Indicates the name of the created channel object

Section VI: Vitis HLS Libraries Reference
Chapter 32: HLS Split/Merge Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 666Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=666

Following is an example which can be found at mixed_control_and_data_driven available on
GitHub:

#include "hls_np_channel.h"

const int N = 16;
const int NP = 4;

void dut(int in[N], int out[N], int n) {
#pragma HLS dataflow
 hls::split::round_robin<int, NP> split1;
 hls::merge::round_robin<int, NP> merge1;

 read_in(in, n, split1.in);

 // Task-Channels
 hls_thread_local hls::task t[NP];
 for (int i=0; i<NP; i++) {
#pragma HLS unroll
 t[i](worker, split1.out[i], merge1.in[i]);
 }

 write_out(merge1.out, out, n);
}

TIP: The example above shows the workers implemented as hls::task  objects. However, this is simply
a feature of the example and not a requirement of split/merge channels.

Application of Split/Merge

The main use of split and merge is to support multiple compute engine instantiation to fully
exploit the bandwidth of a DDR or HBM port. In this case, the producer is a load process that
reads a burst of data from MAXI, and then passes the individual packets of data to be processed
to a number of workers via the split channel. Use the round-robin protocol if the workers take
similar amounts of time, or load balancing the execution time per input if variable. The consumer
performs the reverse, writing data back into DRAM.

TIP: The write back address can be passed through the split and the merge, along with the data, in the
case of load balancing.

These channels are modeled as implementing hls::stream objects at both ends of the split or
the merge channel. This means that a split or merge channel end can be connected to any
process that takes an hls::stream as an input or an output. The process does not need to be
aware of the type of channel connection. Therefore, they can be used both for standard dataflow
and for hls::task objects.

The following example shows how split can be used by a single produce and multiple consumers:

#include "hls_np_channel.h"

void producer(hls::stream<int> &s) {
 s.write(xxx);
}

Section VI: Vitis HLS Libraries Reference
Chapter 32: HLS Split/Merge Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 667Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Task_level_Parallelism/Data_driven/mixed_control_and_data_driven
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=667

void consumer1(hls::stream<int> &s) {
 ... = s.read();
}

void consumer2(hls::stream<int> &s) {
 ... = s.read();
}

void top-func() {
#pragma HLS dataflow
 hls::split::load_balancing<int, 4, 6> s; // NUM_PORTS=4, DEPTH=6

 producer(s.in, ...);
 consumer1(s.out[0], ...);
 consumer2(s.out[1], ...);
 consumer3(s.out[2], ...);
 consumer4(s.out[3], ...);
}

Section VI: Vitis HLS Libraries Reference
Chapter 32: HLS Split/Merge Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 668Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=668

Chapter 33

HLS Stream of Blocks Library
IMPORTANT! To use hls::stream_of_blocks  objects in your code include the header file
hls_streamofblocks.h.

The hls::stream_of_blocks type provides a user-synchronized stream that supports
streaming blocks of data for process-level interfaces in a dataflow context, where each block is
an array or multidimensional array. The intended use of stream-of-blocks is to replace array-
based communication between a pair of processes within a dataflow region. Refer to the
using_stream_of_blocks example on Github.

Currently, Vitis HLS implements arrays written by a producer process and read by a consumer
process in a dataflow region by mapping them to ping pong buffers (PIPOs). The buffer exchange
for a PIPO buffer occurs at the return of the producer function and the calling of the consumer
function in C++.

While this ensures a concurrent communication semantic that is fully compliant with the
sequential C++ execution semantics, it also implies that the consumer cannot start until the
producer is done, as shown in the following code example.

void producer (int b[M][N], ...) {
 for (int i = 0; i < M; i++)
 for (int j = 0; j < N; j++)
 b[i][f(j)] = ...;
}

void consumer(int b[M][N], ...) {
 for (int i = 0; i < M; i++)
 for (int j = 0; j < N; j++)
 ... = b[i][g(j)] ...;;
}

void top(...) {
#pragma HLS dataflow
 int b[M][N];
#pragma HLS stream off variable=b

 producer(b, ...);
 consumer(b, ...);
}

Section VI: Vitis HLS Libraries Reference
Chapter 33: HLS Stream of Blocks Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 669Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Task_level_Parallelism/Control_driven/Channels/using_stream_of_blocks
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=669

This can unnecessarily limit throughput and/or increase resources if the producer generates data
for the consumer in smaller blocks, for example by writing one row of the buffer output inside a
nested loop, and the consumer uses the data in smaller blocks by reading one row of the buffer
input inside a nested loop, as the example above does. In this example, due to the non-sequential
buffer column access in the inner loop, you cannot simply stream the array b. However, the row
access in the outer loop is sequential thus supporting hls::stream_of_blocks
communication where each block is a 1-dimensional array of size N.

The main purpose of the hls::stream_of_blocks feature is to provide PIPO-like
functionality, but with user-managed explicit synchronization, accesses, and a better coding style.
Stream-of-blocks lets you avoid the use of dataflow in a loop containing the producer and
consumer, which would have been a way to optimize the example above. However, in this case,
the use of the dataflow loop containing the producer and consumer requires the use of a PIPO
buffer (2xN) as shown in the following example:

void producer (int b[N], ...) {
 for (int j = 0; j < N; j++)
 b[f(j)] = ...;
}

void consumer(int b[N], ...) {
 for (int j = 0; j < N; j++)
 ... = b[g(j)];
}

void top(...) {
// The loop below is very constrained in terms of how it must be written
 for (int i = 0; i < M; i++) {
#pragma HLS dataflow
 int b[N];
#pragma HLS stream off variable=b

 producer(b, ...); // writes b
 consumer(b, ...); // reads b
 }
}

The dataflow-in-a-loop code above is also not desirable because this structure has several
limitations in Vitis HLS, such as the loop structure must be very constrained (single induction
variable, starting from 0 and compared with a constant or a function argument and incremented
by 1).

Stream-of-Blocks Modeling Style
On the other hand, for a stream-of-blocks the communication between the producer and the
consumer is modeled as a stream of array-like objects, providing several advantages over array
transfer through PIPO.

Section VI: Vitis HLS Libraries Reference
Chapter 33: HLS Stream of Blocks Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 670Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=670

The use of stream-of-blocks in your code requires the following include file:

#include "hls_streamofblocks.h"

The stream-of-blocks object template is: hls::stream_of_blocks<block_type, depth>
v

Where:

• <block_type> specifies the datatype of the array or multidimensional array held by the
stream-of-blocks

• <depth> is an optional argument that provides depth control just like hls::stream or
PIPOs, and specifies the total number of blocks, including the one acquired by the producer
and the one acquired by the consumer at any given time. The default value is 2

• v specifies the variable name for the stream-of-blocks object

Use the following steps to access a block in a stream of blocks:

1. The producer or consumer process that wants to access the stream first needs to acquire
access to it, using a hls::write_lock or hls::read_lock object.

2. After the producer has acquired the lock it can start writing (or reading) the acquired block.
Once the block has been fully initialized, it can be released by the producer, when the
write_lock object goes out of scope.

Note: The producer process with a write_lock can also read the block as long as it only
reads from already written locations, because the newly acquired buffer must be assumed to
contain uninitialized data. The ability to write and read the block is unique to the producer
process, and is not supported for the consumer.

3. Then the block is queued in the stream-of-blocks in a FIFO fashion, and when the consumer
acquires a read_lock object, the block can be read by the consumer process.

The main difference between hls::stream_of_blocks and the PIPO mechanism seen in the
prior examples is that the block becomes available to the consumer as soon as the write_lock
goes out of scope, rather than only at the return of the producer process. Hence the size of
storage required to manage the original example (without the dataflow loop) is much less with
stream-of-blocks than with just PIPOs: namely 2N instead of 2xMxN in the example.

Rewriting the prior example to use hls::stream_of_blocks is shown in the example below.
The producer acquires the block by constructing an hls::write_lock object called b, and
passing it the reference to the stream-of-blocks object, called s. The write_lock object
provides an overloaded array access operator, letting it be accessed as an array to access
underlying storage in random order as shown in the example below.

Section VI: Vitis HLS Libraries Reference
Chapter 33: HLS Stream of Blocks Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 671Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=671

The acquisition of the lock is performed by constructing the write_lock/read_lock object,
and the release occurs automatically when that object is destructed as it goes out of scope. This
approach uses the common Resource Acquisition Is Initialization (RAII) style of locking and
unlocking.

#include "hls_streamofblocks.h"
typedef int buf[N];
void producer (hls::stream_of_blocks<buf> &s, ...) {
 for (int i = 0; i < M; i++) {
 // Allocation of hls::write_lock acquires the block for the producer
 hls::write_lock<buf> b(s);
 for (int j = 0; j < N; j++)
 b[f(j)] = ...;
 // Deallocation of hls::write_lock releases the block for the consumer
 }
}

void consumer(hls::stream_of_blocks<buf> &s, ...) {
 for (int i = 0; i < M; i++) {
 // Allocation of hls::read_lock acquires the block for the consumer
 hls::read_lock<buf> b(s);
 for (int j = 0; j < N; j++)
 ... = b[g(j)] ...;
 // Deallocation of hls::write_lock releases the block to be reused by
the producer
 }
}

void top(...) {
#pragma HLS dataflow
 hls::stream_of_blocks<buf> s;

 producer(b, ...);
 consumer(b, ...);
}

The key features of this approach include:

• The expected performance of the outer loop in the producer above is to achieve an overall
Initiation Interval (II) of 1

• A locked block can be used as though it were private to the producer or the consumer process
until it is released.

• The initial state of the array object for the producer is undefined, whereas it contains the
values written by the producer for the consumer.

• The principal advantage of stream-of-blocks is to provide overlapped execution of multiple
iterations of the consumer and the producer to increase throughput.

Resource Usage
The resource cost when increasing the depth beyond the default value of 2 is similar to the
resource cost of PIPOs. Namely, each increment of 1 will require enough memory for a block,
e.g., in the example above N * 32-bit words.

Section VI: Vitis HLS Libraries Reference
Chapter 33: HLS Stream of Blocks Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 672Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=672

The stream of blocks object can be bound to a specific RAM type, by placing the
BIND_STORAGE pragma where the stream-of-blocks is declared, for example in the top-level
function. The stream of blocks uses 2-port BRAM (type=RAM_2P) by default.

IMPORTANT! ARRAY_RESHAPE and ARRAY_PARTITION are not supported for stream-of-blocks.

Checking for Full and Empty Blocks
The read_lock and write_lock are like while(empty) or while (full) loops - they
keep trying to acquire the resource until they get the resource - so the code execution will stall
until the lock is acquired. You can use the empty() and full() methods as shown in the
following example to determine if a call to read_lock or write_lock will stall due to the lack
of available blocks to be acquired.

#include "hls_streamofblocks.h"

void reader(hls::stream_of_blocks<buf> &in1, hls::stream_of_blocks<buf>
&in2, int out[M][N], int c) {
 for(unsigned j = 0; j < M;) {
 if (!in1.empty()) {
 hls::read_lock<ppbuf> arr1(in1);
 for(unsigned i = 0; i < N; ++i) {
 out[j][i] = arr1[N-1-i];
 }
 j++;
 } else if (!in2.empty()) {
 hls::read_lock<ppbuf> arr2(in2);
 for(unsigned i = 0; i < N; ++i) {
 out[j][i] = arr2[N-1-i];
 }
 j++;
 }
 }
}

void writer(hls::stream_of_blocks<buf> &out1, hls::stream_of_blocks<buf>
&out2, int in[M][N], int d) {
 for(unsigned j = 0; j < M; ++j) {
 if (d < 2) {
 if (!out1.full()) {
 hls::write_lock<ppbuf> arr(out1);
 for(unsigned i = 0; i < N; ++i) {
 arr[N-1-i] = in[j][i];
 }
 }
 } else {
 if (!out2.full()) {
 hls::write_lock<ppbuf> arr(out2);
 for(unsigned i = 0; i < N; ++i) {
 arr[N-1-i] = in[j][i];
 }
 }
 }

Section VI: Vitis HLS Libraries Reference
Chapter 33: HLS Stream of Blocks Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 673Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=673

 }
}

void top(int in[M][N], int out[M][N], int c, int d) {
#pragma HLS dataflow
 hls::stream_of_blocks<buf, 3> strm1, strm; // Depth=3
 writer(strm1, strm2, in, d);
 reader(strm1, strm2, out, c);
}

The producer and the consumer processes can perform the following actions within any scope in
their body. As shown in the various examples, the scope will typically be a loop, but this is not
required. Other scopes such as conditionals are also supported. Supported actions include:

• Acquire a block, i.e. an array of any supported data type.

○ In the case of the producer, the array will be empty, i.e. initialized according to the
constructor (if any) of the underlying data type.

○ In the case of the consumer, the array will be full (of course in as much as the producer has
filled it; the same requirements as for PIPO buffers, namely full writing if needed apply).

• Use the block for both reading and writing as if it were private local memory, up to its
maximum allocated number of ports based on a BIND_STORAGE pragma or directive specified
for the stream of blocks, which specifies what ports each side can see:

○ 1 port means that each side can access only one port, and the final stream-of-blocks can
use a single dual-port memory for implementation.

○ 2 ports means that each side can use 1 or 2 ports depending on the schedule:

- If the scheduler uses 2 ports on at least one side, merging will not happen

- If the scheduler uses 1 port, merging can happen

○ If the pragma is not specified, the scheduler will decide, based on the same criteria
currently used for local arrays. Moreover:

- The producer can both write and read the block it has acquired

- The consumer can only read the block it has acquired

• Automatically release the block when exiting the scope in which it was acquired. A released
block:

○ If released by the producer, can be acquired by the consumer.

○ If released by the consumer, can be acquired to be reused by the producer, after being re-
initialized by the constructor, if any. This initialization may slow down the design, hence
often it is not desired. You may use the __no_ctor__ attribute (explained earlier for
std::complex) to prevent calling the constructor for the array elements.

A stream-of-blocks is very similar in spirit to a PIPO buffer. In the case of a PIPO, acquire is the
same as calling the producer or consumer process function, while the release is the same as
returning from it. This means that:

Section VI: Vitis HLS Libraries Reference
Chapter 33: HLS Stream of Blocks Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 674Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=674

• the handshakes for a PIPO are

○ ap_start/ap_ready on the consumer side and

○ ap_done/ap_continue on the producer side.

• the handshakes of a stream of blocks are

○ its own read/empty_n on the consumer side and

○ write/full_n on the producer side.

Modeling Feedback in Dataflow Regions
One main limitation of PIPO buffers is that they can flow only forward with respect to the
function call sequence in C++. In other words, the following connection is not supported with
PIPOs, while it can be supported with hls::stream_of_blocks:

void top(...) {
 int b[N];
 for (int i = 0; i < M; i++) {
#pragma HLS dataflow
#pragma HLS stream off variable=b
 consumer(b, ...); // reads b
 producer(b, ...); // writes b
 }
}

The following code example is contrived to demonstrate the concept:

#include "hls_streamofblocks.h"
typedef int buf[N];
void producer (hls::stream_of_blocks<buf> &out, ...) {
 for (int i = 0; i < M; i++) {
 hls::write_lock<buf> arr(out);
 for (int j = 0; j < N; j++)
 arr[f(j)] = ...;
 }
}

void consumer(hls::stream_of_blocks<buf> &in, ...) {
 if (in.empty()) // execute only when producer has already generated some
meaningful data
 return;

 for (int i = 0; i < M; i++) {
 hls::read_lock<buf> arr(in);
 for (int j = 0; j < N; j++)
 ... = arr[g(j)];
 ...
 }
}

void top(...) {
 // Note the large non-default depth.

Section VI: Vitis HLS Libraries Reference
Chapter 33: HLS Stream of Blocks Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 675Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=675

 // The producer must complete execution before the consumer can start
again, due to ap_ctrl_chain.
 // A smaller depth would require ap_ctrl_none
 hls::stream_of_blocks<buf, M+2> backward;

 for (int i = 0; i < M; i++) {
#pragma HLS dataflow
 consumer(backward, ...); // reads backward
 producer(backward, ...); // writes backward
}

Limitations
There are some limitations with the use of hls::stream_of_blocks that you should be
aware of:

• Each hls::stream_of_blocks object must have a single producer and consumer process,
and each process must be different. In other words, local streams-of-blocks within a single
process are not supported.

• You cannot use hls::stream_of_blocks within a sequential region. The producer and
consumer must be separate concurrent processes in a dataflow region.

• You cannot use multiple nested acquire/release statements (write_lock/read_lock), for
example in the same or nested scopes, as shown in the following example:

using ppbuf = int[N];
void readerImplicitNested(hls::stream_of_blocks<ppbuf>& in, ...) {
 for(unsigned j = 0; j < M; ++j) {
 hls::read_lock<ppbuf> arrA(in); // constructor would acquire A
first
 hls::read_lock<ppbuf> arrB(in); // constructor would acquire B
second
 for(unsigned i = 0; i < N; ++i)
 ... = arrA[f(i)] + arrB[g(i)];
 // destructor would release B first
 // destructor would release A second
 }
}

However, you can use multiple sequential or mutually exclusive acquire/release statements
(write_lock/read_lock), for example inside IF/ELSE branches or in two subsequent code
blocks. This is shown in the following example:

void readerImplicitNested(hls::stream_of_blocks<ppbuf>& in, ...) {
 for(unsigned j = 0; j < M; ++j) {
 {
 hls::read_lock<ppbuf> arrA(in); // constructor acquires A
 for(unsigned i = 0; i < N; ++i)
 ... = arrA[f(i)];
 // destructor releases A
 }
 {
 hls::read_lock<ppbuf> arrB(in); // constructor acquires B
 for(unsigned i = 0; i < N; ++i)

Section VI: Vitis HLS Libraries Reference
Chapter 33: HLS Stream of Blocks Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 676Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=676

 ... = arrB[g(i)];
 // destructor releases B
 }
 }
}

• Explicit release of locks in producer and consumer processes are not recommended, as they
are automatically released when they go out of scope. However, you can use these by adding
#define EXPLICIT_ACQUIRE_RELEASE before #include "hls_streamofblocks.h
in your source code.

Section VI: Vitis HLS Libraries Reference
Chapter 33: HLS Stream of Blocks Library

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 677Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=677

Chapter 34

HLS IP Libraries
Vitis™ HLS provides C++ libraries to implement a number of Xilinx® IP blocks. The C libraries
allow the following Xilinx IP blocks to be directly inferred from the C++ source code ensuring a
high-quality implementation in the FPGA.

Table 44: HLS IP Libraries

Library Header File Description
hls_fft.h Allows the Xilinx LogiCORE IP FFT to be simulated in C and implemented using the

Xilinx LogiCORE block.

hls_fir.h Allows the Xilinx LogiCORE IP FIR to be simulated in C and implemented using the
Xilinx LogiCORE block.

hls_dds.h Allows the Xilinx LogiCORE IP DDS to be simulated in C and implemented using the
Xilinx LogiCORE block.

ap_shift_reg.h Provides a C++ class to implement a shift register which is implemented directly
using a Xilinx SRL primitive.

FFT IP Library
The Xilinx FFT IP block can be called within a C++ design using the library hls_fft.h. This
section explains how the FFT can be configured in your C++ code.

RECOMMENDED: Xilinx highly recommends that you review the Fast Fourier Transform LogiCORE IP
Product Guide (PG109) for information on how to implement and use the features of the IP.

To use the FFT in your C++ code:

1. Include the hls_fft.h library in the code

2. Set the default parameters using the predefined struct hls::ip_fft::params_t

3. Define the runtime configuration

4. Call the FFT function

5. Optionally, check the runtime status

The following code examples provide a summary of how each of these steps is performed. Each
step is discussed in more detail below.

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 678Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=xfft;v=latest;d=pg109-xfft.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=678

First, include the FFT library in the source code. This header file resides in the include directory in
the Vitis HLS installation area which is automatically searched when Vitis HLS executes.

#include "hls_fft.h"

Define the static parameters of the FFT. This includes such things as input width, number of
channels, type of architecture. which do not change dynamically. The FFT library includes a
parameterization struct hls::ip_fft::params_t, which can be used to initialize all static
parameters with default values.

In this example, the default values for output ordering and the widths of the configuration and
status ports are over-ridden using a user-defined struct param1 based on the predefined struct.

struct param1 : hls::ip_fft::params_t {
 static const unsigned ordering_opt = hls::ip_fft::natural_order;
 static const unsigned config_width = FFT_CONFIG_WIDTH;
 static const unsigned status_width = FFT_STATUS_WIDTH;
};

Define types and variables for both the runtime configuration and runtime status. These values
can be dynamic and are therefore defined as variables in the C code which can change and are
accessed through APIs.

typedef hls::ip_fft::config_t<param1> config_t;
typedef hls::ip_fft::status_t<param1> status_t;
config_t fft_config1;
status_t fft_status1;

Next, set the runtime configuration. This example sets the direction of the FFT (Forward or
Inverse) based on the value of variable “direction” and also set the value of the scaling schedule.

fft_config1.setDir(direction);
fft_config1.setSch(0x2AB);

Call the FFT function using the HLS namespace with the defined static configuration (param1 in
this example). The function parameters are, in order, input data, output data, output status and
input configuration.

hls::fft<param1> (xn1, xk1, &fft_status1, &fft_config1);

Finally, check the output status. This example checks the overflow flag and stores the results in
variable “ovflo”.

 *ovflo = fft_status1->getOvflo();

TIP: The example above shows the use of scalar values and arrays, but the FFT function also supports the
use of hls::stream  for arguments. Refer to Using FFT Function with Streaming Interface for more
information.

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 679Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=679

FFT Static Parameters
The static parameters of the FFT define how the FFT is configured and specifies the fixed
parameters such as the size of the FFT, whether the size can be changed dynamically, whether
the implementation is pipelined or radix_4_burst_io.

The hls_fft.h header file defines a struct hls::ip_fft::params_t which can be used to
set default values for the static parameters. If the default values are to be used, the
parameterization struct can be used directly with the FFT function.

hls::fft<hls::ip_fft::params_t >
 (xn1, xk1, &fft_status1, &fft_config1);

A more typical use is to change some of the parameters to non-default values. This is performed
by creating a new user-defined parameterization struct based on the default parameterization
struct and changing some of the default values.

In the following example, a new user struct my_fft_config is defined with a new value for the
output ordering (changed to natural_order). All other static parameters to the FFT use the
default values.

struct my_fft_config : hls::ip_fft::params_t {
 static const unsigned ordering_opt = hls::ip_fft::natural_order;
};

hls::fft<my_fft_config >
 (xn1, xk1, &fft_status1, &fft_config1);

The parameters used for the FFT struct hls::ip_fft::params_t are explained below. The
default values for the parameters and a list of possible values are provided.

FFT Struct Parameters

Parameter Description C Type Default Value Valid Values
input_width Data input port width. unsigned 16 8-34

output_width Data output port width. unsigned 16 input_width to
(input_width +
max_nfft + 1)

status_width Output status port width. unsigned 8 Depends on FFT
configuration

config_width Input configuration port width. unsigned 16 Depends on FFT
configuration

max_nfft The size of the FFT data set is
specified as 1 << max_nfft.

unsigned 10 3-16

has_nfft Determines if the size of the FFT
can be runtime configurable.

bool false True, False

channels Number of channels. unsigned 1 1-12

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 680Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=680

Parameter Description C Type Default Value Valid Values
arch_opt The implementation architecture. unsigned pipelined_streaming_i

o
automatically_select
pipelined_streaming_i
o radix_4_burst_io
radix_2_burst_io
radix_2_lite_burst_io

phase_factor_widt
h

Configure the internal phase
factor precision.

unsigned 16 8-34

ordering_opt The output ordering mode. unsigned bit_reversed_order bit_reversed_order
natural_order

ovflo Enable overflow mode. bool true true false

scaling_opt Define the scaling options. unsigned scaled scaled unscaled
block_floating_point

rounding_opt Define the rounding modes. unsigned truncation truncation
convergent_rounding

mem_data Specify using block or distributed
RAM for data memory.

unsigned block_ram block_ram
distributed_ram

mem_phase_factor
s

Specify using block or distributed
RAM for phase factors memory.

unsigned block_ram block_ram
distributed_ram

mem_reorder Specify using block or distributed
RAM for output reorder memory.

unsigned block_ram block_ram
distributed_ram

stages_block_ram Defines the number of block
RAM stages used in the
implementation.

unsigned (max_nfft < 10) ? 0 :
(max_nfft - 9)

0-11

mem_hybrid When block RAMs are specified
for data, phase factor, or reorder
buffer, mem_hybrid specifies
where or not to use a hybrid of
block and distributed RAMs to
reduce block RAM count in
certain configurations.

bool false true false

complex_mult_typ
e

Defines the types of multiplier to
use for complex multiplications.

unsigned use_mults_resources use_luts
use_mults_resources
use_mults_performanc
e

butterfly_type Defines the implementation used
for the FFT butterfly.

unsigned use_luts use_luts
use_xtremedsp_slices

IMPORTANT! When specifying parameter values which are not integer or boolean, the HLS FFT
namespace should be used. For example, the possible values for parameter butterfly_type  in the
following table are use_luts   and use_xtremedsp_slices . The values used in the C program
should be butterfly_type = hls::ip_fft::use_luts  and butterfly_type =
hls::ip_fft::use_xtremedsp_slices.

FFT Runtime Configuration and Status
The FFT supports runtime configuration and runtime status monitoring through the configuration
and status ports. These ports are defined as arguments to the FFT function, shown here as
variables fft_status1 and fft_config1:

hls::fft<param1> (xn1, xk1, &fft_status1, &fft_config1);

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 681Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=681

The runtime configuration and status can be accessed using the predefined structs from the FFT
C library:

• hls::ip_fft::config_t<param1>

• hls::ip_fft::status_t<param1>

Note: In both cases, the struct requires the name of the static parameterization struct, shown in these
examples as param1. Refer to the previous section for details on defining the static parameterization
struct.

The runtime configuration struct allows the following actions to be performed in the C code:

• Set the FFT length, if runtime configuration is enabled

• Set the FFT direction as forward or inverse

• Set the scaling schedule

The FFT length can be set as follows:

typedef hls::ip_fft::config_t<param1> config_t;
config_t fft_config1;
// Set FFT length to 512 => log2(512) =>9
fft_config1.setNfft(9);

IMPORTANT! The length specified during runtime cannot exceed the size defined by max_nfft  in the
static configuration.

The FFT direction can be set as follows:

typedef hls::ip_fft::config_t<param1> config_t;
config_t fft_config1;
// Forward FFT
fft_config1.setDir(1);
// Inverse FFT
fft_config1.setDir(0);

The FFT scaling schedule can be set as follows:

typedef hls::ip_fft::config_t<param1> config_t;
config_t fft_config1;
fft_config1.setSch(0x2AB);

The output status port can be accessed using the pre-defined struct to determine:

• If any overflow occurred during the FFT

• The value of the block exponent

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 682Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=682

The FFT overflow mode can be checked as follows:

typedef hls::ip_fft::status_t<param1> status_t;
status_t fft_status1;
// Check the overflow flag
bool *ovflo = fft_status1.getOvflo();

IMPORTANT! After each transaction completes, check the overflow status to confirm the correct
operation of the FFT.

And the block exponent value can be obtained using:

typedef hls::ip_fft::status_t<param1> status_t;
status_t fft_status1;
// Obtain the block exponent
unsigned int *blk_exp = fft_status1.getBlkExp();

Using the FFT Function with Array Interface
The FFT function with array arguments is defined in the HLS namespace and can be called as
follows:

hls::fft<STATIC_PARAM> (
INPUT_DATA_ARRAY,
OUTPUT_DATA_ARRAY,
OUTPUT_STATUS,
INPUT_RUN_TIME_CONFIGURATION);

The STATIC_PARAM is the static parameterization struct that defines the static parameters for
the FFT.

Both the input and output data are supplied to the function as arrays (INPUT_DATA_ARRAY and
OUTPUT_DATA_ARRAY). In the final implementation, the ports on the FFT RTL block will be
implemented as AXI4-Stream ports. Xilinx recommends always using the FFT function in a region
using dataflow optimization (set_directive_dataflow), and to specify both arrays as
streaming using the set_directive_stream command.

IMPORTANT! The FFT cannot be used in a region which is pipelined. If high-performance operation is
required, pipeline the loops or functions before and after the FFT then use dataflow optimization on all
loops and functions in the region.

The data types for the arrays can be float or ap_fixed.

typedef float data_t;
complex<data_t> in_fft[FFT_LENGTH];
complex<data_t> out_fft[FFT_LENGTH];

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 683Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=683

To use fixed-point data types, the Vitis HLS arbitrary precision type ap_fixed should be used.

#include "ap_fixed.h"
typedef ap_fixed<FFT_INPUT_WIDTH,1> data_in_t;
typedef ap_fixed<FFT_OUTPUT_WIDTH,FFT_OUTPUT_WIDTH-FFT_INPUT_WIDTH+1>
data_out_t;
#include <complex>
typedef hls::x_complex<data_in_t> cmpxData;
typedef hls::x_complex<data_out_t> cmpxDataOut;

In both cases, the FFT should be parameterized with the same correct data sizes. In the case of
floating point data, the data widths will always be 32-bit and any other specified size will be
considered invalid.

IMPORTANT! The input and output width of the FFT can be configured to any arbitrary value within the
supported range. The variables which connect to the input and output parameters must be defined in
increments of 8-bit. For example, if the output width is configured as 33-bit, the output variable must be
defined as a 40-bit variable.

Multi-Channel FFT

The multichannel functionality of the FFT can be used by using two-dimensional arrays for the
input and output data. In this case, the array data should be configured with the first dimension
representing each channel and the second dimension representing the FFT data.

typedef float data_t;
static complex<data_t> in_fft[FFT_CHANNELS][FFT_LENGTH];
static complex<data_t> out_fft[FFT_CHANNELS][FFT_LENGTH];

The FFT core consumes and produces data as interleaved channels (for example, ch0-data0, ch1-
data0, ch2-data0, etc, ch0-data1, ch1-data1, ch2-data1, etc.). Therefore, to stream the input or
output arrays of the FFT using the same sequential order that the data was read or written, you
must fill or empty the two-dimensional arrays for multiple channels by iterating through the
channel index first, as shown in the following example:

cmpxData in_fft[FFT_CHANNELS][FFT_LENGTH];
cmpxData out_fft[FFT_CHANNELS][FFT_LENGTH];

// Read data into FFT Input Array
for (unsigned i = 0; i < FFT_LENGTH; i++) {
 for (unsigned j = 0; j < FFT_CHANNELS; ++j) {
 in_fft[j][i] = in.read();
 }
}

// Write data out from FFT Output Array
for (unsigned i = 0; i < FFT_LENGTH; i++) {
 for (unsigned j = 0; j < FFT_CHANNELS; ++j) {
 out.write(out_fft[j][i]);
 }
}

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 684Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=684

Using FFT Function with Streaming Interface
The FFT function with streaming interfaces is defined in the HLS namespace similarly to this:

 template <typename PARAM_T>
 void fft(hls::stream<complex<float or ap_fixed>> &xn_s,
 hls::stream<complex<float or ap_fixed >> &xk_s,
 hls::stream<ip_fft::status_t<CONFIG_T>> &status_s,
 hls::stream<ip_fft::config_t<CONFIG_T>> &config_s);

and can be called as follows:

hls::fft<STATIC_PARAM> (
INPUT_DATA_STREAM,
OUTPUT_DATA_STREAM,
OUTPUT_STATUS_STREAM,
INPUT_RUN_TIME_CONFIGURATION_STREAM);

The STATIC_PARAM is the static parameterization struct that defines the static parameters for
the FFT.

All input and outputs are supplied to the function as a hls::stream<>. In the final
implementation, the ports on the FFT RTL block will be implemented as AXI4-Stream ports.
Xilinx recommends always using the FFT function in a dataflow region using
set_directive_dataflow or #pragma HLS dataflow.

IMPORTANT! The FFT cannot be used in a region which is pipelined. If high-performance operation is
required, pipeline the loops or functions before and after the FFT then use dataflow optimization on all
loops and functions in the region.

The data types for input data and output data streams can be float or ap_fixed.

void fft_top(
 bool direction,
 complex<data_in_t> in[FFT_LENGTH],
 complex<data_out_t> out[FFT_LENGTH],
 bool &ovflo)
{
 #pragma HLS dataflow
 hls::stream<complex<data_in_t>> in_fft;
 hls::stream<complex<data_out_t>> out_fft;
 hls::stream<config_t> fft_config;
 hls::stream<status_t> fft_status;

 // convert inputs to hls::stream<> and generates fft_config stream
based on input arguments
 proc_fe(direction, fft_config, in, in_fft);
 // FFT IP
 hls::fft<config1>(in_fft, out_fft, fft_status, fft_config);
 // convert fft result to outputs data type and sets output ovflo
according to fft_status stream
 proc_be(fft_status, ovflo, out_fft, out);
}

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 685Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=685

To use fixed-point data types, the Vitis HLS arbitrary precision type ap_fixed should be used.

#include "ap_fixed.h"
typedef ap_fixed<FFT_INPUT_WIDTH,1> data_in_t;
typedef ap_fixed<FFT_OUTPUT_WIDTH,FFT_OUTPUT_WIDTH-FFT_INPUT_WIDTH+1>
data_out_t;
#include <complex>
typedef complex<data_in_t> cmpxData;
typedef complex<data_out_t> cmpxDataOut;

In both cases, the FFT should be parameterized with the same correct data sizes. In the case of
floating point data, the data widths will always be 32-bit and any other specified size will be
considered invalid.

Comparing Stream and Array

The following table shows the array example and stream example usage of the FFT IP.

TIP: The top functions in each example are using array interfaces for consistency, but could be changed to
use hls::stream<>  or use the STREAM pragma or directive to the same effect.

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 686Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=686

FFT with Array Arguments FFT with hls::stream<> Arguments

#include "fft_top.h"

void proc_fe(
 bool direction,
 config_t* config,
 cmpxDataIn in[FFT_LENGTH],
 cmpxDataIn out[FFT_LENGTH])
{
 int i;
 config->setDir(direction);
 config->setSch(0x2AB);
 for (i=0; i< FFT_LENGTH; i++)
 out[i] = in[i];
}

void proc_be(
 status_t* status_in,
 bool* ovflo,
 cmpxDataOut in[FFT_LENGTH],
 cmpxDataOut out[FFT_LENGTH])
{
 int i;
 for (i=0; i< FFT_LENGTH; i++)
 out[i] = in[i];
 *ovflo = status_in->getOvflo() & 0x1;
}

// TOP function
void fft_top(
 bool direction,
 complex<data_in_t> in[FFT_LENGTH],
 complex<data_out_t> out[FFT_LENGTH],
 bool* ovflo)
{
#pragma HLS interface ap_hs port=direction
#pragma HLS interface ap_fifo depth=1
port=ovflo
#pragma HLS interface ap_fifo
depth=FFT_LENGTH port=in,out
#pragma HLS data_pack variable=in
#pragma HLS data_pack variable=out
#pragma HLS dataflow
 complex<data_in_t> xn[FFT_LENGTH];
 complex<data_out_t> xk[FFT_LENGTH];
 config_t fft_config;
 status_t fft_status;

 // convert inputs to arrays and generates
fft_config
 // based on input arguments
 proc_fe(direction, &fft_config, in, xn);
 // FFT IP
 hls::fft<config1>(xn, xk, &fft_status,
&fft_config);
 // convert fft results to outputs data type
and
 // sets output ovflo according to fft_status
 proc_be(&fft_status, ovflo, xk, out);
}

#include "fft_top.h"

void proc_fe(
 bool direction,
 hls::stream<config_t> &config_s,
 cmpxDataIn in[FFT_LENGTH],
 hls::stream<cmpxDataIn> &out_s)
{
 int i;
 config_t config;
 config.setDir(direction);
 config.setSch(0x2AB);
 config_s.write(config);
 for (i=0; i< FFT_LENGTH; i++) {
 #pragma HLS pipeline II=1 rewind
 out_s.write(in[i]);
 }
}

void proc_be(
 hls::stream<status_t> &status_in_s,
 bool &ovflo,
 hls::stream<cmpxDataOut> &in_s,
 cmpxDataOut out[FFT_LENGTH])
{
 int i;
 for (i=0; i< FFT_LENGTH; i++) {
 #pragma HLS pipeline II=1 rewind
 out[i] = in_s.read();
 }
 status_t status_in = status_in_s.read();
 ovflo = status_in.getOvflo() & 0x1;
}

// TOP function
void fft_top(
 bool direction,
 complex<data_in_t> in[FFT_LENGTH],
 complex<data_out_t> out[FFT_LENGTH],
 bool &ovflo)
{
#pragma HLS dataflow
 hls::stream<complex<data_in_t>> xn;
 hls::stream<complex<data_out_t>> xk;
 hls::stream<config_t> fft_config;
 hls::stream<status_t> fft_status;
 // convert inputs to hls::stream<>
 // and generates fft_config stream based on
input arguments
 proc_fe(direction, fft_config, in, xn);
 // FFT IP
 hls::fft<config1>(xn, xk, fft_status,
fft_config);
 // convert fft result to outputs data type
 // and sets output ovflo according to
fft_status stream
 proc_be(fft_status, ovflo, xk, out);
}

FIR Filter IP Library
The Xilinx FIR IP block can be called within a C++ design using the library hls_fir.h. This
section explains how the FIR can be configured in your C++ code.

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 687Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=687

RECOMMENDED: Xilinx highly recommends that you review the FIR Compiler LogiCORE IP Product
Guide (PG149) for information on how to implement and use the features of the IP.

To use the FIR in your C++ code:

1. Include the hls_fir.h library in the code.

2. Set the static parameters using the predefined struct hls::ip_fir::params_t.

3. Call the FIR function.

4. Optionally, define a runtime input configuration to modify some parameters dynamically.

The following code examples provide a summary of how each of these steps is performed. Each
step is discussed in more detail below.

First, include the FIR library in the source code. This header file resides in the include directory in
the Vitis HLS installation area. This directory is automatically searched when Vitis HLS executes.
There is no need to specify the path to this directory if compiling inside Vitis HLS.

#include "hls_fir.h"

Define the static parameters of the FIR. This includes such static attributes such as the input
width, the coefficients, the filter rate (single, decimation, hilbert). The FIR library includes
a parameterization struct hls::ip_fir::params_t which can be used to initialize all static
parameters with default values.

In this example, the coefficients are defined as residing in array coeff_vec and the default
values for the number of coefficients, the input width and the quantization mode are over-ridden
using a user a user-defined struct myconfig based on the predefined struct.

struct myconfig : hls::ip_fir::params_t {
 static const double coeff_vec[sg_fir_srrc_coeffs_len];
 static const unsigned num_coeffs = sg_fir_srrc_coeffs_len;
 static const unsigned input_width = INPUT_WIDTH;
 static const unsigned quantization = hls::ip_fir::quantize_only;
};

Create an instance of the FIR function using the HLS namespace with the defined static
parameters (myconfig in this example) and then call the function with the run method to
execute the function. The function arguments are, in order, input data and output data.

static hls::FIR<param1> fir1;
fir1.run(fir_in, fir_out);

Optionally, a runtime input configuration can be used. In some modes of the FIR, the data on this
input determines how the coefficients are used during interleaved channels or when coefficient
reloading is required. This configuration can be dynamic and is therefore defined as a variable.
For a complete description of which modes require this input configuration, refer to the FIR
Compiler LogiCORE IP Product Guide (PG149).

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 688Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=latest;d=pg149-fir-compiler.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=latest;d=pg149-fir-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=688

When the runtime input configuration is used, the FIR function is called with three arguments:
input data, output data and input configuration.

// Define the configuration type
typedef ap_uint<8> config_t;
// Define the configuration variable
config_t fir_config = 8;
// Use the configuration in the FFT
static hls::FIR<param1> fir1;
fir1.run(fir_in, fir_out, &fir_config);

TIP: The example above shows the use of scalar values and arrays, but the FIR function also supports the
use of hls::stream  for arguments. Refer to Vitis HLS Introductory Examples for more information.

FIR Static Parameters
The static parameters of the FIR define how the FIR IP is parameterized and specifies non-
dynamic items such as the input and output widths, the number of fractional bits, the coefficient
values, the interpolation and decimation rates. Most of these configurations have default values:
there are no default values for the coefficients.

The hls_fir.h header file defines a struct hls::ip_fir::params_t that can be used to
set the default values for most of the static parameters.

IMPORTANT! There are no defaults defined for the coefficients. Therefore, Xilinx does not recommend
using the pre-defined struct to directly initialize the FIR. A new user defined struct which specifies the
coefficients should always be used to perform the static parameterization.

In this example, a new user struct my_config is defined and with a new value for the
coefficients. The coefficients are specified as residing in array coeff_vec. All other parameters
to the FIR use the default values.

struct myconfig : hls::ip_fir::params_t {
 static const double coeff_vec[sg_fir_srrc_coeffs_len];
};
static hls::FIR<myconfig> fir1;
fir1.run(fir_in, fir_out);

Fir Struct Parameters

The following table describes the parameters used for the parametrization struct
hls::ip_fir::params_tand lists the default values for the parameters as well as the
possible values.

Table 45: FIR Struct Parameter Values

Parameter Description C Type Default Value Valid Values
input_width Data input port width unsigned 16 No limitation

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 689Send Feedback

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=689

Table 45: FIR Struct Parameter Values (cont'd)

Parameter Description C Type Default Value Valid Values
input_fractional_bits Number of fractional bits on

the input port
unsigned 0 Limited by size of

input_width

output_width Data output port width unsigned 24 No limitation

output_fractional_bits Number of fractional bits on
the output port

unsigned 0 Limited by size of
output_width

coeff_width Bit-width of the coefficients unsigned 16 No limitation

coeff_fractional_bits Number of fractional bits in
the coefficients

unsigned 0 Limited by size of
coeff_width

num_coeffs Number of coefficients bool 21 Full

coeff_sets Number of coefficient sets unsigned 1 1-1024

input_length Number of samples in the
input data

unsigned 21 No limitation

output_length Number of samples in the
output data

unsigned 21 No limitation

num_channels Specify the number of
channels of data to process

unsigned 1 1-1024

total_num_coeff Total number of coefficients unsigned 21 num_coeffs * coeff_sets

coeff_vec[total_num_co
eff]

The coefficient array double
array

None Not applicable

filter_type The type implementation
used for the filter

unsigned single_rate single_rate, interpolation,
decimation, hilbert_filter,
interpolated

rate_change Specifies integer or
fractional rate changes

unsigned integer integer, fixed_fractional

interp_rate The interpolation rate unsigned 1 1-1024

decim_rate The decimation rate unsigned 1 1-1024

zero_pack_factor Number of zero coefficients
used in interpolation

unsigned 1 1-8

rate_specification Specify the rate as frequency
or period

unsigned period frequency, period

hardware_oversamplin
g_rate

Specify the rate of over-
sampling

unsigned 1 No Limitation

sample_period The hardware oversample
period

bool 1 No Limitation

sample_frequency The hardware oversample
frequency

unsigned 0.001 No Limitation

quantization The quantization method to
be used

unsigned integer_coefficients integer_coefficients,
quantize_only,
maximize_dynamic_range

best_precision Enable or disable the best
precision

unsigned false false
true

coeff_structure The type of coefficient
structure to be used

unsigned non_symmetric inferred, non_symmetric,
symmetric,
negative_symmetric,
half_band, hilbert

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 690Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=690

Table 45: FIR Struct Parameter Values (cont'd)

Parameter Description C Type Default Value Valid Values
output_rounding_mod
e

Type of rounding used on
the output

unsigned full_precision full_precision, truncate_lsbs,
non_symmetric_rounding_d
own,
non_symmetric_rounding_u
p,
symmetric_rounding_to_zer
o,
symmetric_rounding_to_infi
nity,
convergent_rounding_to_ev
en,
convergent_rounding_to_od
d

filter_arch Selects a systolic or
transposed architecture

unsigned systolic_multiply_accu
mulate

systolic_multiply_accumulat
e,
transpose_multiply_accumul
ate

optimization_goal Specify a speed or area goal
for optimization

unsigned area area, speed

inter_column_pipe_len
gth

The pipeline length required
between DSP columns

unsigned 4 1-16

column_config Specifies the number of DSP
module columns

unsigned 1 Limited by number of DSP
macrocells used

config_method Specifies how the DSP
module columns are
configured

unsigned single single, by_channel

coeff_padding Specifies if zero padding is
added to the front of the
filter

bool false false
true

IMPORTANT! When specifying parameter values which are not integer or boolean, the HLS FIR
namespace should be used. For example the possible values for rate_change  are shown in the table to
be integer  and fixed_fractional . The values used in the C program should be rate_change =
hls::ip_fir::integer  and rate_change = hls::ip_fir::fixed_fractional.

Using the FIR Function with Array Interface
The FIR function is defined in the HLS namespace and can be called as follows:

// Create an instance of the FIR
static hls::FIR<STATIC_PARAM> fir1;
// Execute the FIR instance fir1
fir1.run(INPUT_DATA_ARRAY, OUTPUT_DATA_ARRAY);

The STATIC_PARAM is the static parameterization struct that defines most static parameters for
the FIR.

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 691Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=691

Both the input and output data are supplied to the function as arrays (INPUT_DATA_ARRAY and
OUTPUT_DATA_ARRAY). In the final implementation, these ports on the FIR IP will be
implemented as AXI4-Stream ports. Xilinx recommends always using the FIR function in a region
using the dataflow optimization (set_directive_dataflow), because this ensures the arrays
are implemented as streaming arrays. An alternative is to specify both arrays as streaming using
the set_directive_stream command.

IMPORTANT! The FIR cannot be used in a region which is pipelined. If high-performance operation is
required, pipeline the loops or functions before and after the FIR then use dataflow optimization on all
loops and functions in the region.

The multichannel functionality of the FIR is supported through interleaving the data in a single
input and single output array.

• The size of the input array should be large enough to accommodate all samples:
num_channels * input_length.

• The output array size should be specified to contain all output samples: num_channels *
output_length.

The following code example demonstrates, for two channels, how the data is interleaved. In this
example, the top-level function has two channels of input data (din_i, din_q) and two
channels of output data (dout_i, dout_q). Two functions, at the front-end (fe) and back-end
(be) are used to correctly order the data in the FIR input array and extract it from the FIR output
array.

void dummy_fe(din_t din_i[LENGTH], din_t din_q[LENGTH], din_t
out[FIR_LENGTH]) {
 for (unsigned i = 0; i < LENGTH; ++i) {
 out[2*i] = din_i[i];
 out[2*i + 1] = din_q[i];
 }
}
void dummy_be(dout_t in[FIR_LENGTH], dout_t dout_i[LENGTH], dout_t
dout_q[LENGTH]) {
 for(unsigned i = 0; i < LENGTH; ++i) {
 dout_i[i] = in[2*i];
 dout_q[i] = in[2*i+1];
 }
}
void fir_top(din_t din_i[LENGTH], din_t din_q[LENGTH],
 dout_t dout_i[LENGTH], dout_t dout_q[LENGTH]) {

 din_t fir_in[FIR_LENGTH];
 dout_t fir_out[FIR_LENGTH];
 static hls::FIR<myconfig> fir1;

 dummy_fe(din_i, din_q, fir_in);
 fir1.run(fir_in, fir_out);
 dummy_be(fir_out, dout_i, dout_q);
}

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 692Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=692

Optional FIR Runtime Configuration
In some modes of operation, the FIR requires an additional input to configure how the
coefficients are used. For a complete description of which modes require this input configuration,
refer to the FIR Compiler LogiCORE IP Product Guide (PG149).

This input configuration can be performed in the C code using a standard ap_int.h 8-bit data
type. In this example, the header file fir_top.h specifies the use of the FIR and ap_fixed
libraries, defines a number of the design parameter values and then defines some fixed-point
types based on these:

#include "ap_fixed.h"
#include "hls_fir.h"

const unsigned FIR_LENGTH = 21;
const unsigned INPUT_WIDTH = 16;
const unsigned INPUT_FRACTIONAL_BITS = 0;
const unsigned OUTPUT_WIDTH = 24;
const unsigned OUTPUT_FRACTIONAL_BITS = 0;
const unsigned COEFF_WIDTH = 16;
const unsigned COEFF_FRACTIONAL_BITS = 0;
const unsigned COEFF_NUM = 7;
const unsigned COEFF_SETS = 3;
const unsigned INPUT_LENGTH = FIR_LENGTH;
const unsigned OUTPUT_LENGTH = FIR_LENGTH;
const unsigned CHAN_NUM = 1;
typedef ap_fixed<INPUT_WIDTH, INPUT_WIDTH - INPUT_FRACTIONAL_BITS> s_data_t;
typedef ap_fixed<OUTPUT_WIDTH, OUTPUT_WIDTH - OUTPUT_FRACTIONAL_BITS>
m_data_t;
typedef ap_uint<8> config_t;

In the top-level code, the information in the header file is included, the static parameterization
struct is created using the same constant values used to specify the bit-widths, ensuring the C
code and FIR configuration match, and the coefficients are specified. At the top-level, an input
configuration, defined in the header file as 8-bit data, is passed into the FIR.

#include "fir_top.h"

struct param1 : hls::ip_fir::params_t {
 static const double coeff_vec[total_num_coeff];
 static const unsigned input_length = INPUT_LENGTH;
 static const unsigned output_length = OUTPUT_LENGTH;
 static const unsigned num_coeffs = COEFF_NUM;
 static const unsigned coeff_sets = COEFF_SETS;
};
const double param1::coeff_vec[total_num_coeff] =
 {6,0,-4,-3,5,6,-6,-13,7,44,64,44,7,-13,-6,6,5,-3,-4,0,6};

void dummy_fe(s_data_t in[INPUT_LENGTH], s_data_t out[INPUT_LENGTH],
 config_t* config_in, config_t* config_out)
{
 *config_out = *config_in;
 for(unsigned i = 0; i < INPUT_LENGTH; ++i)
 out[i] = in[i];
}

void dummy_be(m_data_t in[OUTPUT_LENGTH], m_data_t out[OUTPUT_LENGTH])

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 693Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=latest;d=pg149-fir-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=693

{
 for(unsigned i = 0; i < OUTPUT_LENGTH; ++i)
 out[i] = in[i];
}

// DUT
void fir_top(s_data_t in[INPUT_LENGTH],
 m_data_t out[OUTPUT_LENGTH],
 config_t* config)
{

 s_data_t fir_in[INPUT_LENGTH];
 m_data_t fir_out[OUTPUT_LENGTH];
 config_t fir_config;
 // Create struct for config
 static hls::FIR<param1> fir1;

 //==
// Dataflow process
 dummy_fe(in, fir_in, config, &fir_config);
 fir1.run(fir_in, fir_out, &fir_config);
 dummy_be(fir_out, out);
 //==
}

Using FIR Function with Streaming Interface
The run() function with streaming interfaces and without config input is defined in the HLS
namespace similar to this:

 void run(
 hls::stream<in_data_t> &in_V,
 hls::stream<out_data_t> &out_V);

With config input, it is defined similar to this:

 void run(
 hls::stream<in_data_t> &in_V,
 hls::stream<out_data_t> &out_V,
 hls::stream<config_t> &config_V);

The FIR function is defined in the HLS namespace and can be called as follows:

// Create an instance of the FIR
static hls::FIR<STATIC_PARAM> fir1;
// Execute the FIR instance fir1
fir1.run(INPUT_DATA_STREAM, OUTPUT_DATA_STREAM);

The STATIC_PARAM is the static parameterization struct that defines most static parameters for
the FIR. Both the input and output data are supplied to the function as hls::stream<>. These
ports on the FIR IP will be implemented as AXI4-Stream ports.

Xilinx recommends always using the FIR function in a dataflow region using
set_directive_dataflow or #pragma HLS dataflow.

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 694Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=694

IMPORTANT! The FIR cannot be used in a region which is pipelined. If high-performance operation is
required, pipeline the loops or functions before and after the FIR then use dataflow optimization on all
loops and functions in the region.

The multichannel functionality of the FIR is supported through interleaving the data in a single
input and single output stream.

• The size of the input stream should be large enough to accommodate all samples:
num_channels * input_length

• The output stream size should be specified to contain all output samples: num_channels *
output_length

The following code example demonstrates how the FIR IP function can be used.

template<typename data_t, int LENGTH>
void process_fe(data_t in[LENGTH], hls::stream<data_t> &out)
{
 for(unsigned i = 0; i < LENGTH; ++i)
 out.write(in[i]);
}

template<typename data_t, int LENGTH>
void process_be(hls::stream<data_t> &in, data_t out[LENGTH])
{
 for(unsigned i = 0; i < LENGTH; ++i)
 out[i] = in.read();
}

// TOP function
void fir_top(
 data_t in[FIR1_LENGTH],
 data_out_t out[FIR2_LENGTH])
{

 #pragma HLS dataflow

 hls::stream<data_t> fir1_in;
 hls::stream<data_intern_t> fir1_out;
 hls::stream<data_out_t> fir2_out;

 // Create FIR instance
 static hls::FIR<config1> fir1;
 static hls::FIR<config2> fir2;

 //==
 // Dataflow process
 process_fe<data_t, FIR1_LENGTH>(in, fir1_in);
 fir1.run(fir1_in, fir1_out);
 fir2.run(fir1_out, fir2_out);
 process_be<data_out_t, FIR2_LENGTH>(fir2_out, out);
 //==
}

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 695Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=695

DDS IP Library
You can use the Xilinx Direct Digital Synthesizer (DDS) IP block within a C++ design using the
hls_dds.h library. This section explains how to configure DDS IP in your C++ code.

RECOMMENDED: Xilinx highly recommends that you review the DDS Compiler LogiCORE IP Product
Guide (PG141) for information on how to implement and use the features of the IP.

IMPORTANT! The C IP implementation of the DDS IP core supports the fixed mode for the
Phase_Increment and Phase_Offset parameters and supports the none  mode for Phase_Offset, but it
does not support programmable  and streaming  modes for these parameters.

To use the DDS in the C++ code:

1. Include the hls_dds.h library in the code.

2. Set the default parameters using the pre-defined struct hls::ip_dds::params_t.

3. Call the DDS function.

First, include the DDS library in the source code. This header file resides in the include directory
in the Vitis HLS installation area, which is automatically searched when Vitis HLS executes.

#include "hls_dds.h"

Define the static parameters of the DDS. For example, define the phase width, clock rate, and
phase and increment offsets. The DDS C library includes a parameterization struct
hls::ip_dds::params_t, which is used to initialize all static parameters with default values.
By redefining any of the values in this struct, you can customize the implementation.

The following example shows how to override the default values for the phase width, clock rate,
phase offset, and the number of channels using a user-defined struct param1, which is based on
the existing predefined struct hls::ip_dds::params_t:

struct param1 : hls::ip_dds::params_t {
 static const unsigned Phase_Width = PHASEWIDTH;
 static const double DDS_Clock_Rate = 25.0;
 static const double PINC[16];
 static const double POFF[16];
};

Create an instance of the DDS function using the HLS namespace with the defined static
parameters (for example, param1). Then, call the function with the run method to execute the
function. Following are the data and phase function arguments shown in order:

static hls::DDS<config1> dds1;
dds1.run(data_channel, phase_channel);

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 696Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=dds_compiler;v=latest;d=pg141-dds-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=696

DDS Static Parameters
The static parameters of the DDS define how to configure the DDS, such as the clock rate, phase
interval, and modes. The hls_dds.h header file defines an hls::ip_dds::params_t struct,
which sets the default values for the static parameters. To use the default values, you can use the
parameterization struct directly with the DDS function.

static hls::DDS< hls::ip_dds::params_t > dds1;
dds1.run(data_channel, phase_channel);

The following table describes the parameters for the hls::ip_dds::params_t
parameterization struct.

RECOMMENDED: Xilinx highly recommends that you review the DDS Compiler LogiCORE IP Product
Guide (PG141) for details on the parameters and values.

Table 46: DDS Struct Parameters

Parameter Description
DDS_Clock_Rate Specifies the clock rate for the DDS output.
Channels Specifies the number of channels. The DDS and phase generator can

support up to 16 channels. The channels are time-multiplexed, which
reduces the effective clock frequency per channel.

Mode_of_Operation Specifies one of the following operation modes:
Standard mode for use when the accumulated phase can be truncated
before it is used to access the SIN/COS LUT.
Rasterized mode for use when the desired frequencies and system clock
are related by a rational fraction.

Modulus Describes the relationship between the system clock frequency and the
desired frequencies.
Use this parameter in rasterized mode only.

Spurious_Free_Dynamic_Range Specifies the targeted purity of the tone produced by the DDS.
Frequency_Resolution Specifies the minimum frequency resolution in Hz and determines the

Phase Width used by the phase accumulator, including associated phase
increment (PINC) and phase offset (POFF) values.

Noise_Shaping Controls whether to use phase truncation, dithering, or Taylor series
correction.

Phase_Width Sets the width of the following:
• PHASE_OUT field within m_axis_phase_tdata

• Phase field within s_axis_phase_tdata when the DDS is
configured to be a SIN/COS LUT only

• Phase accumulator
• Associated phase increment and offset registers
• Phase field in s_axis_config_tdata
For rasterized mode, the phase width is fixed as the number of bits
required to describe the valid input range [0, Modulus-1], that is,
log2 (Modulus-1) rounded up.

Output_Width Sets the width of SINE and COSINE fields within m_axis_data_tdata.
The SFDR provided by this parameter depends on the selected Noise
Shaping option.

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 697Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=dds_compiler;v=latest;d=pg141-dds-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=697

Table 46: DDS Struct Parameters (cont'd)

Parameter Description
Phase_Increment Selects the phase increment value.
Phase_Offset Selects the phase offset value.
Output_Selection Sets the output selection to SINE, COSINE, or both in the

m_axis_data_tdata bus.

Negative_Sine Negates the SINE field at runtime.
Negative_Cosine Negates the COSINE field at runtime.
Amplitude_Mode Sets the amplitude to full range or unit circle.
Memory_Type Controls the implementation of the SIN/COS LUT.
Optimization_Goal Controls whether the implementation decisions target highest speed or

lowest resource.
DSP48_Use Controls the implementation of the phase accumulator and addition

stages for phase offset, dither noise addition, or both.
Latency_Configuration Sets the latency of the core to the optimum value based upon the

Optimization Goal.
Latency Specifies the manual latency value.
Output_Form Sets the output form to two’s complement or to sign and magnitude. In

general, the output of SINE and COSINE is in two’s complement form.
However, when quadrant symmetry is used, the output form can be
changed to sign and magnitude.

PINC[XIP_DDS_CHANNELS_MAX] Sets the values for the phase increment for each output channel.
POFF[XIP_DDS_CHANNELS_MAX] Sets the values for the phase offset for each output channel.

DDS Struct Parameter Values

The following table shows the possible values for the hls::ip_dds::params_t
parameterization struct parameters.

Table 47: DDS Struct Parameter Values

Parameter C Type Default Value Valid Values
DDS_Clock_Rate double 20.0 Any double value

Channels unsigned 1 1 to 16

Mode_of_Operation unsigned XIP_DDS_MOO_CONVENTIONAL XIP_DDS_MOO_CONVENTIONAL
truncates the accumulated
phase.
XIP_DDS_MOO_RASTERIZED
selects rasterized mode.

Modulus unsigned 200 129 to 256

Spurious_Free_Dynamic_R
ange

double 20.0 18.0 to 150.0

Frequency_Resolution double 10.0 0.000000001 to 125000000

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 698Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=698

Table 47: DDS Struct Parameter Values (cont'd)

Parameter C Type Default Value Valid Values
Noise_Shaping unsigned XIP_DDS_NS_NONE XIP_DDS_NS_NONE produces

phase truncation DDS.
XIP_DDS_NS_DITHER uses phase
dither to improve SFDR at the
expense of increased noise floor.
XIP_DDS_NS_TAYLOR interpolates
sine/cosine values using the
otherwise discarded bits from
phase truncation
XIP_DDS_NS_AUTO automatically
determines noise-shaping.

Phase_Width unsigned 16 Must be an integer multiple of 8

Output_Width unsigned 16 Must be an integer multiple of 8

Phase_Increment unsigned XIP_DDS_PINCPOFF_FIXED XIP_DDS_PINCPOFF_FIXED fixes
PINC at generation time, and
PINC cannot be changed at
runtime.
This is the only value supported.

Phase_Offset unsigned XIP_DDS_PINCPOFF_NONE XIP_DDS_PINCPOFF_NONE does
not generate phase offset.
XIP_DDS_PINCPOFF_FIXED fixes
POFF at generation time, and
POFF cannot be changed at
runtime.

Output_Selection unsigned XIP_DDS_OUT_SIN_AND_COS XIP_DDS_OUT_SIN_ONLY
produces sine output only.
XIP_DDS_OUT_COS_ONLY
produces cosine output only.
XIP_DDS_OUT_SIN_AND_COS
produces both sin and cosine
output.

Negative_Sine unsigned XIP_DDS_ABSENT XIP_DDS_ABSENT produces
standard sine wave.
XIP_DDS_PRESENT negates sine
wave.

Negative_Cosine bool XIP_DDS_ABSENT XIP_DDS_ABSENT produces
standard sine wave.
XIP_DDS_PRESENT negates sine
wave.

Amplitude_Mode unsigned XIP_DDS_FULL_RANGE XIP_DDS_FULL_RANGE
normalizes amplitude to the
output width with the binary
point in the first place. For
example, an 8-bit output has a
binary amplitude of 100000000 -
10 giving values between
01111110 and 11111110, which
corresponds to just less than 1
and just more than -1,
respectively.
XIP_DDS_UNIT_CIRCLE
normalizes amplitude to half full
range, that is, values range from
01000 .. (+0.5). to 110000 .. (-0.5).

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 699Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=699

Table 47: DDS Struct Parameter Values (cont'd)

Parameter C Type Default Value Valid Values
Memory_Type unsigned XIP_DDS_MEM_AUTO XIP_DDS_MEM_AUTO selects

distributed ROM for small cases
where the table can be
contained in a single layer of
memory and selects block ROM
for larger cases.
XIP_DDS_MEM_BLOCK always
uses block RAM.
XIP_DDS_MEM_DIST always uses
distributed RAM.

Optimization_Goal unsigned XIP_DDS_OPTGOAL_AUTO XIP_DDS_OPTGOAL_AUTO
automatically selects the
optimization goal.
XIP_DDS_OPTGOAL_AREA
optimizes for area.
XIP_DDS_OPTGOAL_SPEED
optimizes for performance.

DSP48_Use unsigned XIP_DDS_DSP_MIN XIP_DDS_DSP_MIN implements
the phase accumulator and the
stages for phase offset, dither
noise addition, or both in FPGA
logic.
XIP_DDS_DSP_MAX implements
the phase accumulator and the
phase offset, dither noise
addition, or both using DSP
slices. In the case of single
channel, the DSP slice can also
provide the register to store
programmable phase increment,
phase offset, or both and
thereby, save further fabric
resources.

Latency_Configuration unsigned XIP_DDS_LATENCY_AUTO XIP_DDS_LATENCY_AUTO
automatically determines he
latency.
XIP_DDS_LATENCY_MANUAL
manually specifies the latency
using the Latency option.

Latency unsigned 5 Any value

Output_Form unsigned XIP_DDS_OUTPUT_TWOS XIP_DDS_OUTPUT_TWOS outputs
two's complement.
XIP_DDS_OUTPUT_SIGN_MAG
outputs signed magnitude.

PINC[XIP_DDS_CHANNELS_
MAX]

unsigned array {0} Any value for the phase
increment for each channel

POFF[XIP_DDS_CHANNELS
_MAX]

unsigned array {0} Any value for the phase offset
for each channel

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 700Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=700

SRL IP Library
C code is written to satisfy several different requirements: reuse, readability, and performance.
Until now, it is unlikely that the C code was written to result in the most ideal hardware after
high-level synthesis.

Like the requirements for reuse, readability, and performance, certain coding techniques or pre-
defined constructs can ensure that the synthesis output results in more optimal hardware or to
better model hardware in C for easier validation of the algorithm.

Mapping Directly into SRL Resources
Many C algorithms sequentially shift data through arrays. They add a new value to the start of
the array, shift the existing data through array, and drop the oldest data value. This operation is
implemented in hardware as a shift register.

This most common way to implement a shift register from C into hardware is to completely
partition the array into individual elements, and allow the data dependencies between the
elements in the RTL to imply a shift register.

Logic synthesis typically implements the RTL shift register into a Xilinx SRL resource, which
efficiently implements shift registers. The issue is that sometimes logic synthesis does not
implement the RTL shift register using an SRL component:

• When data is accessed in the middle of the shift register, logic synthesis cannot directly infer
an SRL.

• Sometimes, even when the SRL is ideal, logic synthesis may implement the shift-resister in
flip-flops, due to other factors. (Logic synthesis is also a complex process).

Vitis HLS provides a C++ class (ap_shift_reg) to ensure that the shift register defined in the C
code is always implemented using an SRL resource. The ap_shift_reg class has two methods
to perform the various read and write accesses supported by an SRL component.

Read from the Shifter
The read method allows a specified location to be read from the shifter register.

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 701Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=701

The ap_shift_reg.h header file that defines the ap_shift_reg class is also included with
Vitis HLS as a standalone package. You have the right to use it in your own source code. The
package xilinx_hls_lib_<release_number>.tgz is located in the include directory in
the Vitis HLS installation area.

// Include the Class
#include "ap_shift_reg.h"

// Define a variable of type ap_shift_reg<type, depth>
// - Sreg must use the static qualifier
// - Sreg will hold integer data types
// - Sreg will hold 4 data values
static ap_shift_reg<int, 4> Sreg;
int var1;

// Read location 2 of Sreg into var1
var1 = Sreg.read(2);

Read, Write, and Shift Data
A shift method allows a read, write, and shift operation to be performed.

// Include the Class
#include "ap_shift_reg.h"

// Define a variable of type ap_shift_reg<type, depth>
// - Sreg must use the static qualifier
// - Sreg will hold integer data types
// - Sreg will hold 4 data values
static ap_shift_reg<int, 4> Sreg;
int var1;

// Read location 3 of Sreg into var1
// THEN shift all values up one and load In1 into location 0
var1 = Sreg.shift(In1,3);

Read, Write, and Enable-Shift
The shift method also supports an enabled input, allowing the shift process to be controlled
and enabled by a variable.

// Include the Class
#include "ap_shift_reg.h"

// Define a variable of type ap_shift_reg<type, depth>
// - Sreg must use the static qualifier
// - Sreg will hold integer data types
// - Sreg will hold 4 data values
static ap_shift_reg<int, 4> Sreg;
int var1, In1;
bool En;

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 702Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=702

// Read location 3 of Sreg into var1
// THEN if En=1
// Shift all values up one and load In1 into location 0
var1 = Sreg.shift(In1,3,En);

When using the ap_shift_reg class, Vitis HLS creates a unique RTL component for each
shifter. When logic synthesis is performed, this component is synthesized into an SRL resource.

Section VI: Vitis HLS Libraries Reference
Chapter 34: HLS IP Libraries

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 703Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=703

Section VII

Vitis HLS Migration Guide
This section contains the following chapters:

• Migrating to Vitis HLS

• Unsupported Features

• Deprecated and Unsupported Features

Section VII: Vitis HLS Migration Guide

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 704Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=704

Chapter 35

Migrating to Vitis HLS
Vivado® HLS was the older generation HLS solution that has its last official release in 2020.1.
Vitis™ HLS represents the next-generation HLS solution from AMD® and has several
improvements over the older Vivado HLS technology. First and foremost, Vitis™ HLS has a new
compiler that uses an updated version of the LLVM compiler standard and supports C/C++
11/14 for compilation/simulation. When migrating a kernel module or IP implemented with one
version of Vivado HLS, it is essential to understand the difference between the versions of HLS,
and the impact that these differences have on the design.

The key differences between these version of HLS versions can be categorized as follows:

• Key Behavioral Differences

• Deprecated Commands

• Unsupported Features

In addition, Vitis HLS now supports the following new and stricter syntax checking for both
source code and pragma usage:

• Syntax Checker: Vitis HLS will error out on unconnected ports (either in dataflow regions or
during RTL generation).

• Pragma Conflict Checker: New warnings and errors are reported for pragma conflicts and/or
typos in pragma options.

• New and Improved Messages when user-specified pragmas are ignored by the tool.

Key Behavioral Differences
This section highlights some of the key behavioral differences between HLS and Vitis™ HLS.
These key differences can be the source of big quality of results (QoR) differences and therefore,
it is necessary to understand these key differences when comparing QoR between different
versions of HLS tools. AMD recommends reviewing this section before using Vitis HLS.

TIP: Due to the behavioral differences between Vitis HLS and Vivado HLS, you might need to differentiate
your code for use in the Vitis tool. To enable the same source code to be used in both tools, Vitis HLS
supports the __VITIS_HLS__  predefined macro to encapsulate source code written specifically for use
in that tool. Use #if defined(__VITIS_HLS__)  type pre-processor declarations to encapsulate
tool specific code.

Section VII: Vitis HLS Migration Guide
Chapter 35: Migrating to Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 705Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=705

Default User Control Settings
The default global option configures the solution for either Vitis kernel acceleration development
flow or Vivado IP development flow.

open_solution -flow_target [vitis | vivado]

This global option is replacing the previous config option (config_sdx).

Vivado IP Development Flow

Configures the solution to run in support of the Vivado IP generation flow, requiring strict use of
pragmas and directives, and exporting the results as Vivado IP. The command to set up the
project solution for the Vivado IP flow is:

open_solution -flow_target vivado

The table below shows the original default settings of command options in the Vivado HLS tool,
and the new defaults applied in the Vitis HLS tool.

Table 48: Default Control Settings

Default Control Settings Vivado HLS Vitis HLS
config_compile -pipeline_loops 0 64
config_export -
vivado_optimization_level

2 0

set_clock_uncertainty 12.5% 27%
config_interface -
m_axi_alignment_byte_size

N/A 0

config_interface -
m_axi_max_widen_bitwidth

N/A 0

config_export -vivado_phys_opt place none
config_interface -m_axi_addr64 false true
config_schedule -enable_dsp_full_reg false true
config_rtl -module_auto_prefix false true

interface pragma defaults ip mode ip mode

Vitis Application Acceleration Development Flow (Kernel Mode)

Configures the solution to run in support of the Vivado IP generation flow, requiring strict use of
pragmas and directives, and exporting the results as Vivado IP. The command to set up the
project solution for the Vivado IP flow is:

open_solution -flow_target vivado

Section VII: Vitis HLS Migration Guide
Chapter 35: Migrating to Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 706Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=706

The table below shows the original default settings of command options in the Vivado HLS tool,
and the new defaults applied in the Vitis HLS tool.

Table 49: Default Control Settings

Default Control Settings Vivado HLS Vitis HLS
config_compile -pipeline_loops 0 64
config_export -
vivado_optimization_level

2 0

set_clock_uncertainty 12.5% 27%
config_interface -
m_axi_alignment_byte_size

N/A 0

config_interface -
m_axi_max_widen_bitwidth

N/A 0

config_export -vivado_phys_opt place none
config_interface -m_axi_addr64 false true
config_schedule -enable_dsp_full_reg false true
config_rtl -module_auto_prefix false true

interface pragma defaults ip mode ip mode

Default Interfaces
Both Vivado® HLS and Vitis™ HLS allow the user to customize the interfaces to the top-level
function using pragma/directions. Vitis HLS additionally supports the ability to automatically
infer the right interface. The type of interfaces that Vitis HLS creates depends on:

• The data type of the C arguments in the top-level function.

• The target flow.

• The default interface mode.

• Any user-specified INTERFACE pragmas or directives.

This is fully described in the Defining Interfaces section of the user guide (UG1399) and should
be reviewed before proceeding further.

Interface Bundle Rules
By default, Vitis™ HLS groups function arguments with compatible options into a single m_axi/
s_axilite interface adapter. Bundling ports into a single interface helps save device resources
by eliminating AXI4 logic, which can be necessary when working in congested designs. However,
a single interface bundle can limit the performance of the kernel because all the memory
transfers have to go through a single interface. For example, the m_axi interface has
independent READ and WRITE channels, so a single interface can read and write simultaneously,
though only at one location. Using multiple bundles lets you increase the bandwidth and
throughput of the kernel by creating multiple interfaces to connect to memory banks.

Section VII: Vitis HLS Migration Guide
Chapter 35: Migrating to Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 707Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=707

Bundle rules for AXI interfaces are fully described in M_AXI Bundles/S_AXILITE Bundles section
in the user guide (UG1399) and should be reviewed before proceeding further.

Memory Property on Interface
The storage_type option on the interface pragma or directive lets the user explicitly define
which type of RAM is used, and which RAM ports are created (single-port or dual-port). If no
storage_type is specified, Vitis HLS uses:

• A single-port RAM by default.

• A dual-port RAM if it reduces the initiation interval or latency.

For the Vivado flow, the user can specify a RAM storage type on the specified interface,
replacing the deprecated RESOURCE pragma with the storage_type.

#pragma HLS INTERFACE bram port = in1 storage_type=RAM_2P
#pragma HLS INTERFACE bram port = out storage_type=RAM_1P latency=3

AXI4-Stream Interfaces with Side-Channels
Side-channels are optional signals, which are part of the AXI4-Stream standard. The side-channel
signals can be directly referenced and controlled in the C/C++ code using a struct, provided that
the member elements of the struct match the names of the AXI4-Stream side-channel signals.
The AXI4-Stream side-channel signals are considered data signals and are registered whenever
TDATA is registered. There are significant differences in how this is handled in Vivado HLS vs
Vitis HLS. The AXI4-Stream Interfaces with Side-Channels section in the user guide (UG1399)
details the limitations and restrictions in Vitis HLS.

Memory Model
One key difference between Vivado® HLS and Vitis™ HLS is how the internal memory model is
implemented. The memory model defines the way data is arranged and accessed in computer
memory. It consists of two separate but related issues: data alignment and data structure
padding. Vitis HLS uses a different memory model from Vivado HLS and the key differences are
as follows:

• Vitis HLS follows the GCC Compiler standard for data alignment

• Vitis HLS differs significantly from Vivado HLS in how it aggregates and disaggregates structs/
classes in the interface

○ Vivado HLS used to disaggregate structs in the interface by default. Vitis HLS instead keeps
structs aggregated. You can use the AGGREGATE/pragma HLS disaggregate pragma/
directive to match the Vivado HLS behavior.

- The exception is when there is a hls::stream object in the struct or an array inside the
struct is partitioned, Vitis HLS will disaggregate the struct in both of these cases.

Section VII: Vitis HLS Migration Guide
Chapter 35: Migrating to Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 708Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=708

○ Structs in the code, both internal and global variables, are disaggregated by default and
decomposed into their member elements, as described in Structs. The number and type of
elements created are determined by the contents of the struct itself. Arrays of structs are
implemented as multiple arrays, with a separate array for each member of the struct.

• Vitis HLS also differs in how data alignment is handled for interface protocols (such as AXI).

• Changes also include deprecated pragmas such as DATA_PACK.

These changes are fully described in the Vitis HLS Memory Layout Model section of the user
guide (UG1399) and should be reviewed before proceeding further.

Unconnected Ports
Vivado HLS accepted unconnected output signals for streamed single and multidimensional
arrays.

Vitis HLS allows the following types of unconnected outputs:

• Unconnected output scalars

• Unconnected output single and multidimensional arrays implemented as PIPOs when used
inside a dataflow region

Vitis HLS does not allow:

• Unconnected output streams

• Unconnected output streamed single or multidimensional arrays

Global Variables on the Interface
Both Vivado HLS and Vitis™ HLS allow global variables to be freely used in the code and are fully
synthesizable. However, while Vivado HLS supported exporting global variables in the top-level
function interface, Vitis™ HLS does not.

Global variables can not be used as arguments to the top-level function, or exposed as ports on
the RTL interface in Vitis™ HLS. Variables needed on the interface of the top-level function must
be explicitly declared in the interface.

Behavior Changes to Module Names and Module
Prefix
In Vivado HLS, when config_rtl -module_auto_prefix was enabled the top RTL module
would have its name prefixed with its own name. SinceVitis HLS 2020.1, this auto prefix will only
be applied to sub-modules.

Section VII: Vitis HLS Migration Guide
Chapter 35: Migrating to Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 709Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=709

There is no change to the -module_prefix behavior. If this option is used, the specified prefix
value will be prepended to all modules including the top module. The -module_prefix option
also still takes precedence over -module_auto_prefix.

vivado HLS 2020.1 generated module names (top module is "top")
top_top.v
top_submodule1.v
top_submodule2.v

Vitis HLS 2020.1 generated module names
top.v <-- top module no longer has prefix
top_submodule1.v
top_submodule2.v

Updated Memory (RAM/ROM) Module Name and RTL
File Name
The new naming of the module is appended with the type of memory as shown below.

Table 50: Module and RTL File Names

OLD Module and RTL File Names NEW Module and RTL File Names
ncp_encoder_func_parbits_memcore_ram ncp_encoder_func_parbits_RAM_1P_LUTRAM_1R1W

test_A_V_ROM test_A_V_ROM_1P_BRAM_1R, test_A_V_ROM_1P_BRAM_1.v

Dataflow
Support of std::complex:

In Vivado HLS, std::complex data type could not be used directly inside the DATAFLOW, because
of multiple writers issue. This multiple reader and writer issue is coming from the std class
constructor being called to initialize the value. When this variable is also used inside the dataflow
as a channel, it leads to the above issue. However, Vitis supports the use of std::complex with
support of an attribute no_ctor as shown below.

// Nothing to do here.
void proc_1(std::complex<float> (&buffer)[50], const std::complex<float>
*in);
void proc_2(hls::stream<std::complex<float>> &fifo, const
std::complex<float> (&buffer)[50], std::complex<float> &acc);
void proc_3(std::complex<float> *out, hls::stream<std::complex<float>>
&fifo, const std::complex<float> acc);

void top(std::complex<float> *out, const std::complex<float> *in) {
#pragma HLS DATAFLOW
 std::complex<float> acc __attribute((no_ctor)); // here
 std::complex<float> buffer[50] __attribute__((no_ctor)); // here
 hls::stream<std::complex<float>, 5> fifo; // no need here (hls::stream
has it internally)

Section VII: Vitis HLS Migration Guide
Chapter 35: Migrating to Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 710Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=710

 proc_1(buffer, in);
 proc_2(fifo, buffer, acc);
 porc_3(out, fifo, acc);
}

Section VII: Vitis HLS Migration Guide
Chapter 35: Migrating to Vitis HLS

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 711Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=711

Chapter 36

Deprecated and Unsupported
Features

Vitis™ HLS has deprecated a number of Vivado® HLS commands. These deprecated commands
will be discontinued in a future release, and are not recommended for use; these are listed in the
table below.

Table 51: Vivado HLS Commands Deprecated in Vitis HLS

Type Command Option Vitis HLS Details
config config_interface -

m_axi_max_data_si
ze

Deprecated

config config_interface -
m_axi_min_data_si
ze

Deprecated

config config_interface -
m_axi_alignment_b
yte_size

Deprecated

config config_interface -
m_axi_offset=slav
e

Unsupported This is now handled
through a
combination of -
m_axi_offset=dire
ct and -
default_slave_int
erface=s_axilite

config config_interface -expose_global Unsupported Global variables are
not supported in Vitis
HLS for exposure as
top-level ports in the
IP or kernel.

config config_interface -
trim_dangling_por
t

Unsupported

config config_array_part
ition

-
auto_promotion_th
reshold

Deprecated

config config_array_part
ition

-
auto_partition_th
reshold

Deprecated Has been renamed to
-
complete_threshol
d

config config_array_part
ition

-scalarize_all Unsupported

config config_array_part
ition

-
throughput_driven

Unsupported

Section VII: Vitis HLS Migration Guide
Chapter 36: Deprecated and Unsupported Features

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 712Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=712

Table 51: Vivado HLS Commands Deprecated in Vitis HLS (cont'd)

Type Command Option Vitis HLS Details
config config_array_part

ition
-maximum_size Unsupported

config config_array_part
ition

-
include_extern_gl
obals

Unsupported

config config_array_part
ition

-include_ports Unsupported

config config_schedule All options but -
enable_dsp_fill_r
eg

Deprecated

config config_bind * (all options) Deprecated

config config_rtl -encoding Deprecated

config config_sdx * (all options) Deprecated

config config_flow * (all options) Deprecated

config config_dataflow -
disable_start_pro
pagation

Deprecated

config config_rtl -auto_prefix Deprecated Replaced by
config_rtl -
module_prefix.

config config_rtl -prefix Deprecated Replaced by
config_rtl -
module_prefix.

config config_rtl -
m_axi_conservativ
e_mode

Deprecated Use
config_interface
-
m_axi_conservativ
e_mode

directive/pragma set_directive_pip
eline

-enable_flush Deprecated

directive/pragma CLOCK * Unsupported

directive/pragma DATA_PACK * Unsupported Use AGGREGATE
pragma or directive,
and
__attribute__(pac
ked(X)) if needed.

directive/pragma INLINE -region Deprecated

directive/pragma INTERFACE -mode ap_bus Unsupported Use m_axi instead.

directive/pragma ARRAY_MAP * Unsupported

directive/pragma RESOURCE * Deprecated Replaced by BIND_OP
and BIND_STORAGE
pragmas and
directives. Use
INTERFACE pragma or
directive with
storage_type option
for top function
arguments.

Section VII: Vitis HLS Migration Guide
Chapter 36: Deprecated and Unsupported Features

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 713Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=713

Table 51: Vivado HLS Commands Deprecated in Vitis HLS (cont'd)

Type Command Option Vitis HLS Details
directive/pragma SHARED * Deprecated The SHARED pragma

or directive has been
moved to the
type=shared option
of the STREAM pragma
or directive.

directive/pragma STREAM -dim Unsupported

directive/pragma STREAM -off Deprecated STREAM off has
become STREAM
type=pipo

project csim_design -clang_sanitizer Add/Rename

project export_design -use_netlist Deprecated Replaced by:
export_design -
format ip_catalog

project export_design -xo Deprecated Replaced by:
export_design -
format xo

project add_files Unsupported System-C files are not
supported by Vitis HLS.

config config_export -
disable_deadlock_
detection

Deprecated Replaced by:
config_export -
deadlock_detectio
n_sim

Notes:
1. Deprecated: A warning message for discontinuity of the pragma in a future release will be issued.
2. Unsupported: Vitis HLS errors out with a valid message.
3. *: All the options in the command.

The following libraries are deprecated.

Section VII: Vitis HLS Migration Guide
Chapter 36: Deprecated and Unsupported Features

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 714Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=714

Table 52: Deprecated Libraries

Library API Deprecated Suggested
Replacement / Action

Linear Algebra Lib
hls_linear_algebra.h

hls/hls_axi_io.h

hls/
hls_linear_algebra_io.
h

hls/linear_algebra

|-- deprecated

| |--
x_complex_back_substit
ute.h

| |--
x_complex_cholesky.h

| |--
x_complex_cholesky_inv
erse.h

| |--
x_complex_matrix_multi
ply.h

| |--
x_complex_matrix_tb_ut
ils.h

| |--
x_complex_matrix_utils
.h

| |--
x_complex_qr_inverse.h

| |-- x_complex_qrf.h

| `-- x_complex_svd.h

|--
hls_back_substitute.h

|-- hls_cholesky.h

|--
hls_cholesky_inverse.h

|--
hls_matrix_multiply.h

|-- hls_qr_inverse.h

|-- hls_qrf.h

|-- hls_svd.h

`-- utils

|--
std_complex_utils.h

|-- x_hls_complex.h

|--
x_hls_matrix_tb_utils.
h

`--
x_hls_matrix_utils.h

cholesky
float, ap_fixed,
x_complex<float>,
x_complex<ap_fixed>

deprecated Vitis Solver
potrf
float, double

cholesky_inverse
float, ap_fixed,
x_complex<float>,
x_complex<ap_fixed>

Vitis Solver
pomatrixinverse
float, double

matrix_multiply
float, ap_fixed,
x_complex<float>,
x_complex<ap_fixed>

qrf
float, x_complex<float>

Vitis Solver
geqrf
float, double

qr_inverse
float, x_complex<float>

svd
float, x_complex<float>

Vitis Solver
gesvdj
float, double

Section VII: Vitis HLS Migration Guide
Chapter 36: Deprecated and Unsupported Features

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 715Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=715

Table 52: Deprecated Libraries (cont'd)

Library API Deprecated Suggested
Replacement / Action

DSP Lib
hls_dsp.h

hls/dsp

|-- hls_atan2_cordic.h

|-- hls_awgn.h

|-- hls_cmpy.h

|--
hls_convolution_encode
r.h

|-- hls_nco.h

|-- hls_qam_demod.h

|-- hls_qam_mod.h

|-- hls_sqrt_cordic.h

|--
hls_viterbi_decoder.h

`-- utils

|-- hls_cordic.h

|--
hls_cordic_functions.h

`--
hls_dsp_common_utils.h

atan2
input:
std::complex<ap_fixed>
output: ap_ufixed

deprecated HLS Math
atan2
ap_fixed/ap_ufixed/float/
double

sqrt
unsigned binary fraction
with 1 bit integer, unsigned
int

HLS Math
sqrt
ap_fixed/ap_ufixed/float/
double

awgn(Additive white
Gaussian noise)
input: ap_ufixed
output: ap_int

cmpy(complex number
multiply)
input: std::complex< ap_fixed
>
output: std::complex<
ap_fixed >

convolution_encoder (for
data transferring in channel
with error correcting, used in
pair with viterbi decoder)
input: ap_uint
output: ap_uint

viterbi_decoder(for data
transferring in channel with
error correcting, used in pair
with convolution encoder)
input: ap_uint
output: ap_uint

nco (Numerically-Controlled
Oscillator)
input: ap_uint
output: std::complex< ap_int
>

Section VII: Vitis HLS Migration Guide
Chapter 36: Deprecated and Unsupported Features

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 716Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=716

Chapter 37

Unsupported Features
The following features are not supported in this release.

IMPORTANT! HLS will either issue a warning or error for all the unsupported features mentioned in this
section.

Assertions
The assert macro in C/C++ is not supported in Vitis HLS.

Usage of assertions can have unintended consequences that are not obvious to the user, causing
bad logic to be created. They can also prevent compiler optimizations depending on the
complexity of the code.

Pragmas
• Pragma DEPENDENCE on an argument that also has an m_axi INTERFACE pragma

specifying a bundle with two or more ports is not supported.

void top(int *a, int *b) { // both a and b are bundled to m_axi port gmem

#prgama HLS interface m_axi port=a offset=slave bundle=gmem

#prgama HLS interface m_axi port=b offset=slave bundle=gmem

#pragma HLS dependence variable=a false

}

• Pragma INTERFACE no longer supports the ap_bus mode that was supported in Vivado HLS.
You should use them_axi interface instead.

Top-Level Function Argument
IMPORTANT! Vitis™ HLS does not support the INTERFACE pragma inside sub-functions.

Section VII: Vitis HLS Migration Guide
Chapter 37: Unsupported Features

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 717Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=717

Top-level argument with C data type of:

• enum or any use of enum (struct, array pointer of enum)

• ap_int<N> (where N is 1-32768)

• _Complex

• _Half, __fp16

HLS Video Library
The hls_video.h for video utilities and functions has been deprecated and replaced by the
Vitis vision library. See the Migrating HLS Video Library to Vitis vision on GitHub for more
details.

C Arbitrary Precision Types
Vitis HLS does not support C arbitrary precision types. Xilinx recommends using C++ types with
arbitrary precision.

In addition, C++ arbitrary precision types in Vitis HLS are limited to a maximum width of 4096
bits, instead of 32K bits supported by Vivado HLS.

C Constructs

• Pointer cast are not supported.

• Virtual functions are not supported.

Section VII: Vitis HLS Migration Guide
Chapter 37: Unsupported Features

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 718Send Feedback

https://xilinx.github.io/Vitis_Libraries/vision/2020.1/overview.html#migrating-hls-video-library-to-vitis-vision
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=718

Appendix A

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

Appendix A: Additional Resources and Legal Notices

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 719Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=719

1. Introduction to FPGA Design with Vivado High-Level Synthesis (UG998)

2. Vivado Design Suite Tutorial: High-Level Synthesis (UG871)

3. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)

4. Floating-Point Design with Vivado HLS (XAPP599)

5. Floating-Point Operator LogiCORE IP Product Guide (PG060)

6. Fast Fourier Transform LogiCORE IP Product Guide (PG109)

7. FIR Compiler LogiCORE IP Product Guide (PG149)

8. DDS Compiler LogiCORE IP Product Guide (PG141)

9. Vivado Design Suite: AXI Reference Guide (UG1037)

10. Accelerating OpenCV Applications with Zynq-7000 SoC Using Vivado HLS Video Libraries
(XAPP1167)

11. UltraFast Vivado HLS Methodology Guide (UG1197)

12. Option Summary page on the GCC website (gcc.gnu.org/onlinedocs/gcc/Option-
Summary.html)

13. Accellera website (http://www.accellera.org/)

14. AWGN page on the MathWorks website (http://www.mathworks.com/help/comm/ug/awgn-
channel.html)

15. Vivado® Design Suite Documentation

Revision History
The following table shows the revision history for Section III: Using Vitis HLS.

Section Revision Summary
10/19/2022 Version 2022.2

Impact of Struct Size on Pipelining
Vitis HLS Memory Layout Model
Vitis HLS Alignment Rules and Semantics
Deleted Assertions
Using Manual Burst

Updated Sections

06/07/2022 Version 2022.1

Appendix A: Additional Resources and Legal Notices

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 720Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug998-vivado-intro-fpga-design-hls.pdf
https://docs.xilinx.com/access/sources/ud/document?url=ug871-vivado-high-level-synthesis-tutorial&ft:locale=en-US
https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.2%20English&url=ug973-vivado-release-notes-install-license
https://docs.xilinx.com/access/sources/ud/document?url=xapp599-floating-point-vivado-hls&ft:locale=en-US
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=latest;d=pg060-floating-point.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=xfft;v=latest;d=pg109-xfft.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=latest;d=pg149-fir-compiler.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=dds_compiler;v=latest;d=pg141-dds-compiler.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1167.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug1197-vivado-high-level-productivity.pdf
http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
http://www.accellera.org/
http://www.mathworks.com/help/comm/ug/awgn-channel.html
http://www.mathworks.com/help/comm/ug/awgn-channel.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=720

Section Revision Summary

Impact of Struct Size on Pipelining
Vitis HLS Memory Layout Model
Vitis HLS Alignment Rules and Semantics
Deleted Assertions
Using Manual Burst

Updated Sections

04/20/2022 Version 2022.1

Entire section No changes to this section.

The following table shows the revision history for Section II: HLS Programmers Guide.

Section Revision Summary
06/07/2022 Version 2022.1

Entire section Editorial Updates.

04/20/2022 Version 2022.1

Interfaces for Vitis Kernel Flow
Interfaces for Vivado IP Flow
S_AXILITE and Port-Level Protocols

Updated Sections

04/20/2022 Version 2022.1

FIFO Interfaces
Arbitrary Precision (AP) Data Types
Floats and Doubles
Composite Data Types
Updated Memory (RAM/ROM) Module Name and RTL
File Name
Multi-Access Pointers on the Interface
Defining Interfaces
AXI4-Lite Interface

Updated Sections

The following table shows the revision history for Section IV: Vitis HLS Command Reference.

Section Revision Summary
06/07/2022 Version 2022.1

Entire section No changes to this section.

04/20/2022 Version 2022.1

set_directive_inline
set_directive_interface
pragma HLS inline

Updated Sections

Appendix A: Additional Resources and Legal Notices

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 721Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=721

Section Revision Summary
04/20/2022 Version 2022.1

cosim_design
get_project
get_solution
list_part
config_array_partition
config_compile
config_export
config_interface
config_op
config_storage
set_directive_aggregate
set_directive_array_partition
set_directive_array_reshape
set_directive_bind_op
set_directive_bind_storage
set_directive_dependence
set_directive_disaggregate
set_directive_function_instantiate
set_directive_interface
set_directive_pipeline
set_directive_stream
pragma HLS aggregate
pragma HLS alias
pragma HLS array_partition
pragma HLS array_reshape
pragma HLS bind_op
pragma HLS bind_storage
pragma HLS dependence
pragma HLS disaggregate
pragma HLS interface
pragma HLS pipeline
pragma HLS protocol
pragma HLS stream

Minor Updates

The following table shows the revision history for Section VI: Vitis HLS Libraries Reference.

Section Revision Summary
06/07/2022 Version 2022.1

Entire section No changes to this section.

04/20/2022 Version 2022.1

Entire section No changes to this section.

Appendix A: Additional Resources and Legal Notices

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 722Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=722

Section Revision Summary
04/20/2022 Version 2022.1

Vitis HLS Libraries Reference:
C++ Arbitrary Precision Fixed-Point Types
HLS Stream Library
FFT IP Library

Minor Updates

The following table shows the revision history for Section VII: Vitis HLS Migration Guide.

Section Revision Summary
06/07/2022 Version 2022.1

Entire section No changes to this section.

04/20/2022 Version 2022.1

Deprecated and Unsupported Features
Minor Update

04/20/2022 Version 2022.1

Migrating to Vitis HLS
Key Behavioral Differences
Updated Memory (RAM/ROM) Module Name and RTL
File Name
Interface Bundle Rules
Behavior Changes to Module Names and Module Prefix
Default User Control Settings
Top-Level Function Argument
Deprecated and Unsupported Features

Minor Updates

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any

Appendix A: Additional Resources and Legal Notices

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 723Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=723

errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2020-2022 Advanced Micro Devices, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex,
Kria, Spartan, Versal, Vitis, Virtex, Vivado, Zynq, and other designated brands included herein are
trademarks of Xilinx in the United States and other countries. OpenCL and the OpenCL logo are
trademarks of Apple Inc. used by permission by Khronos. PCI, PCIe, and PCI Express are
trademarks of PCI-SIG and used under license. AMBA, AMBA Designer, Arm, ARM1176JZ-S,
CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and
other countries. All other trademarks are the property of their respective owners.

Appendix A: Additional Resources and Legal Notices

UG1399 (v2022.2) October 19, 2022 www.xilinx.com
Vitis HLS User Guide 724Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.2&docPage=724

	Vitis High-Level Synthesis User Guide
	Table of Contents
	Sec. I: Introduction
	Navigating Content by Design Process
	Benefits of High-Level Synthesis
	Introduction to Vitis HLS
	Tutorials and Examples

	Sec. II: HLS Programmers Guide
	Ch. 1: Design Principles
	Three Paradigms for Programming FPGAs
	Producer-Consumer Paradigm
	Streaming Data Paradigm
	Pipelining Paradigm

	Combining the Three Paradigms
	Conclusion - A Prescription for Performance

	Ch. 2: Abstract Parallel Programming Model for HLS
	Control and Data Driven Tasks
	Data-driven Task-level Parallelism
	Control-driven Task-level Parallelism
	Canonical Forms
	Canonical Body
	Dataflow Checking
	Configuring Dataflow Memory Channels
	Specifying Arrays as PIPOs or FIFOs
	Specifying Arrays as Stream-of-Blocks
	Specifying Compiler-Created FIFO Depth
	Stable Arrays

	Mixing Data-Driven and Control-Driven Models
	Summary

	Ch. 3: Loops Primer
	Pipelining Loops
	Automatic Loop Pipelining
	Rewinding Pipelined Loops for Performance
	Flushing Pipelines and Pipeline Types
	Managing Pipeline Dependencies

	Unrolling Loops
	Merging Loops
	Working with Nested Loops
	Working with Variable Loop Bounds

	Ch. 4: Arrays Primer
	Mapping Software Arrays to Hardware Memory
	Array Accesses and Performance
	Array Partitioning
	Automatic Array Partitioning

	Array Reshaping

	Arrays on the Interface
	Array Interfaces
	FIFO Interfaces
	Memory Mapped Interfaces

	Initializing and Resetting Arrays
	Implementing ROMs
	C Simulation with Arrays

	Ch. 5: Functions Primer
	Function Inlining
	Function Pipelining
	Function Instantiation

	Ch. 6: Data Types
	Standard Types
	Floats and Doubles

	Composite Data Types
	Structs
	Structs in the Interface
	Struct Padding and Alignment

	C++ Classes and Templates
	Global Variables and Classes
	Templates
	Using Templates to Create Unique Instances

	Enumerated Types
	Unions
	Type Qualifiers
	Volatile
	Statics
	Const
	ROM Optimization

	Arbitrary Precision (AP) Data Types
	Advantages of AP Data Types
	Overview of Arbitrary Precision Integer Data Types
	Overview of Arbitrary Precision Fixed-Point Data Types

	Global Variables
	Pointers
	Pointers on the Interface
	Basic Pointers
	Pointer Arithmetic
	Multi-Access Pointers on the Interface
	Understanding Volatile Data
	Modeling Streaming Data Interfaces
	Multi-Access Pointers and RTL Simulation

	Vector Data Types
	Bit-Width Propagation

	Ch. 7: Unsupported C/C++ Constructs
	System Calls
	Dynamic Memory Usage
	Pointer Limitations
	Recursive Functions
	Standard Template Libraries

	Undefined Behaviors
	Virtual Functions and Pointers

	Ch. 8: Interfaces of the HLS Design
	Defining Interfaces
	Introduction to Interface Synthesis
	Interfaces for Vitis Kernel Flow
	Interfaces for Vivado IP Flow
	AXI Adapter Interface Protocols
	AXI4 Master Interface
	Offset and Modes of Operation
	Controlling the Address Offset in an AXI4 Interface

	M_AXI Bundles
	M_AXI Resources
	Controlling AXI4 Burst Behavior
	Automatic Port Width Resizing

	Creating an AXI4 Interface with 32-bit Address
	Customizing AXI4 Master Interfaces in IP Integrator

	AXI4-Lite Interface
	S_AXILITE Example
	S_AXILITE Control Register Map
	S_AXILITE and Port-Level Protocols
	S_AXILITE Bundle Rules
	S_AXILITE Offset Option
	C Driver Files
	C Driver Files and Float Types

	Controlling Hardware
	Auto-Restart Mode
	Controlling Software
	Control Clock and Reset in AXI4-Lite Interfaces
	Customizing AXI4-Lite Slave Interfaces in IP Integrator

	AXI4-Stream Interfaces
	How AXI4-Stream Works
	How AXI4-Stream is Implemented
	Registered AXI4-Stream Interfaces
	AXI4-Stream Interfaces without Side-Channels
	AXI4-Stream Interfaces with Side-Channels
	Coding Style for Array to Stream

	Port-Level Protocols for Vivado IP Flow
	Port-Level I/O: No Protocol
	Port-Level I/O: Wire Handshakes
	Port-Level I/O: Memory Interface Protocol

	Programming Model for Multi-Port Access in HBM
	Managing Interfaces with SSI Technology Devices

	Vitis HLS Memory Layout Model
	Data Alignment
	Data Structure Padding
	Vitis HLS Alignment Rules and Semantics
	Examples of Aggregation
	Examples of Disaggregation
	Impact of Struct Size on Pipelining

	Execution Modes of HLS Designs
	Block-Level Control Protocols
	Auto-Restarting Kernels
	Working with Auto-Restarting Kernels
	Supported Kernel Interface
	Enabling Auto-Restart
	Using the Mailbox
	Mailbox Semantics

	Examples of Auto-Restarting Kernels
	Using Auto-Restart with the Mailbox
	Using Counted Auto-Restart

	Controlling Initialization and Reset Behavior
	Initialization Behavior

	Ch. 9: Creating Efficient HLS Designs
	Ch. 10: Optimizing Techniques and Troubleshooting Tips
	Understanding High-Level Synthesis Scheduling and Binding
	Scheduling and Binding Example
	Extracting Control Logic and Implementing I/O Ports Example
	Performance Metrics Example

	Optimizing Logic
	Inferring Shift Registers
	Optimizing Logic Expressions

	Optimizing AXI System Performance
	AXI Burst Transfers
	Preconditions and Limitations of Burst Transfer
	Options for Controlling AXI4 Burst Behavior
	Examples of Recommended Coding Styles
	Summary

	Using Manual Burst
	AXI Performance Case Study

	Managing Area and Hardware Resources
	Limiting the Number of Operators
	Controlling Hardware Implementation
	Controlling Operator Pipelining

	Unrolling Loops in C++ Classes
	Limitations of Control-Driven Task-Level Parallelism
	Limitations of Pipelining with Static Variables

	Sec. III: Using Vitis HLS
	Ch. 11: Launching Vitis HLS
	Setting Up the Environment
	Overview of the Vitis HLS IDE
	Customizing the Vitis HLS IDE Behavior

	Ch. 12: Creating a New Vitis HLS Project
	Working with Sources
	Coding C/C++ Functions
	Accessing Source Files in Git Repositories
	Using Libraries in Vitis HLS
	Resolving References and Viewing #include Files
	Resolving Comments in the Source Code

	Adding RTL Blackbox Functions
	Using the RTL Blackbox Wizard
	C++ Model and Header Files
	RTL IP Definition

	JSON File for RTL Blackbox

	Setting Configuration Options
	Specifying the Clock Frequency
	Clock and Reset Ports

	Using the Flow Navigator
	Vitis HLS Flow Overview
	Enabling the Vivado IP Flow
	Enabling the Vitis Kernel Flow
	Default Settings of Vivado/Vitis Flows

	Ch. 13: Verifying Code with C Simulation
	hls::print Function
	Writing a Test Bench
	Example Test Bench
	Design Files and Test Bench Files
	Single File Test Bench and Design

	Using the Debug View Layout
	Output of C Simulation
	Pre-Synthesis Control Flow

	Ch. 14: Synthesizing the Code
	Synthesis Summary
	Output of C Synthesis
	Improving Synthesis Runtime and Capacity

	Ch. 15: Analyzing the Results of Synthesis
	Schedule Viewer
	Function Call Graph Viewer
	Dataflow Viewer
	Timeline Trace Viewer

	Ch. 16: Optimizing the HLS Project
	Creating Additional Solutions
	Adding Pragmas and Directives
	Using Directives in Scripts vs. Pragmas in Code
	Applying Directives to the Proper Scope
	Applying Optimization Directives to Global Variables
	Applying Optimization Directives to Class Objects
	Applying Optimization Directives to Templates
	Using Constants with Pragmas

	Failure to Satisfy Optimization Directives

	Ch. 17: C/RTL Co-Simulation in Vitis HLS
	Output of C/RTL Co-Simulation
	Automatically Verifying the RTL
	Interface Synthesis Requirements
	Verification of DATAFLOW and DEPENDENCE
	Unsupported Optimizations for Co-Simulation
	Simulating IP Cores

	Analyzing RTL Simulations
	Viewing Simulation Waveforms

	Cosim Deadlock Viewer
	Debugging C/RTL Co-Simulation
	Setting Up the Environment
	Optimization Directives
	C Test Bench and C Source Code

	Ch. 18: Exporting the RTL Design
	Running Implementation
	Implementation Report
	Output of RTL Export
	Archiving the Project

	Ch. 19: Running Vitis HLS from the Command Line

	Sec. IV: Vitis HLS Command Reference
	Ch. 20: vitis_hls Command
	hls_init.tcl

	Ch. 21: Project Commands
	add_files
	cat_ini
	close_project
	close_solution
	cosim_design
	cosim_stall
	create_clock
	csim_design
	csynth_design
	delete_project
	delete_solution
	enable_beta_device
	export_design
	get_clock_period
	get_clock_uncertainty
	get_files
	get_part
	get_project
	get_solution
	get_top
	help
	list_part
	open_project
	open_solution
	open_tcl_project
	set_clock_uncertainty
	set_part
	set_top

	Ch. 22: Configuration Commands
	config_array_partition
	config_compile
	config_cosim
	config_csim
	config_dataflow
	config_debug
	config_export
	config_interface
	config_op
	config_rtl
	config_schedule
	config_storage
	config_unroll

	Ch. 23: Optimization Directives
	set_directive_aggregate
	set_directive_alias
	set_directive_allocation
	set_directive_array_partition
	set_directive_array_reshape
	set_directive_bind_op
	set_directive_bind_storage
	set_directive_dataflow
	set_directive_dependence
	set_directive_disaggregate
	set_directive_expression_balance
	set_directive_function_instantiate
	set_directive_inline
	set_directive_interface
	set_directive_latency
	set_directive_loop_flatten
	set_directive_loop_merge
	set_directive_loop_tripcount
	set_directive_occurrence
	set_directive_performance
	set_directive_pipeline
	set_directive_protocol
	set_directive_reset
	set_directive_stable
	set_directive_stream
	set_directive_top
	set_directive_unroll

	Ch. 24: HLS Pragmas
	pragma HLS aggregate
	pragma HLS alias
	pragma HLS allocation
	pragma HLS array_partition
	pragma HLS array_reshape
	pragma HLS bind_op
	pragma HLS bind_storage
	pragma HLS dataflow
	pragma HLS dependence
	pragma HLS disaggregate
	pragma HLS expression_balance
	pragma HLS function_instantiate
	pragma HLS inline
	pragma HLS interface
	pragma HLS latency
	pragma HLS loop_flatten
	pragma HLS loop_merge
	pragma HLS loop_tripcount
	pragma HLS occurrence
	pragma HLS performance
	pragma HLS pipeline
	pragma HLS protocol
	pragma HLS reset
	pragma HLS stable
	pragma HLS stream
	pragma HLS top
	pragma HLS unroll

	Sec. V: Vitis HLS C Driver Reference
	Ch. 25: AXI4-Lite Slave C Driver Reference
	X<DUT>_Initialize
	X<DUT>_CfgInitialize
	X<DUT>_LookupConfig
	X<DUT>_Release
	X<DUT>_Start
	X<DUT>_IsDone
	X<DUT>_IsIdle
	X<DUT>_IsReady
	X<DUT>_Continue
	X<DUT>_EnableAutoRestart
	X<DUT>_DisableAutoRestart
	X<DUT>_Set_ARG
	X<DUT>_Set_ARG_vld
	X<DUT>_Set_ARG_ack
	X<DUT>_Get_ARG
	X<DUT>_Get_ARG_vld
	X<DUT>_Get_ARG_ack
	X<DUT>_Get_ARG_BaseAddress
	X<DUT>_Get_ARG_HighAddress
	X<DUT>_Get_ARG_TotalBytes
	X<DUT>_Get_ARG_BitWidth
	X<DUT>_Get_ARG_Depth
	X<DUT>_Write_ARG_Words
	X<DUT>_Read_ARG_Words
	X<DUT>_Write_ARG_Bytes
	X<DUT>_Read_ARG_Bytes
	X<DUT>_InterruptGlobalEnable
	X<DUT>_InterruptGlobalDisable
	X<DUT>_InterruptEnable
	X<DUT>_InterruptDisable
	X<DUT>_InterruptClear
	X<DUT>_InterruptGetEnabled
	X<DUT>_InterruptGetStatus

	Sec. VI: Vitis HLS Libraries Reference
	Ch. 26: C/C++ Builtin Functions
	Ch. 27: Arbitrary Precision Data Types Library
	Using Arbitrary Precision Data Types
	Arbitrary Integer Precision Types with C++
	Arbitrary Precision Fixed-Point Data Types
	Fixed-Point Identifier Summary
	Example Using ap_fixed

	C++ Arbitrary Precision Integer Types
	C++ Arbitrary Precision Integer Types: Reference Information
	C++ Arbitrary Precision Types
	Compiling ap_[u]int<> Types
	Declaring/Defining ap_[u] Variables
	Initialization and Assignment from Constants (Literals)
	Support for Console I/O (Printing)
	Expressions Involving ap_[u]<> types
	Class Methods and Operators
	Other Class Methods, Operators, and Data Members

	C++ Arbitrary Precision Fixed-Point Types
	Fixed-Point Identifier Summary
	C++ Arbitrary Precision Fixed-Point Types: Reference Information
	C++ Arbitrary Precision Fixed-Point Types
	ap_[u]fixed Representation
	Quantization Modes
	Overflow Modes
	Compiling ap_[u]fixed<> Types
	Declaring and Defining ap_[u]fixed<> Variables
	Initialization and Assignment from Constants (Literals)
	Support for Console I/O (Printing)
	Expressions Involving ap_[u]fixed<> types
	Class Methods, Operators, and Data Members

	Ch. 28: Vitis HLS Math Library
	HLS Math Library Accuracy
	HLS Math Library
	Fixed-Point Math Functions
	Verification and Math Functions
	Verification Option 1: Standard Math Library and Verify Differences
	Verification Option 2: HLS Math Library and Validate Differences
	Verification Option 3: HLS Math Library File and Validate Differences

	Common Synthesis Errors

	Ch. 29: HLS Stream Library
	C Modeling and RTL Implementation
	Using HLS Streams
	Blocking API
	Blocking Write Methods
	Blocking Read Methods
	Stream.full() Method
	Stream.empty() Method
	Deterministic Behavior

	Non-Blocking API
	Non-Blocking Writes
	Non-Blocking Read

	Controlling the RTL FIFO Depth

	Ch. 30: HLS Vector Library
	Ch. 31: HLS Task Library
	Tasks and Channels
	Tasks and Dataflow

	Ch. 32: HLS Split/Merge Library
	Ch. 33: HLS Stream of Blocks Library
	Stream-of-Blocks Modeling Style
	Resource Usage

	Checking for Full and Empty Blocks
	Modeling Feedback in Dataflow Regions
	Limitations

	Ch. 34: HLS IP Libraries
	FFT IP Library
	FFT Static Parameters
	FFT Runtime Configuration and Status
	Using the FFT Function with Array Interface
	Using FFT Function with Streaming Interface

	FIR Filter IP Library
	FIR Static Parameters
	Using the FIR Function with Array Interface
	Optional FIR Runtime Configuration
	Using FIR Function with Streaming Interface

	DDS IP Library
	DDS Static Parameters
	DDS Struct Parameter Values

	SRL IP Library
	Mapping Directly into SRL Resources
	Read from the Shifter
	Read, Write, and Shift Data
	Read, Write, and Enable-Shift

	Sec. VII: Vitis HLS Migration Guide
	Ch. 35: Migrating to Vitis HLS
	Key Behavioral Differences
	Default User Control Settings
	Vivado IP Development Flow
	Vitis Application Acceleration Development Flow (Kernel Mode)

	Default Interfaces
	Interface Bundle Rules
	Memory Property on Interface
	AXI4-Stream Interfaces with Side-Channels
	Memory Model
	Unconnected Ports
	Global Variables on the Interface
	Behavior Changes to Module Names and Module Prefix
	Updated Memory (RAM/ROM) Module Name and RTL File Name
	Dataflow

	Ch. 36: Deprecated and Unsupported Features
	Ch. 37: Unsupported Features
	Assertions
	Pragmas
	Top-Level Function Argument

	HLS Video Library
	C Arbitrary Precision Types

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Revision History
	Please Read: Important Legal Notices

