AI Engine Intrinsics User Guide  (AIE) r2p22
 All Data Structures Namespaces Functions Variables Typedefs Groups Pages

Overview

16 bit complex by 16 bit complex using Z buffer conjugation

Functions

v8cacc48 mac4_antisym_uct_nc (v8cacc48 acc, v32cint16 xbuff, int xstart, unsigned int xoffsets, int xstep, int ystart, int uct_col, int uct_shift, v8cint16 zbuff, int zstart, unsigned int zoffsets, int zstep)
 Complex anti-symmetric multiply-accumulate intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x input buffer . More...
 
v8cacc48 mac4_antisym_uct_nc (v8cacc48 acc, v16cint16 xbuff, int xstart, unsigned int xoffsets, int xstep, int ystart, int uct_col, int uct_shift, v8cint16 zbuff, int zstart, unsigned int zoffsets, int zstep)
 Complex anti-symmetric multiply-accumulate intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x input buffer using small X input buffer. More...
 
v8cacc48 mac4_antisym_uct_nc (v8cacc48 acc, v16cint16 xbuff, int xstart, unsigned int xoffsets, int xstep, v16cint16 ybuff, int ystart, int uct_col, int uct_shift, v8cint16 zbuff, int zstart, unsigned int zoffsets, int zstep)
 Complex anti-symmetric multiply-accumulate intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x and y input buffers using small X input buffer. More...
 
v8cacc48 msc4_antisym_uct_nc (v8cacc48 acc, v32cint16 xbuff, int xstart, unsigned int xoffsets, int xstep, int ystart, int uct_col, int uct_shift, v8cint16 zbuff, int zstart, unsigned int zoffsets, int zstep)
 Complex anti-symmetric multiply-subtract intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x input buffer . More...
 
v8cacc48 msc4_antisym_uct_nc (v8cacc48 acc, v16cint16 xbuff, int xstart, unsigned int xoffsets, int xstep, int ystart, int uct_col, int uct_shift, v8cint16 zbuff, int zstart, unsigned int zoffsets, int zstep)
 Complex anti-symmetric multiply-subtract intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x input buffer using small X input buffer. More...
 
v8cacc48 msc4_antisym_uct_nc (v8cacc48 acc, v16cint16 xbuff, int xstart, unsigned int xoffsets, int xstep, v16cint16 ybuff, int ystart, int uct_col, int uct_shift, v8cint16 zbuff, int zstart, unsigned int zoffsets, int zstep)
 Complex anti-symmetric multiply-subtract intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x and y input buffers using small X input buffer. More...
 
v8cacc48 mul4_antisym_uct_nc (v32cint16 xbuff, int xstart, unsigned int xoffsets, int xstep, int ystart, int uct_col, int uct_shift, v8cint16 zbuff, int zstart, unsigned int zoffsets, int zstep)
 Complex anti-symmetric multiply intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x input buffer . More...
 
v8cacc48 mul4_antisym_uct_nc (v16cint16 xbuff, int xstart, unsigned int xoffsets, int xstep, int ystart, int uct_col, int uct_shift, v8cint16 zbuff, int zstart, unsigned int zoffsets, int zstep)
 Complex anti-symmetric multiply intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x input buffer using small X input buffer. More...
 
v8cacc48 mul4_antisym_uct_nc (v16cint16 xbuff, int xstart, unsigned int xoffsets, int xstep, v16cint16 ybuff, int ystart, int uct_col, int uct_shift, v8cint16 zbuff, int zstart, unsigned int zoffsets, int zstep)
 Complex anti-symmetric multiply intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x and y input buffers using small X input buffer. More...
 
v8cacc48 negmul4_antisym_uct_nc (v32cint16 xbuff, int xstart, unsigned int xoffsets, int xstep, int ystart, int uct_col, int uct_shift, v8cint16 zbuff, int zstart, unsigned int zoffsets, int zstep)
 Complex anti-symmetric multiply-negate intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x input buffer . More...
 
v8cacc48 negmul4_antisym_uct_nc (v16cint16 xbuff, int xstart, unsigned int xoffsets, int xstep, int ystart, int uct_col, int uct_shift, v8cint16 zbuff, int zstart, unsigned int zoffsets, int zstep)
 Complex anti-symmetric multiply-negate intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x input buffer using small X input buffer. More...
 
v8cacc48 negmul4_antisym_uct_nc (v16cint16 xbuff, int xstart, unsigned int xoffsets, int xstep, v16cint16 ybuff, int ystart, int uct_col, int uct_shift, v8cint16 zbuff, int zstart, unsigned int zoffsets, int zstep)
 Complex anti-symmetric multiply-negate intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x and y input buffers using small X input buffer. More...
 

Function Documentation

v8cacc48 mac4_antisym_uct_nc ( v8cacc48  acc,
v32cint16  xbuff,
int  xstart,
unsigned int  xoffsets,
int  xstep,
int  ystart,
int  uct_col,
int  uct_shift,
v8cint16  zbuff,
int  zstart,
unsigned int  zoffsets,
int  zstep 
)

Complex anti-symmetric multiply-accumulate intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x input buffer .

acc0 += cnj(z00)*(x00 - y00) + cnj(z01)*(x01 - y01)
acc1 += cnj(z10)*(x10 - y10) + cnj(z11)*(x11 - y11)
acc2 += cnj(z20)*(x20 - y20) + cnj(z21)*(x21 - y21)
acc3 += cnj(z30)*(x30 - y30) + cnj(z31)*(x31 - y31)
acc4 = y0uct_select << uct_shift
acc5 = y1uct_select << uct_shift
acc6 = y2uct_select << uct_shift
acc7 = y3uct_select << uct_shift

Parameters

Input/OutputType Comments
return v8cacc48 Returned accumulation vector (8 x cint48 lanes)
acc v8cacc48 Incoming accumulation vector (8 x cint48 lanes)
xbuff v32cint16Input buffer of 32 elements of type cint16
xstart int Starting position offset applied to all lanes of input from X buffer.
xoffsets unsigned int 4b offset for each lane, applied to both x and y buffers. LSB apply to first lane
xstep unsigned int Step between each column for selection in the x and y buffers. Ystep is symmetric to xstep (ystep advances by -xstep).
ystart int Starting position offset applied to all lanes for input from Y buffer.
uct_col int Select which column of data from the Y buffer to upshift for the lower half of the output accumulator. This must be a compile time constant.
uct_shift int Upshift value to the four upshifted lanes
zbuff v8cint16Input buffer of 8 elements of type cint16
zstart int Starting position offset applied to all lanes for input from Z buffer. This must be a compile time constant. Only the 4 LSB of the argument are used.
zoffsetsunsigned int 4b offset for each lane, applied to input from Z buffer. LSB apply to first lane
zstep int Step between each column for selection in the zbuffer.
Note
  • For more information on how data selection works from the buffers go here. The data buffer and coefficient buffer in this intrinsic use the general scheme.
  • Parameter 'zstart' must be a compile time constant.
v8cacc48 mac4_antisym_uct_nc ( v8cacc48  acc,
v16cint16  xbuff,
int  xstart,
unsigned int  xoffsets,
int  xstep,
int  ystart,
int  uct_col,
int  uct_shift,
v8cint16  zbuff,
int  zstart,
unsigned int  zoffsets,
int  zstep 
)

Complex anti-symmetric multiply-accumulate intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x input buffer using small X input buffer.

acc0 += cnj(z00)*(x00 - y00) + cnj(z01)*(x01 - y01)
acc1 += cnj(z10)*(x10 - y10) + cnj(z11)*(x11 - y11)
acc2 += cnj(z20)*(x20 - y20) + cnj(z21)*(x21 - y21)
acc3 += cnj(z30)*(x30 - y30) + cnj(z31)*(x31 - y31)
acc4 = y0uct_select << uct_shift
acc5 = y1uct_select << uct_shift
acc6 = y2uct_select << uct_shift
acc7 = y3uct_select << uct_shift

Parameters

Input/OutputType Comments
return v8cacc48 Returned accumulation vector (8 x cint48 lanes)
acc v8cacc48 Incoming accumulation vector (8 x cint48 lanes)
xbuff v16cint16Input buffer of 16 elements of type cint16
xstart int Starting position offset applied to all lanes of input from X buffer.
xoffsets unsigned int 4b offset for each lane, applied to both x and y buffers. LSB apply to first lane
xstep unsigned int Step between each column for selection in the x and y buffers. Ystep is symmetric to xstep (ystep advances by -xstep).
ystart int Starting position offset applied to all lanes for input from Y buffer.
uct_col int Select which column of data from the Y buffer to upshift for the lower half of the output accumulator. This must be a compile time constant.
uct_shift int Upshift value to the four upshifted lanes
zbuff v8cint16Input buffer of 8 elements of type cint16
zstart int Starting position offset applied to all lanes for input from Z buffer. This must be a compile time constant. Only the 4 LSB of the argument are used.
zoffsetsunsigned int 4b offset for each lane, applied to input from Z buffer. LSB apply to first lane
zstep int Step between each column for selection in the zbuffer.
Note
  • For more information on how data selection works from the buffers go here. The data buffer and coefficient buffer in this intrinsic use the general scheme.
  • Parameter 'zstart' must be a compile time constant.
v8cacc48 mac4_antisym_uct_nc ( v8cacc48  acc,
v16cint16  xbuff,
int  xstart,
unsigned int  xoffsets,
int  xstep,
v16cint16  ybuff,
int  ystart,
int  uct_col,
int  uct_shift,
v8cint16  zbuff,
int  zstart,
unsigned int  zoffsets,
int  zstep 
)

Complex anti-symmetric multiply-accumulate intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x and y input buffers using small X input buffer.

acc0 += cnj(z00)*(x00 - y00) + cnj(z01)*(x01 - y01)
acc1 += cnj(z10)*(x10 - y10) + cnj(z11)*(x11 - y11)
acc2 += cnj(z20)*(x20 - y20) + cnj(z21)*(x21 - y21)
acc3 += cnj(z30)*(x30 - y30) + cnj(z31)*(x31 - y31)
acc4 = y0uct_select << uct_shift
acc5 = y1uct_select << uct_shift
acc6 = y2uct_select << uct_shift
acc7 = y3uct_select << uct_shift

Parameters

Input/OutputType Comments
return v8cacc48 Returned accumulation vector (8 x cint48 lanes)
acc v8cacc48 Incoming accumulation vector (8 x cint48 lanes)
xbuff v16cint16Input buffer of 16 elements of type cint16
xstart int Starting position offset applied to all lanes of input from X buffer.
xoffsets unsigned int 4b offset for each lane, applied to both x and y buffers. LSB apply to first lane
xstep unsigned int Step between each column for selection in the x and y buffers. Ystep is symmetric to xstep (ystep advances by -xstep).
ybuff v16cint16Right input buffer of 16 elements of type cint16
ystart int Starting position offset applied to all lanes for input from Y buffer.
uct_col int Select which column of data from the Y buffer to upshift for the lower half of the output accumulator. This must be a compile time constant.
uct_shift int Upshift value to the four upshifted lanes
zbuff v8cint16Input buffer of 8 elements of type cint16
zstart int Starting position offset applied to all lanes for input from Z buffer. This must be a compile time constant. Only the 4 LSB of the argument are used.
zoffsetsunsigned int 4b offset for each lane, applied to input from Z buffer. LSB apply to first lane
zstep int Step between each column for selection in the zbuffer.
Note
  • For more information on how data selection works from the buffers go here. The data buffer and coefficient buffer in this intrinsic use the general scheme.
  • Parameter 'zstart' must be a compile time constant.
v8cacc48 msc4_antisym_uct_nc ( v8cacc48  acc,
v32cint16  xbuff,
int  xstart,
unsigned int  xoffsets,
int  xstep,
int  ystart,
int  uct_col,
int  uct_shift,
v8cint16  zbuff,
int  zstart,
unsigned int  zoffsets,
int  zstep 
)

Complex anti-symmetric multiply-subtract intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x input buffer .

acc0 -= cnj(z00)*(x00 - y00) + cnj(z01)*(x01 - y01)
acc1 -= cnj(z10)*(x10 - y10) + cnj(z11)*(x11 - y11)
acc2 -= cnj(z20)*(x20 - y20) + cnj(z21)*(x21 - y21)
acc3 -= cnj(z30)*(x30 - y30) + cnj(z31)*(x31 - y31)
acc4 = y0uct_select << uct_shift
acc5 = y1uct_select << uct_shift
acc6 = y2uct_select << uct_shift
acc7 = y3uct_select << uct_shift

Parameters

Input/OutputType Comments
return v8cacc48 Returned accumulation vector (8 x cint48 lanes)
acc v8cacc48 Incoming accumulation vector (8 x cint48 lanes)
xbuff v32cint16Input buffer of 32 elements of type cint16
xstart int Starting position offset applied to all lanes of input from X buffer.
xoffsets unsigned int 4b offset for each lane, applied to both x and y buffers. LSB apply to first lane
xstep unsigned int Step between each column for selection in the x and y buffers. Ystep is symmetric to xstep (ystep advances by -xstep).
ystart int Starting position offset applied to all lanes for input from Y buffer.
uct_col int Select which column of data from the Y buffer to upshift for the lower half of the output accumulator. This must be a compile time constant.
uct_shift int Upshift value to the four upshifted lanes
zbuff v8cint16Input buffer of 8 elements of type cint16
zstart int Starting position offset applied to all lanes for input from Z buffer. This must be a compile time constant. Only the 4 LSB of the argument are used.
zoffsetsunsigned int 4b offset for each lane, applied to input from Z buffer. LSB apply to first lane
zstep int Step between each column for selection in the zbuffer.
Note
  • For more information on how data selection works from the buffers go here. The data buffer and coefficient buffer in this intrinsic use the general scheme.
  • Parameter 'zstart' must be a compile time constant.
v8cacc48 msc4_antisym_uct_nc ( v8cacc48  acc,
v16cint16  xbuff,
int  xstart,
unsigned int  xoffsets,
int  xstep,
int  ystart,
int  uct_col,
int  uct_shift,
v8cint16  zbuff,
int  zstart,
unsigned int  zoffsets,
int  zstep 
)

Complex anti-symmetric multiply-subtract intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x input buffer using small X input buffer.

acc0 -= cnj(z00)*(x00 - y00) + cnj(z01)*(x01 - y01)
acc1 -= cnj(z10)*(x10 - y10) + cnj(z11)*(x11 - y11)
acc2 -= cnj(z20)*(x20 - y20) + cnj(z21)*(x21 - y21)
acc3 -= cnj(z30)*(x30 - y30) + cnj(z31)*(x31 - y31)
acc4 = y0uct_select << uct_shift
acc5 = y1uct_select << uct_shift
acc6 = y2uct_select << uct_shift
acc7 = y3uct_select << uct_shift

Parameters

Input/OutputType Comments
return v8cacc48 Returned accumulation vector (8 x cint48 lanes)
acc v8cacc48 Incoming accumulation vector (8 x cint48 lanes)
xbuff v16cint16Input buffer of 16 elements of type cint16
xstart int Starting position offset applied to all lanes of input from X buffer.
xoffsets unsigned int 4b offset for each lane, applied to both x and y buffers. LSB apply to first lane
xstep unsigned int Step between each column for selection in the x and y buffers. Ystep is symmetric to xstep (ystep advances by -xstep).
ystart int Starting position offset applied to all lanes for input from Y buffer.
uct_col int Select which column of data from the Y buffer to upshift for the lower half of the output accumulator. This must be a compile time constant.
uct_shift int Upshift value to the four upshifted lanes
zbuff v8cint16Input buffer of 8 elements of type cint16
zstart int Starting position offset applied to all lanes for input from Z buffer. This must be a compile time constant. Only the 4 LSB of the argument are used.
zoffsetsunsigned int 4b offset for each lane, applied to input from Z buffer. LSB apply to first lane
zstep int Step between each column for selection in the zbuffer.
Note
  • For more information on how data selection works from the buffers go here. The data buffer and coefficient buffer in this intrinsic use the general scheme.
  • Parameter 'zstart' must be a compile time constant.
v8cacc48 msc4_antisym_uct_nc ( v8cacc48  acc,
v16cint16  xbuff,
int  xstart,
unsigned int  xoffsets,
int  xstep,
v16cint16  ybuff,
int  ystart,
int  uct_col,
int  uct_shift,
v8cint16  zbuff,
int  zstart,
unsigned int  zoffsets,
int  zstep 
)

Complex anti-symmetric multiply-subtract intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x and y input buffers using small X input buffer.

acc0 -= cnj(z00)*(x00 - y00) + cnj(z01)*(x01 - y01)
acc1 -= cnj(z10)*(x10 - y10) + cnj(z11)*(x11 - y11)
acc2 -= cnj(z20)*(x20 - y20) + cnj(z21)*(x21 - y21)
acc3 -= cnj(z30)*(x30 - y30) + cnj(z31)*(x31 - y31)
acc4 = y0uct_select << uct_shift
acc5 = y1uct_select << uct_shift
acc6 = y2uct_select << uct_shift
acc7 = y3uct_select << uct_shift

Parameters

Input/OutputType Comments
return v8cacc48 Returned accumulation vector (8 x cint48 lanes)
acc v8cacc48 Incoming accumulation vector (8 x cint48 lanes)
xbuff v16cint16Input buffer of 16 elements of type cint16
xstart int Starting position offset applied to all lanes of input from X buffer.
xoffsets unsigned int 4b offset for each lane, applied to both x and y buffers. LSB apply to first lane
xstep unsigned int Step between each column for selection in the x and y buffers. Ystep is symmetric to xstep (ystep advances by -xstep).
ybuff v16cint16Right input buffer of 16 elements of type cint16
ystart int Starting position offset applied to all lanes for input from Y buffer.
uct_col int Select which column of data from the Y buffer to upshift for the lower half of the output accumulator. This must be a compile time constant.
uct_shift int Upshift value to the four upshifted lanes
zbuff v8cint16Input buffer of 8 elements of type cint16
zstart int Starting position offset applied to all lanes for input from Z buffer. This must be a compile time constant. Only the 4 LSB of the argument are used.
zoffsetsunsigned int 4b offset for each lane, applied to input from Z buffer. LSB apply to first lane
zstep int Step between each column for selection in the zbuffer.
Note
  • For more information on how data selection works from the buffers go here. The data buffer and coefficient buffer in this intrinsic use the general scheme.
  • Parameter 'zstart' must be a compile time constant.
v8cacc48 mul4_antisym_uct_nc ( v32cint16  xbuff,
int  xstart,
unsigned int  xoffsets,
int  xstep,
int  ystart,
int  uct_col,
int  uct_shift,
v8cint16  zbuff,
int  zstart,
unsigned int  zoffsets,
int  zstep 
)

Complex anti-symmetric multiply intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x input buffer .

acc0 = cnj(z00)*(x00 - y00) + cnj(z01)*(x01 - y01)
acc1 = cnj(z10)*(x10 - y10) + cnj(z11)*(x11 - y11)
acc2 = cnj(z20)*(x20 - y20) + cnj(z21)*(x21 - y21)
acc3 = cnj(z30)*(x30 - y30) + cnj(z31)*(x31 - y31)
acc4 = y0uct_select << uct_shift
acc5 = y1uct_select << uct_shift
acc6 = y2uct_select << uct_shift
acc7 = y3uct_select << uct_shift

Parameters

Input/OutputType Comments
return v8cacc48 Returned accumulation vector (8 x cint48 lanes)
xbuff v32cint16Input buffer of 32 elements of type cint16
xstart int Starting position offset applied to all lanes of input from X buffer.
xoffsets unsigned int 4b offset for each lane, applied to both x and y buffers. LSB apply to first lane
xstep unsigned int Step between each column for selection in the x and y buffers. Ystep is symmetric to xstep (ystep advances by -xstep).
ystart int Starting position offset applied to all lanes for input from Y buffer.
uct_col int Select which column of data from the Y buffer to upshift for the lower half of the output accumulator. This must be a compile time constant.
uct_shift int Upshift value to the four upshifted lanes
zbuff v8cint16Input buffer of 8 elements of type cint16
zstart int Starting position offset applied to all lanes for input from Z buffer. This must be a compile time constant. Only the 4 LSB of the argument are used.
zoffsetsunsigned int 4b offset for each lane, applied to input from Z buffer. LSB apply to first lane
zstep int Step between each column for selection in the zbuffer.
Note
  • For more information on how data selection works from the buffers go here. The data buffer and coefficient buffer in this intrinsic use the general scheme.
  • Parameter 'zstart' must be a compile time constant.
v8cacc48 mul4_antisym_uct_nc ( v16cint16  xbuff,
int  xstart,
unsigned int  xoffsets,
int  xstep,
int  ystart,
int  uct_col,
int  uct_shift,
v8cint16  zbuff,
int  zstart,
unsigned int  zoffsets,
int  zstep 
)

Complex anti-symmetric multiply intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x input buffer using small X input buffer.

acc0 = cnj(z00)*(x00 - y00) + cnj(z01)*(x01 - y01)
acc1 = cnj(z10)*(x10 - y10) + cnj(z11)*(x11 - y11)
acc2 = cnj(z20)*(x20 - y20) + cnj(z21)*(x21 - y21)
acc3 = cnj(z30)*(x30 - y30) + cnj(z31)*(x31 - y31)
acc4 = y0uct_select << uct_shift
acc5 = y1uct_select << uct_shift
acc6 = y2uct_select << uct_shift
acc7 = y3uct_select << uct_shift

Parameters

Input/OutputType Comments
return v8cacc48 Returned accumulation vector (8 x cint48 lanes)
xbuff v16cint16Input buffer of 16 elements of type cint16
xstart int Starting position offset applied to all lanes of input from X buffer.
xoffsets unsigned int 4b offset for each lane, applied to both x and y buffers. LSB apply to first lane
xstep unsigned int Step between each column for selection in the x and y buffers. Ystep is symmetric to xstep (ystep advances by -xstep).
ystart int Starting position offset applied to all lanes for input from Y buffer.
uct_col int Select which column of data from the Y buffer to upshift for the lower half of the output accumulator. This must be a compile time constant.
uct_shift int Upshift value to the four upshifted lanes
zbuff v8cint16Input buffer of 8 elements of type cint16
zstart int Starting position offset applied to all lanes for input from Z buffer. This must be a compile time constant. Only the 4 LSB of the argument are used.
zoffsetsunsigned int 4b offset for each lane, applied to input from Z buffer. LSB apply to first lane
zstep int Step between each column for selection in the zbuffer.
Note
  • For more information on how data selection works from the buffers go here. The data buffer and coefficient buffer in this intrinsic use the general scheme.
  • Parameter 'zstart' must be a compile time constant.
v8cacc48 mul4_antisym_uct_nc ( v16cint16  xbuff,
int  xstart,
unsigned int  xoffsets,
int  xstep,
v16cint16  ybuff,
int  ystart,
int  uct_col,
int  uct_shift,
v8cint16  zbuff,
int  zstart,
unsigned int  zoffsets,
int  zstep 
)

Complex anti-symmetric multiply intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x and y input buffers using small X input buffer.

acc0 = cnj(z00)*(x00 - y00) + cnj(z01)*(x01 - y01)
acc1 = cnj(z10)*(x10 - y10) + cnj(z11)*(x11 - y11)
acc2 = cnj(z20)*(x20 - y20) + cnj(z21)*(x21 - y21)
acc3 = cnj(z30)*(x30 - y30) + cnj(z31)*(x31 - y31)
acc4 = y0uct_select << uct_shift
acc5 = y1uct_select << uct_shift
acc6 = y2uct_select << uct_shift
acc7 = y3uct_select << uct_shift

Parameters

Input/OutputType Comments
return v8cacc48 Returned accumulation vector (8 x cint48 lanes)
xbuff v16cint16Input buffer of 16 elements of type cint16
xstart int Starting position offset applied to all lanes of input from X buffer.
xoffsets unsigned int 4b offset for each lane, applied to both x and y buffers. LSB apply to first lane
xstep unsigned int Step between each column for selection in the x and y buffers. Ystep is symmetric to xstep (ystep advances by -xstep).
ybuff v16cint16Right input buffer of 16 elements of type cint16
ystart int Starting position offset applied to all lanes for input from Y buffer.
uct_col int Select which column of data from the Y buffer to upshift for the lower half of the output accumulator. This must be a compile time constant.
uct_shift int Upshift value to the four upshifted lanes
zbuff v8cint16Input buffer of 8 elements of type cint16
zstart int Starting position offset applied to all lanes for input from Z buffer. This must be a compile time constant. Only the 4 LSB of the argument are used.
zoffsetsunsigned int 4b offset for each lane, applied to input from Z buffer. LSB apply to first lane
zstep int Step between each column for selection in the zbuffer.
Note
  • For more information on how data selection works from the buffers go here. The data buffer and coefficient buffer in this intrinsic use the general scheme.
  • Parameter 'zstart' must be a compile time constant.
v8cacc48 negmul4_antisym_uct_nc ( v32cint16  xbuff,
int  xstart,
unsigned int  xoffsets,
int  xstep,
int  ystart,
int  uct_col,
int  uct_shift,
v8cint16  zbuff,
int  zstart,
unsigned int  zoffsets,
int  zstep 
)

Complex anti-symmetric multiply-negate intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x input buffer .

acc0 = -( cnj(z00)*(x00 - y00) + cnj(z01)*(x01 - y01) )
acc1 = -( cnj(z10)*(x10 - y10) + cnj(z11)*(x11 - y11) )
acc2 = -( cnj(z20)*(x20 - y20) + cnj(z21)*(x21 - y21) )
acc3 = -( cnj(z30)*(x30 - y30) + cnj(z31)*(x31 - y31) )
acc4 = y0uct_select << uct_shift )
acc5 = y1uct_select << uct_shift )
acc6 = y2uct_select << uct_shift )
acc7 = y3uct_select << uct_shift )

Parameters

Input/OutputType Comments
return v8cacc48 Returned accumulation vector (8 x cint48 lanes)
xbuff v32cint16Input buffer of 32 elements of type cint16
xstart int Starting position offset applied to all lanes of input from X buffer.
xoffsets unsigned int 4b offset for each lane, applied to both x and y buffers. LSB apply to first lane
xstep unsigned int Step between each column for selection in the x and y buffers. Ystep is symmetric to xstep (ystep advances by -xstep).
ystart int Starting position offset applied to all lanes for input from Y buffer.
uct_col int Select which column of data from the Y buffer to upshift for the lower half of the output accumulator. This must be a compile time constant.
uct_shift int Upshift value to the four upshifted lanes
zbuff v8cint16Input buffer of 8 elements of type cint16
zstart int Starting position offset applied to all lanes for input from Z buffer. This must be a compile time constant. Only the 4 LSB of the argument are used.
zoffsetsunsigned int 4b offset for each lane, applied to input from Z buffer. LSB apply to first lane
zstep int Step between each column for selection in the zbuffer.
Note
  • For more information on how data selection works from the buffers go here. The data buffer and coefficient buffer in this intrinsic use the general scheme.
  • Parameter 'zstart' must be a compile time constant.
v8cacc48 negmul4_antisym_uct_nc ( v16cint16  xbuff,
int  xstart,
unsigned int  xoffsets,
int  xstep,
int  ystart,
int  uct_col,
int  uct_shift,
v8cint16  zbuff,
int  zstart,
unsigned int  zoffsets,
int  zstep 
)

Complex anti-symmetric multiply-negate intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x input buffer using small X input buffer.

acc0 = -( cnj(z00)*(x00 - y00) + cnj(z01)*(x01 - y01) )
acc1 = -( cnj(z10)*(x10 - y10) + cnj(z11)*(x11 - y11) )
acc2 = -( cnj(z20)*(x20 - y20) + cnj(z21)*(x21 - y21) )
acc3 = -( cnj(z30)*(x30 - y30) + cnj(z31)*(x31 - y31) )
acc4 = y0uct_select << uct_shift )
acc5 = y1uct_select << uct_shift )
acc6 = y2uct_select << uct_shift )
acc7 = y3uct_select << uct_shift )

Parameters

Input/OutputType Comments
return v8cacc48 Returned accumulation vector (8 x cint48 lanes)
xbuff v16cint16Input buffer of 16 elements of type cint16
xstart int Starting position offset applied to all lanes of input from X buffer.
xoffsets unsigned int 4b offset for each lane, applied to both x and y buffers. LSB apply to first lane
xstep unsigned int Step between each column for selection in the x and y buffers. Ystep is symmetric to xstep (ystep advances by -xstep).
ystart int Starting position offset applied to all lanes for input from Y buffer.
uct_col int Select which column of data from the Y buffer to upshift for the lower half of the output accumulator. This must be a compile time constant.
uct_shift int Upshift value to the four upshifted lanes
zbuff v8cint16Input buffer of 8 elements of type cint16
zstart int Starting position offset applied to all lanes for input from Z buffer. This must be a compile time constant. Only the 4 LSB of the argument are used.
zoffsetsunsigned int 4b offset for each lane, applied to input from Z buffer. LSB apply to first lane
zstep int Step between each column for selection in the zbuffer.
Note
  • For more information on how data selection works from the buffers go here. The data buffer and coefficient buffer in this intrinsic use the general scheme.
  • Parameter 'zstart' must be a compile time constant.
v8cacc48 negmul4_antisym_uct_nc ( v16cint16  xbuff,
int  xstart,
unsigned int  xoffsets,
int  xstep,
v16cint16  ybuff,
int  ystart,
int  uct_col,
int  uct_shift,
v8cint16  zbuff,
int  zstart,
unsigned int  zoffsets,
int  zstep 
)

Complex anti-symmetric multiply-negate intrinsic function with unit center-tap optimization with z buffer conjugation with pre-sub from x and y input buffers using small X input buffer.

acc0 = -( cnj(z00)*(x00 - y00) + cnj(z01)*(x01 - y01) )
acc1 = -( cnj(z10)*(x10 - y10) + cnj(z11)*(x11 - y11) )
acc2 = -( cnj(z20)*(x20 - y20) + cnj(z21)*(x21 - y21) )
acc3 = -( cnj(z30)*(x30 - y30) + cnj(z31)*(x31 - y31) )
acc4 = y0uct_select << uct_shift )
acc5 = y1uct_select << uct_shift )
acc6 = y2uct_select << uct_shift )
acc7 = y3uct_select << uct_shift )

Parameters

Input/OutputType Comments
return v8cacc48 Returned accumulation vector (8 x cint48 lanes)
xbuff v16cint16Input buffer of 16 elements of type cint16
xstart int Starting position offset applied to all lanes of input from X buffer.
xoffsets unsigned int 4b offset for each lane, applied to both x and y buffers. LSB apply to first lane
xstep unsigned int Step between each column for selection in the x and y buffers. Ystep is symmetric to xstep (ystep advances by -xstep).
ybuff v16cint16Right input buffer of 16 elements of type cint16
ystart int Starting position offset applied to all lanes for input from Y buffer.
uct_col int Select which column of data from the Y buffer to upshift for the lower half of the output accumulator. This must be a compile time constant.
uct_shift int Upshift value to the four upshifted lanes
zbuff v8cint16Input buffer of 8 elements of type cint16
zstart int Starting position offset applied to all lanes for input from Z buffer. This must be a compile time constant. Only the 4 LSB of the argument are used.
zoffsetsunsigned int 4b offset for each lane, applied to input from Z buffer. LSB apply to first lane
zstep int Step between each column for selection in the zbuffer.
Note
  • For more information on how data selection works from the buffers go here. The data buffer and coefficient buffer in this intrinsic use the general scheme.
  • Parameter 'zstart' must be a compile time constant.